Impact of Rheology-Based Optimum Parameters on Enhancing the Mechanical Properties and Fatigue of Additively Manufactured Acrylonitrile–Butadiene–Styrene/Graphene Nanoplatelet Composites
Abstract
:1. Introduction
2. Experiments
2.1. Materials and Specimen
2.2. Thermal Analysis
2.3. Rheological Properties
2.4. Tensile and Fatigue Tests
3. Results and Discussion
4. Conclusions
- The shark-skin effect, closely linked to the material’s rheological behaviour, emerged as a significant factor adversely impacting static strength and fatigue life. Optimising the temperature of all four heating zones of the extruder for filament production and utilising higher nozzle temperature (270 °C) for 3D-printed samples were proposed to address this challenge.
- The addition of 1.0 wt.% GNPs to the ABS matrix and a modification made to the temperature of the extruder’s heating zones significantly enhanced the elastic modulus and UTS of the nanocomposite filaments. In particular, the proposed parameter optimisation led to filaments with minimised shark-skin effects and an 8% higher UTS and 34% higher elastic modulus compared to pure ABS.
- The 3D-printed samples produced with a higher nozzle temperature exhibited increased fatigue lives at all raster orientations compared to those manufactured under identical conditions as pure ABS.
- The research underscores the critical importance of optimising parameters such as temperature range, the extruder’s rotational speed, and printer nozzle temperature to achieve ideal sample quality. Achieving a delicate balance between viscosity levels is vital in ensuring high-quality 3D-printed samples with smooth surfaces.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dizon, J.R.C.; Espera, A.H., Jr.; Chen, Q.; Advincula, R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Bembenek, M.; Kowalski, Ł.; Kosoń-Schab, A. Research on the Influence of Processing Parameters on the Specific Tensile Strength of FDM Additive Manufactured PET-G and PLA Materials. Polymers 2022, 14, 2446. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Mountakis, N.; Grammatikos, S.; Tzounis, L. Multi-functional medical grade Polyamide12/Carbon black nanocomposites in material extrusion 3D printing. Compos. Struct. 2023, 311, 116788. [Google Scholar] [CrossRef]
- Pang, L.; Paxton, N.C.; Ren, J.; Liu, F.; Zhan, H.; Woodruff, M.A.; Bo, A.; Gu, Y. Development of Mechanically Enhanced Polycaprolactone Composites by a Functionalized Titanate Nanofiller for Melt Electrowriting in 3D Printing. ACS Appl. Mater. Interfaces 2020, 12, 47993–48006. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Tzounis, L.; Mountakis, N.; Korlos, A.; Fischer-Griffiths, P.E.; Grammatikos, S. On the Mechanical Response of Silicon Dioxide Nanofiller Concentration on Fused Filament Fabrication 3D Printed Isotactic Polypropylene Nanocomposites. Polymers 2021, 13, 2029. [Google Scholar] [CrossRef] [PubMed]
- Aho, J.; Bøtker, J.P.; Genina, N.; Edinger, M.; Arnfast, L.; Rantanen, J. Roadmap to 3D-Printed Oral Pharmaceutical Dosage Forms: Feedstock Filament Properties and Characterization for Fused Deposition Modeling. J. Pharm. Sci. 2019, 108, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, R.; Frache, A. FDM Printability of PLA Based-Materials: The Key Role of the Rheological Behavior. Polymers 2022, 14, 1754. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-G.; Zou, J.-R.; Wu, H.-H.; Xu, B.