Adsorption and Structuration of PEG Thin Films: Influence of the Substrate Chemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Infrared Spectroscopy
- Attenuated Total Reflection (ATR)
- Polarization-Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS)
- Infrared Spectra Treatments
2.2.2. Atomic Force Microscopy (AFM)
3. Results
3.1. PEG Bulk Characterization Investigated by ATR
- -
- the δs(CH2) bending mode at 1466 cm−1 and the γw(CH2) wagging mode doublet at 1340 cm−1 and 1359 cm−1;
- -
- the triplet of the νa(C-O-C) antisymmetric stretching mode at 1060 cm−1, 1098 cm−1 and 1146 cm−1;
- -
- the γr(CH2)a antisymmetric rocking mode at 841 cm−1 and the γr(CH2) rocking modes of CH2 at 957 cm−1 and 947 cm−1.
3.2. Adsorption of PEG Thin Films on Model Substrates
3.2.1. Surface Topology of Model Substrates
3.2.2. Adsorption on Gold Substrate (Au): Effect on PEG Chain Organization
3.2.3. Influence of the Substrate Chemistry on PEG Chain Organization
4. Discussion
4.1. Quantitative Spectrum Analysis
4.2. Surface Topology of PEG Thin Film
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.W. Surface activity and property of polyethyleneoxide (PEO) in water. Colloids Surf. A Physicochem. Eng. Asp. 1997, 128, 145–154. [Google Scholar] [CrossRef]
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Pean, J.M.; Boury, F.; Venier-Julienne, M.C.; Menei, P.; Proust, J.E.; Benoit, J.P. Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres? Pharm. Res. 1999, 16, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Albertsson, P.A. Partition of Cell Particles and Macromolecules, 3rd ed; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Kao, K.N.; Constable, F.; Michayluck, M.R.; Gamborg, O.L. Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 1974, 120, 215–227. [Google Scholar] [CrossRef]
- Pontecorvo, G. Fusing cultured mammalian cells with Polyethylene glycol. Somat Cell Genet. 1975, 1, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Buchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of immunological properties of bovine serum albumin by covalent attachment of Polyethylene glycol. J. Biol. Chem. 1977, 252, 3578–3581. [Google Scholar] [CrossRef]
- Mori, Y.; Nagoaka, S.; Takiuchi, H.; Kikuchi, T.; Noguchi, N.; Tanzawa, H.; Noishiki, Y. A new antithrombogenic material with long polyethyleneoxide chains. Trans. Am. Soc. Art. Int. Org. 1982, 28, 459–463. [Google Scholar]
- Xiao, Y.; Yan, L.; Zhang, P.; Zhu, N.; Chen, L.; He, P. In situ Fourier transform infrared spectroscopic study of the conformational changes of high-density poly(ethylene) during the melting and crystallization processes. J. Appl. Polym. Sci. 2006, 100, 4835–4841. [Google Scholar] [CrossRef]
- Elzein, T.; Bistac, S.; Brogly, M.; Schultz, J. PM-IRRAS spectroscopy for the characterization of polymer nanofilms: Chains conformation, anisotropy and crystallinity. Macromol. Chem. Phys. Macromol. Symp. 2004, 205, 181–190. [Google Scholar] [CrossRef]
- Elzein, T.; Fahs, A.; Brogly, M.; Elhiri, A.; Lepoittevin, B.; Roger, P.; Planchot, V. Adsorption of Alkanethiols on Gold Surfaces: PM-IRRAS Study of the Influence of Terminal Functionality on Alkyl Chain Orientation, J. Adhes. 2013, 89, 416–432. [Google Scholar] [CrossRef]
