Modelling Fatigue Crack Growth in High-Density Polyethylene and Acrylonitrile Butadiene Styrene Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. The HDPE Polymers
2.2. The ABS Polymer
2.3. Methods of Data Analysis
2.3.1. The Hartman–Schijve Methodology
- (i)
- the growth of both small and long cracks in a range of both conventionally and AM metals;
- (ii)
- the growth of both small and long cracks in structural adhesives;
- (iii)
- the effect of temperature on crack growth in structural adhesives;
- (iv)
- the effect of adhesive thickness on crack growth in structural adhesives;
- (v)
- crack growth in nano-composites;
- (vi)
- crack growth in plasma sprayed metals;
- (vii)
- delamination growth in fibre-reinforced polymer composites.
2.3.2. The Simple-Scaling Methodology
- (i)
- collapse the R = 0.1 da/dt versus ΔK curves associated with the tests on these various HDPE polymers that have been irradiated;
- (ii)
- collapse the da/dt versus ΔK curves at values of R = 0.1, 0.3 and 0.5 given in [2] for a commercially available HDPE;
- (iii)
- collapse the R = 0.1 da/dt versus ΔK curves associated with the tests on the ABS polymer.
2.3.3. The Relationship between ∆K/∆Kda/dt and ∆κ
3. Results and Discussion
3.1. Crack Growth in a Range of HDPE Polymers
3.2. Crack Growth in an HDPE Tested at a Range of R Ratios
- (i)
- Both the R ratio and the specimen test geometry dependency essentially vanish, i.e., the results fall onto a single curve, when da/dt is expressed as a function of ΔK/ΔKda/dt. As a result, the engineering mechanics behind this observation would appear to be as delineated in [78] for metals.
- (ii)
- There is good agreement between this curve and the predicted curve that is based on tests discussed in Section 3.1 and shown in Figure 2.
3.3. Comparison of Results for the HDPE Polymers from [2,79,80]
3.4. Crack Growth in Injection-Moulded and 3D-Printed ABS Polymer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a | total crack length, measured from the loading line |
A | constant in the Hartman–Schijve equation |
ABS | acrylonitrile butadiene styrene |
AM | additive-manufactured |
da/dt | rate of fatigue crack growth |
CRB | cracked round-bar test |
CT | compact tension test |
D | a constant in the Hartman–Schijve and Nasgro crack growth equations |
DADT | durability and damage tolerance |
m and q | constants in the Nasgro crack growth equation |
FCG | fatigue crack growth |
HDPE | high-density polyethylene |
stress intensity factor | |
maximum value of the applied stress intensity factor in the fatigue cycle | |
minimum value of the applied stress intensity factor in the fatigue cycle | |
range of the applied stress intensity factor in the fatigue cycle, as defined below | |
ΔKda/dt | the value of ΔK at a low value of da/dt |
Δκ | the Schwalbe crack driving force |
LEFM | linear elastic fracture mechanics |
NASA | North American Space Administration |
NIST | National Institute of Standards and Technology |
p | exponent in the Hartman–Schijve and Nasgro crack growth equations |
Pmax | maximum load applied during the fatigue test |
Pmin | minimum load applied during the fatigue test |
load ratio (=Pmin/Pmax) | |
RAAF | Royal Australian Air Force |
R2 | coefficient of determination |
t | time |
S | applied stress amplitude |
USAF | United States Air Force |
References
- Almomani, A.; Mourad, A.H.; Deveci, S.; Wee, J.W.; Choi, B.H. Recent advances in slow crack growth modelling of polyethylene materials. Mater. Des. 2023, 227, 111720. [Google Scholar] [CrossRef]
- Pinter, G.; Arbeiter, F.; Berger, I.J.; Frank, A. Correlation of fracture mechanics based lifetime prediction and internal pipe pressure tests. In Proceedings of the 17 Plastic Pipes Conference, PPXVII, Chicago, IL, USA, 22–24 September 2014. [Google Scholar]
- United States Air Force Structures Bulletin EZ-SB-19-01, Durability and Damage Tolerance Certification for Additive Manufacturing of Aircraft Structural Metallic Parts, Wright Patterson Air Force Base, OH, USA, 10 June 2019. Available online: https://daytonaero.com/usaf-structures-bulletins-library/ (accessed on 2 March 2024).