-P. Balance between bonding and deposition during fused deposition modeling of polycarbonate and acrylonitrile-butadiene-styrene composites. Polym. Compos. 2020, 41, 60–72. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ghaseminejad, S.; Yousefi, A.A. Preparation of polypropylene/short glass fiber composite as Fused Deposition Modeling (FDM) filament. Results Phys. 2019, 12, 205–222. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.; Ahuja, I. On correlation of rheological, thermal, mechanical and morphological properties of chemical assisted mechanically blended ABS-Graphene composite as tertiary recycling for 3D printing applications. Adv. Mater. Process. Technol. 2022, 8, 2476–2495. [Google Scholar] [CrossRef]
- He, F.; Khan, M. Effects of Printing Parameters on the Fatigue Behaviour of 3D-Printed ABS under Dynamic Thermo-Mechanical Loads. Polymers 2021, 13, 2362. [Google Scholar] [CrossRef] [PubMed]
- Larraza, I.; Vadillo, J.; Calvo-Correas, T.; Tejado, A.; Olza, S.; Peña-Rodríguez, C.; Arbelaiz, A.; Eceiza, A. Cellulose and graphene based polyurethane nanocomposites for FDM 3D printing: Filament properties and printability. Polymers 2021, 13, 839. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pei, X.; Shao, R.; Liu, S.; Wang, W.; Zhao, C.; Xu, Z. Resistance of Graphene/Epoxy Resin—Based Composite Materials to γ Radiation Damage and Their Mechanical Properties. Coatings 2023, 13, 1536. [Google Scholar] [CrossRef]
- Smirnov, A.; Seleznev, A.; Peretyagin, P.; Bentseva, E.; Pristinskiy, Y.; Kuznetsova, E.; Grigoriev, S. Rheological Characterization and Printability of Polylactide (PLA)-Alumina (Al2O3) Filaments for Fused Deposition Modeling (FDM). Materials 2022, 15, 8399. [Google Scholar] [CrossRef] [PubMed]
- Thumsorn, S.; Prasong, W.; Kurose, T.; Ishigami, A.; Kobayashi, Y.; Ito, H. Rheological Behavior and Dynamic Mechanical Properties for Interpretation of Layer Adhesion in FDM 3D Printing. Polymers 2022, 14, 2721. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulos, P.M.; Vrithias, N.R.; Viskadourakis, Z.; Tsakiridis, P.; Vasilopoulos, K.C.; Peppas, A.; Asimakopoulos, G.; Spyrou, A.V.; Karakassides, M.A.; Taxiarchou, M.; et al. Methods of Preparation and Performance Evaluation of ABS/Mineral Microsphere Composites Produced through FDM and Compression Molding. Materials 2022, 15, 5021. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, M.; Battegazzore, D.; Arrigo, R.; Frache, A. Designing 3D printable polypropylene: Material and process optimisation through rheology. Addit. Manuf. 2021, 40, 101944. [Google Scholar] [CrossRef]
- La Gala, A.; Ceretti, D.V.; Fiorio, R.; Cardon, L.; D’hooge, D.R. Comparing pellet- and filament-based additive manufacturing with conventional processing for ABS and PLA parts. J. Appl. Polym. Sci. 2022, 139, e53089. [Google Scholar] [CrossRef]
- Yilmaz, M.; Yilmaz, N.F.; Kalkan, M.F. Rheology, Crystallinity, and Mechanical Investigation of Interlayer Adhesion Strength by Thermal Annealing of Polyetherimide (PEI/ULTEM 1010) Parts Produced by 3D Printing. J. Mater. Eng. Perform. 2022, 31, 9900–9909. [Google Scholar] [CrossRef]
- Sheikh, T.; Behdinan, K. Novel experimental and multiscale study of additively manufactured ABS-carbon nanotubes nanocomposites. Appl. Mater. Today 2023, 35, 101963. [Google Scholar] [CrossRef]
- Duran, C.; Subbian, V.; Giovanetti, M.T.; Simkins, J.R.; Jr, F.R.B. Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol. Rapid Prototyp. J. 2015, 21, 528–534. [Google Scholar] [CrossRef]