- Pielichowski, K.; Flejtuch, K. Differential Scanning Calorimetry Studies on Poly(ethylene Glycol) with Different Molecular Weights for Thermal Energy Storage Material. Polym. Adv. Technol. 2002, 13, 690–696. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Q.; Huang, C.; Liu, G. Crystallization of Poly(ethylene glycol) in Poly(methyl methacrylate) Networks. Mater. Sci. 2013, 19, 147–151. [Google Scholar] [CrossRef]
- Drelich, J.; Wilbur, J.L.; Miller, J.D.; Whitesides, G.M. Contact Angles for Liquid Drops at a Model Heterogeneous Surface Consisting of Alternating and Parallel Hydrophobic/Hydrophilic Strips. Langmuir 1996, 12, 1913–1922. [Google Scholar] [CrossRef]
- Zamlynny, V.; Lipkowski, J. Quantitative SNIFTIRS and PM IRRAS of Organic Molecules at Electrode Surfaces. In Advances in Electrochemical Science and Engineering: Diffraction and Spectroscopic Methods in Electrochemistry; Alkire, R.C., Kolb, D.M., Lipkowski, J., Ross, P.N., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; Volume 9, pp. 315–376. [Google Scholar] [CrossRef]
- Bradley, M.S. A new approach to quantitative spectral conversion of PM-IRRAS: Theory, experiments, and performance comparisons with conventional IRRAS; Application Note: 51368; Thermo Fischer Scientific: Madison, WI, USA, 2008. [Google Scholar]
- Buffeteau, T.; Desbat, B.; Turlet, J.M. Polarization Modulation FT-IR Spectroscopy of Surfaces and Ultra-thin Films: Experimental Procedure and Quantitative Analysis. Appl. Spectrocopy 1991, 45, 380–389. [Google Scholar] [CrossRef]
- Elzein, T.; Awada, H.; Nasser-Eddine, M.; Delaite, C.; Brogly, M. A model of chain folding in Polycaprolactone-b-Polymethyl Methacrylate diblock copolymers. Thin Solid Film 2004, 483, 388–395. [Google Scholar] [CrossRef]
- Brogly, M.; Bistac, S.; Bindel, D. Advanced surface FTIR spectroscopy analysis of poly(ethylene)-block-poly(ethylene oxide) thin film adsorbed on gold substrate. Appl. Surf. Sci. 2022, 603, 154428. [Google Scholar] [CrossRef]
- Yoshihara, T.; Tadokoro, H.; Murahashi, S. Normal vibrations of the polymer molecules of helical conformation., IV. Polyethylene oxide and Polyethylened4 oxide. J. Chem. Phys. 1964, 41, 2902–2911. [Google Scholar] [CrossRef]
- Pucic, I.; Jurkin, T. FTIR assessment of poly(ethylene oxide) irradiated in solid state, melt and aqueous solution. Radiat. Phys. Chem. 2012, 81, 1426–1429. [Google Scholar] [CrossRef]
- Bergeron, C.; Perrier, E.; Potier, A.; Delmas, G. A study of the deformation, network and aging of Polyethylene oxide films by Infrared Spectroscopy and calorimetric measurements. Int. J. Spectrosc. 2011, 2012, 432046. [Google Scholar] [CrossRef]
- Su, Y.-L.; Wang, J.; Liu, H.-Z. Melt, hydration and micellization of the PEO-PPO-PEO block copolymer studied by FTIR Spectroscopy. J. Colloid Interface Sci. 2002, 251, 417–423. [Google Scholar] [CrossRef]
- Pereira, A.G.B.; Gouveia, R.F.; de Carvalho, G.M.; Rubira, A.F.; Muniz, E.C. Polymer blends based on PEO and starch: Miscibility and spherulite growth rate evaluated through DSC and optical microscopy. Mater. Sci. Eng. C 2009, 29, 499–504. [Google Scholar] [CrossRef]
- Bistac, S.; Brogly, M.; Bindel, D. Crystallinity of Amphiphilic PE-b-PEG Copolymers. Polymers 2022, 14, 3639. [Google Scholar] [CrossRef] [PubMed]
- Danolki-Veress, K.; Forrest, J.A.; Massa, M.; Pratt, A.; Williams, A. Crystal Growth Rate in Ultrathin Films of Poly(ethyleneoxide). J. Polym. Sci. Pol. Phys. 2001, 39, 2615–2621. [Google Scholar] [CrossRef]