- MIL-STD-1530D. Department of Defense Standard Practice Aircraft Structural Integrity Program (ASIP), 13 October 2016. Available online: http://everyspec.com/MIL-STD/MIL-STD-1500-1599/download.php?spec=MIL-STD-1530D (accessed on 2 March 2024).
- Hertzberg, R.W.; Nordberg, H.; Manson, J.A. Fatigue crack propagation in polymeric materials. J. Mater. Sci. 1970, 5, 521–526. [Google Scholar] [CrossRef]
- Hertzberg, R.W.; Manson, J.A.; Skibo, M. Frequency sensitivity of fatigue processes in polymeric solids. Polym. Eng. Sci. 1975, 15, 252–260. [Google Scholar] [CrossRef]
- Arad, S.; Radon, J.C.; Culver, L.E. Growth of fatigue cracks in polycarbonate. Polym. Eng. Sci. 1972, 12, 193–198. [Google Scholar] [CrossRef]
- Suzuki, M.; Yamashita, T.; Nishimura, Y. A study on the transition of fracture mode during fatigue crack propagation in polycarbonate plate. J. Jpn. Soc. Mater. Sci. 1974, 23, 52–57. [Google Scholar] [CrossRef]
- Williams, J.G. Fracture Mechanics of Polymers; Ellis Horwood: Chichester, UK, 1984. [Google Scholar]
- Williams, J.G. A model of fatigue crack growth in polymers. J. Mater. Sci. 1977, 12, 2525–2533. [Google Scholar] [CrossRef]
- El-Hakeem, E.A.; Culver, L.E. Environmental dynamic fatigue crack propagation in Nylon 66. Int. J. Fatigue 1979, 1, 133–140. [Google Scholar] [CrossRef]
- Radon, J. Fatigue crack growth in polymers. Int. J. Fract. 1980, 16, 533–552. [Google Scholar] [CrossRef]
- Hertzberg, R.W.; Manson, J.A. Fatigue of Engineering Plastics; Academic Press: Cambridge, MA, USA, 1980; pp. 74–145. [Google Scholar]
- El-Hakeem, E.A.; Culver, L.E. Environmental dynamic fatigue crack propagation in high density polyethylene: An empirical modelling approach. Int. J. Fatigue 1981, 1, 3–8. [Google Scholar] [CrossRef]
- Pruitt, L.; Hermann, R.; Suresh, S. Fatigue crack growth in polymers subjected to fully compressive cyclic loads. J. Mater. Sci. 1992, 27, 1608–1616. [Google Scholar] [CrossRef]
- Tam, E.P.; Martin, G.C. Fatigue models for glassy polymers. J. Macromol. Sci. Part B 1984, 23, 415–433. [Google Scholar] [CrossRef]
- Bureau, M.N.; Dickson, J.L.; Denault, J. Fatigue propagation behaviour of polystyrene/polyethylene blends. J. Mater. Sci. 1998, 33, 405–419. [Google Scholar]
- Bureau, M.N.; Dickson, J.L.; Denault, J. Comparison of the fatigue propagation behaviour of polystyrene and 95/5 polystyrene/polyethylene blends. J. Mater. Sci. 1998, 33, 1591–1606. [Google Scholar] [CrossRef]
- Gan, Y.; El-Hadik, M.; Aglan, H.; Faughnan, P.; Bryan, C. Fatigue crack growth analysis of poly(monochlorotrifluoroethylene) (CTFE). J. Elastomers Plast. 1999, 31, 84–179. [Google Scholar] [CrossRef]
- Pruitt, L.; Wat, A.; Malit, L. Fatigue and Fracture Mechanisms in Polymers, Chapter 22.1. In ASM Handbook; Volume 11B, Characterization and Failure Analysis of Plastics; Mennal, T.J., Ed. ASM International, Materials Park, OH, USA. Available online: https://dl.asminternational.org/handbooks/edited-volume/171/chapter-abstract/3730789/Fatigue-and-Fracture-Mechanisms-in-Polymers?redirectedFrom=fulltext (accessed on 20 March 2024).