- D7791-22; Standard Test Method for Uniaxial Fatigue Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- Gifford, W.A. Compensating for die swell in the design of profile dies. Polym. Eng. Sci. 2003, 43, 1657–1665. [Google Scholar] [CrossRef]
- Aumnate, C.; Pongwisuthiruchte, A.; Pattananuwat, P.; Potiyaraj, P. Fabrication of ABS/Graphene Oxide Composite Filament for Fused Filament Fabrication (FFF) 3D Printing. Adv. Mater. Sci. Eng. 2018, 2018, 2830437. [Google Scholar] [CrossRef]
- Vlachopoulos, J.; Polychronopoulos, N.D. Understanding Rheology and Technology of Polymer Extrusion, 1st ed.; Polydynamics Inc.: Dundas, ON, Canada, 2019. [Google Scholar]
- Hassanifard, S.; Behdinan, K. Fatigue response of multiscale extrusion-based additively manufactured acrylonitrile butadiene styrene-graphene nanoplatelets composites. Compos. Part B Eng. 2024, 279, 111464. [Google Scholar] [CrossRef]
Layer height (mm) | 0.2 |
Printing speed (mm/sec) | 20 |
Infill density (%) | 100 |
Nozzle diameter (mm) | 0.4 |
Nozzle temperature (°C) | 250, 270 |
Bed temperature (°C) | 110 |
Filament Type | Temperatures (°C) | RPM | Surface Condition | |||
---|---|---|---|---|---|---|
Zone 1 | Zone 2 | Zone 3 | Zone 4 | |||
Filament 1 (pure ABS) | 220 | 230 | 230 | 240 | 3.5 | Excellent |
Filament 2 (containing 1.0 wt.% GNPs) | 220 | 230 | 230 | 240 | 3.5 | Excessive shark skin |
Filament 3 (containing 1.0 wt.% GNPs) | 220 | 230 | 230 | 240 | 5.5 | Less shark skin |
Filament 4 (containing 1.0 wt.% GNPs) | 247 | 250 | 250 | 260 | 5.5 | Good |
Filament Type | UTS (MPa), SD | Young’s Modulus (MPa) |
---|---|---|
Filament 1 (pure ABS) | 36.9, 2.1 | 1642 |
Filament 3 (containing 1.0 wt.% GNPs) | 37.8, 1.2 | 2095 |
Filament 4 (containing 1.0 wt.% GNPs) | 39.9, 2.4 | 2203 |
3D-Printed Samples | 0° Raster Angle | 45° Raster Angle | 90° Raster Angle | ||||||
---|---|---|---|---|---|---|---|---|---|
UTS (MPa) | E (MPa) | Strain (%) | UTS (MPa) | E (MPa) | Strain (%) | UTS (MPa) | E (MPa) | Strain (%) | |
Fabricated with Filament 1 | 32.4 | 1522 | 5.6 | 32.9 | 1591 | 5.9 | 29 | 1489 | 3.9 |
Fabricated with Filament 3 | 34.4 | 1556 | 5.5 | 34.2 | 1702 | 4.8 | 29.8 | 1549 | 4.1 |
Fabricated with Filament 4 | 35.5 | 1772 | 3.8 | 34 | 1733 | 4.4 | 30 | 1639 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanifard, S.; Behdinan, K. Impact of Rheology-Based Optimum Parameters on Enhancing the Mechanical Properties and Fatigue of Additively Manufactured Acrylonitrile–Butadiene–Styrene/Graphene Nanoplatelet Composites. Polymers 2024, 16, 1273. https://doi.org/10.3390/polym16091273
Hassanifard S, Behdinan K. Impact of Rheology-Based Optimum Parameters on Enhancing the Mechanical Properties and Fatigue of Additively Manufactured Acrylonitrile–Butadiene–Styrene/Graphene Nanoplatelet Composites. Polymers. 2024; 16(9):1273. https://doi.org/10.3390/polym16091273
Chicago/Turabian StyleHassanifard, Soran, and Kamran Behdinan. 2024. "Impact of Rheology-Based Optimum Parameters on Enhancing the Mechanical Properties and Fatigue of Additively Manufactured Acrylonitrile–Butadiene–Styrene/Graphene Nanoplatelet Composites" Polymers 16, no. 9: 1273. https://doi.org/10.3390/polym16091273
APA StyleHassanifard, S., & Behdinan, K. (2024). Impact of Rheology-Based Optimum Parameters on Enhancing the Mechanical Properties and Fatigue of Additively Manufactured Acrylonitrile–Butadiene–Styrene/Graphene Nanoplatelet Composites. Polymers, 16(9), 1273. https://doi.org/10.3390/polym16091273