- Massa, M.; Danolki-Veress, K.; Forrest, J.A. Crystallization kinetics and crystal morphology in thin poly(ethylene oxide) films. Eur. Phys. J. E 2003, 11, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Vanroy, B.; Wubbenhorst, M.; Napolitano, S. Crystallization of thin polymer layers confined between absorbing walls. ACS Macro Lett. 2013, 2, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Keum, J.K.; Hiltner, A.; Baer, E. Confined Crystallization of PEO in Nanolayered Films Impacting Structure and Oxygen Permeability. Macromolecules 2009, 42, 7055–7066. [Google Scholar] [CrossRef]
- Allara, D.L.; Swalen, J.D. An infrared reflection spectroscopy study of oriented cadmium arachidate monolayer films on evaporated silver. J. Phys. Chem. 1982, 86, 2700–2704. [Google Scholar] [CrossRef]
Wavenumbers (cm−1) | Assignment | Phase | Orientation | Intensity |
---|---|---|---|---|
3408 | ν(OH) | - | - | Weak-Broad |
2945 | νa(CH2) out of plane + νa(CH3) | A; C | - | Weak |
2885 | νa(CH2) | - | // | Strong |
2853 | νs(CH2) | A | ⊥ | Strong |
2802 | νa(CH2) | - | // | Weak |
2740 | δa(CH2) + γt(CH2)a + γt(CH2)s | - | // | Weak |
2693 | δa(CH2) + γt(CH2)a | - | ⊥ | Very weak |
1466 | δs(CH2) | C | ⊥ | Medium |
1453 | δa(CH2) + δs(CH2) | A; C | ⊥ | Medium |
1413 | γw(CH2)a | - | ⊥ | Weak |
1359 | γw(CH2)s | C | ⊥ | Medium |
1340 | γw(CH2)a | C | // | Strong |
1279 | γt(CH2)a + γt(CH2)s | A; C | ⊥ | Medium |
1240 | γt(CH2)a | C | ⊥ | Medium |
1146 | ν(C-C) + νa(C-O-C) | C | // | Strong |
1098 | νa(C-O-C) | C | // | Very strong |
1060 | νs(CH2) + νa(C-O-C) | C | // | Strong |
957 | γr(CH2) | C | ⊥ | Medium |
947 | γr(CH2) + νa(C-O-C) | A; C | // | Medium |
841 | γr(CH2)a | C | // | Strong |
PEG | IR Mode | Width (cm−1) | I νs(CH2) | α (°) |
---|---|---|---|---|
Bulk | ATR | 28 | 0.386 | - |
Film on Au | 28 | 0.093 | 16 | |
Film on Au-NH2 | PM-IRRAS | 28 | 0.034 | 10 |
Film on Au-CH3 | 28 | 0.900 | 62 |
PEG | IR Mode | Width (cm−1) | I νs(CH2) | α (°) |
---|---|---|---|---|
Bulk | ATR | 29.5 | 0.946 | - |
Film on Au | 29.5 | 0.676 | 29 | |
Film on Au-NH2 | PM-IRRAS | 29.5 | 0.523 | 25 |
Film on Au-CH3 | 29.5 | 1.732 | 51 |
Band Half-Height Width | |||
---|---|---|---|
Wavenumbers | Assignment | Au-NH2 | Au-CH3 |
1146 cm−1 | νa(C-O-C) + ν(C-C) | 19 cm−1 | 33 cm−1 |
1116 cm−1 | νs(C-O-C) | 12 cm−1 | 55 cm−1 |
1033 cm−1 | νa(C-O-C) + νs(CH2) | - | 28 cm−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brogly, M.; Bistac, S.; Bindel, D. Adsorption and Structuration of PEG Thin Films: Influence of the Substrate Chemistry. Polymers 2024, 16, 1244. https://doi.org/10.3390/polym16091244
Brogly M, Bistac S, Bindel D. Adsorption and Structuration of PEG Thin Films: Influence of the Substrate Chemistry. Polymers. 2024; 16(9):1244. https://doi.org/10.3390/polym16091244
Chicago/Turabian StyleBrogly, Maurice, Sophie Bistac, and Diane Bindel. 2024. "Adsorption and Structuration of PEG Thin Films: Influence of the Substrate Chemistry" Polymers 16, no. 9: 1244. https://doi.org/10.3390/polym16091244
APA StyleBrogly, M., Bistac, S., & Bindel, D. (2024). Adsorption and Structuration of PEG Thin Films: Influence of the Substrate Chemistry. Polymers, 16(9), 1244. https://doi.org/10.3390/polym16091244