- Sadananda, K.; Vasudevan, A.K. Analysis of fatigue crack growth behaviour in polymers using the unified approach. Mater. Sci. Eng. A 2004, 387–389, 536–541. [Google Scholar] [CrossRef]
- Ramsteiner, F.; Armbrust, T. Fatigue crack growth in polymers. Polym. Test. 2001, 20, 321–327. [Google Scholar] [CrossRef]
- Ravi Chandran, K.S. Mechanical fatigue of polymers: A new approach to characterize the S-N behaviour on the basis of macroscopic crack growth mechanism. Polymer 2016, 91, 222–238. [Google Scholar] [CrossRef]
- Messiha, M.; Frank, A.; Arbeiter, F.; Pinter, G. On the slow crack growth process and associated structure—Property relationships in polyamide12 grades. J. Appl. Polym. Sci. 2022, 139, 52–57. [Google Scholar] [CrossRef]
- Cano, A.J.; Salazar, A.; Rodríguez, J. Effect of the orientation on the fatigue crack growth of polyamide 12 manufactured by selective laser sintering. Rapid Prototyp. J. 2019, 25, 820–829. [Google Scholar] [CrossRef]
- Wee, J.W.; Kim, I.; Choi, B.H. Development of mechanochemical degradation induced slow crack growth model for high density polyethylene in cracked round bar specimen. J. Mech. Sci. Technol. 2023, 37, 719–726. [Google Scholar] [CrossRef]
- ASTM D7791-12; Standard Test Method for Uniaxial Fatigue Properties of Plastics, D20.10. ASTM International: West Conshohocken, PA, USA, 2015.
- Forster, A.M. Materials Testing Standards for Additive Manufacturing of Polymer Materials: State of the Art and Standards Applicability, National Institute of Standards and Technology, US Department of Commerce, Interagency Report, NISTR 8059, May 2015. Available online: https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8059.pdf (accessed on 25 March 2024).
- Forman, R.G.; Mettu, S.R. Behavior of Surface and Corner Cracks Subjected to Tensile and Bending Loads in Ti-6Al-4V Alloy. Fracture Mechanics 22nd Symposium; ASTM STP 1131; Ernst, H.A., Saxena, A., McDowell, D.L., Eds.; American Society for Testing and Materials: Philadelphia, PA, USA, 1992; Volume 1. [Google Scholar]
- Elber, W. Fatigue crack cyclic closure tension under cyclic tension. Eng. Fract. Mech. 1970, 2, 37–45. [Google Scholar]
- Elber, W. The Significance of Crack Closure; ASTM International: West Conshohocken, PA, USA, 1971; Volume 486, pp. 230–242. [Google Scholar]
- Newman, J.C., Jr. A Crack-Closure Model for Predicting Fatigue Crack Growth under Aircraft Spectrum Loading; ASTM International: West Conshohocken, PA, USA, 1981; pp. 53–84. [Google Scholar]
- Paris, P.C.; Lados, D.; Tada, H. Reflections on identifying the real ΔK effective in the threshold region and beyond. Eng. Fract. Mech. 2008, 75, 299–305. [Google Scholar] [CrossRef]
- Kujawski, D. Enhanced model of partial crack closure for correlation of R-ratio effects in aluminium alloys. Int. J. Fatigue 2001, 23, 95–102. [Google Scholar] [CrossRef]
- Ribeiro, V.; Correia, J.; Lesiuk, G.; Gonçalves, A.; De Jesus, A.; Berto, F. Application and discussion of various crack closure models to predict fatigue crack growth in 6061-T651 aluminium alloy. Int. J. Fatigue 2021, 153, 106472. [Google Scholar] [CrossRef]
- Schijve, J. Some formulas for the crack opening stress level. Eng. Fract. Mech. 1981, 14, 461–465. [Google Scholar] [CrossRef]
- Virkler, D.A.; Hillberry, B.M.; Goel, P.K. The statistical nature of fatigue crack propagation. Trans. ASME 1979, 101, 148–153. [Google Scholar] [CrossRef]
- NASA-HDBK-5010. Fracture Control Handbook For Payloads, Experiments, And Similar Hardware, May 2005, Revalidated 2012. Available online: https://standards.nasa.gov/standard/nasa/nasa-hdbk-5010 (accessed on 8 April 2024).
- ASTM E647-15e1; Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM International: West Conshohocken, PA, USA, 2015.
- Main, B.; Jones, M.; Barter, S. The practical need for short fatigue crack growth rate models. Int. J. Fatigue 2021, 142, 105980. [Google Scholar] [CrossRef]
- Molent, L.; Dixon, B. Air frame metal fatigue revisited. Int. J. Fatigue 2020, 131, 105323. [Google Scholar] [CrossRef]
- Manning, S.D.; Garver, W.R.; Henslee, S.P.; Norris, J.W.; Pendley, B.J.; Speaker, S.M.; Smith, V.D.; Yee, B.G.W.; Shinozuka, M.; Yang, Y.N. Durability Methods Development, Volume I—Phase I, AFFDL-TR-79.-3118. 1979. Available online: http://www.dtic.mil/dtic/tr/fulltext/u2/a087301.pdf (accessed on 8 April 2024).
- Jones, R.; Huang, P.; Peng, D. Crack growth from naturally occurring material discontinuities under constant amplitude and operational load. Int. J. Fatigue 2016, 91, 434–444. [Google Scholar] [CrossRef]
- Peng, D.; Champagne, V.K.; Ang, A.S.M.; Birt, A.; Michelson, A.; Pinches, S.; Jones, R. Computing the durability of WAAM 18Ni-250 maraging steel specimens with surface breaking porosity. Crystals 2023, 13, 443. [Google Scholar] [CrossRef]
- Jones, R. Fatigue crack growth and damage tolerance. Fatigue Fract. Eng. Mater. Struct. 2014, 37, 463–483. [Google Scholar] [CrossRef]
- Molent, L. Aircraft Fatigue Management; Springer Briefs in Applied Sciences and Technology; Springer Nature Singapore Pte Ltd.: Singapore, 2023; ISBN 978-981-99-7467-2, ISBN 978-981-99-7468-9 (eBook). [Google Scholar] [CrossRef]
- Wanhill, R.; Barter, S.; Molent, L. Fatigue Crack Growth Failure and Lifing Analyses for Metallic Aircraft Structures and Components; Springer Briefs in Applied Sciences and Technology; Springer Nature Singapore Pte Ltd.: Singapore, 2019; ISBN 978-94-024-1673-2I, ISBN 978-94-024-1675-6 (eBook). [Google Scholar] [CrossRef]
- Berens, A.P.; Hovey, P.W.; Skinn, D.A. Risk Analysis for Aging Aircraft Fleets-Volume 1: Analysis, WL-TR-91-3066, Flight Dynamics Directorate, Wright Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base. October 1991. Available online: https://apps.dtic.mil/sti/pdfs/ADA252000.pdf (accessed on 2 April 2024).
- Main, B.; Molent, L.; Singh, R.; Barter, S. Fatigue crack growth lessons from thirty-five years of the Royal Australian Air Force F/A-18A/B Hornet Aircraft Structural Integrity Program. Int. J. Fatigue 2020, 133, 105426. [Google Scholar] [CrossRef]
- Peng, D.; Jones, R.; Ang, A.S.M.; Michelson, A.; Champagne, V.; Birt, A.; Pinches, S.; Kundu, S.; Alankar, A.; Singh Raman, R.K. Computing the durability of WAAM 18Ni 250 Maraging steel specimens. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 3535–3545. [Google Scholar] [CrossRef]
- Ye, J.; Syed, A.K.; Zhang, X.; Eimer, E.; Williams, S. Fatigue crack growth behaviour in an aluminium alloy Al-Mg-0.3Sc produced by wire based directed energy deposition process. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 3927–3938. [Google Scholar]
- Jones, R.; Singh Raman, R.K.; McMillan, A.J. Crack growth: Does microstructure play a role? Eng. Fract. Mech. 2015, 187, 190–210. [Google Scholar] [CrossRef]
- Wanhill, R.J.H.; Stanzl-Tschegg, S.E. Short/small fatigue crack growth, thresholds and environmental effects: A tale of two engineering paradigms. Corros. Rev. 2021, 39, 165–175. [Google Scholar] [CrossRef]
- Main, B.; Evans, R.; Walker, K.; Yu, X.; Molent, L. Lessons from a fatigue prediction challenge for an aircraft wing shear tie post. Int. J. Fatigue 2019, 123, 53–65. [Google Scholar] [CrossRef]
- Tan, J.L.; Chen, B.K. Prediction of fatigue life in aluminum alloy (AA7050-T7451) structures in the presence of multiple artificial short cracks. Theor. Appl. Fract. Mech. 2015, 78, 1–7. [Google Scholar] [CrossRef]
- Tan, J.L.; Chen, B.K. A new fracture area method for predicting the growth of a newly coalesced crack in AA7050-T7451 aluminium alloy. Theor. Appl. Fract. Mech. 2015, 75, 146–150. [Google Scholar] [CrossRef]
- Godefroid, L.B.; Moreira, L.P.; Vilela, T.C.G.; Faria, G.L.; Candido, L.C.; Pinto, E.S. Effect of chemical composition and microstructure on the fatigue crack growth resistance of pearlitic steels for railroad application. Int. J. Fatigue 2019, 120, 241–253. [Google Scholar] [CrossRef]
- Han, S.; Dung Dinh, T.; De Baere, I.; Boone, M.; Josipovic, I.; Van Paepegem, W. Study of the effect of defects on fatigue life prediction of additive manufactured Ti-6Al-4V by combined use of micro-computed tomography and fracture-mechanics-based simulation. Int. J. Fatigue 2024, 180, 108110. [Google Scholar] [CrossRef]
- Shamir, M.; Zhang, X.; Syed, A.K. Characterising and representing small crack growth in an additive manufactured titanium alloy. Eng. Fract. Mech. 2021, 253, 107876. [Google Scholar] [CrossRef]
- Markham, M.J.; Fatemi, A.; Phan, N. Mixed-mode small fatigue crack growth rates and modeling in additively manufactured metals. Int. J. Fatigue 2024, 183, 108258. [Google Scholar] [CrossRef]
- Sanaei, N.; Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog. Mater. Sci. 2021, 117, 100724. [Google Scholar] [CrossRef]
- Dastgerdi, J.N.; Jaberi, O.; Remes, H.; Lehto, P.; Toudeshky, H.H.; Kuva, J. Fatigue damage process of additively manufactured 316 L steel using X-ray computed tomography imaging. Addit. Manuf. 2023, 70, 103559. [Google Scholar] [CrossRef]
- Jones, R.; Cizek, J.; Kovarik, O.; Ang, A.; Champagne, V. Observations on comparable aluminium alloy crack growth curves: Additively manufactured Scalmalloy® as an alternative to AA5754 and AA6061-T6 alloys. Addit. Manuf. Lett. 2022, 2, 100026. [Google Scholar] [CrossRef]
- Khudiakova, A.; Brunner, A.J.; Wolfahrt, M.; Pinter, G. Quantification approaches for fatigue crack resistance of thermoplastic tape layered composites with multiple delaminations. Materials 2021, 14, 1476. [Google Scholar] [CrossRef] [PubMed]
- Riedl, G.; Pugstaller, R.; Wallner, G.M. Development and implementation of a simultaneous fatigue crack growth test setup for polymeric hybrid laminates. Eng. Fract. Mech. 2022, 267, 108468. [Google Scholar] [CrossRef]
- Simon, I.; Banks-Sills, L.; Fourman, V. Mode I delamination propagation and R-ratio effects in woven DCB specimens for a multi-directional layup. Int. J. Fatigue 2017, 96, 237–251. [Google Scholar] [CrossRef]
- Arhant, M.; Lolive, E.; Bonnemains, T.; Davies, P. Effect of aging on the fatigue crack growth properties of carbon-polyamide 6 thermoplastic composites using the multi ΔG-control method. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107105. [Google Scholar] [CrossRef]
- Michel, S.; Murphy, N.; Kinloch, A.J.; Jones, R. On cyclic-fatigue crack growth in carbon-fibre-reinforced epoxy-polymer composites. Polymers 2024, 16, 435. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Peng, D.; Sing Raman, R.K.; Kinloch, A.J.; Michopoulos, J. Thoughts on two approaches for accounting for the scatter in fatigue delamination growth curves. Compos. Struct. 2021, 258, 113175. [Google Scholar] [CrossRef]
- Jones, R.; Kinloch, A.J.; Michopoulos, J.; Iliopoulos, A.P. Crack growth in adhesives: Similitude and the Hartman-Schijve equation. Compos. Struct. 2021, 273, 114260. [Google Scholar] [CrossRef]
- Jones, R.; Hu, W.; Kinloch, A.J. A convenient way to represent fatigue crack growth in structural adhesives. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 379–391. [Google Scholar] [CrossRef]
- Kinloch, A.J.; Jones, R.; Michopoulos, J.G. Fatigue crack growth in epoxy polymer nanocomposites. Philos. Trans. A R. Soc. 2020, A379, 20200436. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.J.; Salazar, A.; Rodríguez, J. Evaluation of different crack driving forces for describing the fatigue crack growth behaviour of PET-G. Int. J. Fatigue 2018, 107, 27–32. [Google Scholar] [CrossRef]
- Kovarik, O.; Cizek, J.; Klecka, J. Fatigue crack growth rate description of rf-plasma-sprayed refractory metals and alloys. Materials 2023, 16, 1713. [Google Scholar] [CrossRef]
- Available online: https://zentech.co.uk/ (accessed on 8 February 2024).
- Jones, R.; Chandwani, R.; Timbrell, C.; Kinloch, A.J.; Peng, D. Thoughts on the importance of similitude and multi-axial loads when assessing the durability and damage tolerance of adhesively-bonded doublers and repairs. Aerospace 2023, 10, 946. [Google Scholar] [CrossRef]
- Schönbauer, B.M.; Stanzl-Tschegg, S.E.; Perlega, A.; Salzman, R.N.; Rieger, N.F.; Turnbull, A.; Zhou, S.; Lukaszewicz, M.; Gandy, D. The influence of corrosion pits on the fatigue life of 17-4PH steam turbine blade steel. Eng. Fract. Mech. 2015, 147, 158–175. [Google Scholar] [CrossRef]
- Jones, R.; Ang, A.; Phan, N.D.; Nicholas, M. On the link between plastic wake induced crack closure and the fatigue threshold. Metals 2024, 14, 523. [Google Scholar] [CrossRef]
- Cerpentier, R.R.J.; Martin van Drongelen, M.; Boerakker, M.J.; Govaert, L.E. Influence of electron-beam irradiation on plasticity-controlled and crack-growth-controlled failure in high-density polyethylene. J. Polym. Sci. 2022, 60, 701–714. [Google Scholar] [CrossRef]
- Cerpentier, R.R.J.; van Vliet, T.; Pastukhov, L.V.; van Drongelen, M.; Boerakker, M.J.; Tervoort, T.A.; Govaert, L.E. Fatigue crack propagation of High-Density Polyethylene homopolymers: Influence of molecular weight distribution and temperature. Macromolecules 2021, 54, 11508–11521. [Google Scholar] [CrossRef]
- Knöchel, J.; Kropka, M.; Neumeyer, T.; Altstädt, V. Resistance of 3D printed polymer structures against fatigue crack growth, Proceedings IRF2018: 6th International Conference Integrity-Reliability-Failure, Lisbon/Portugal 22–26 July 2018. Editors J.F. Silva Gomes and S.A. Meguid, 949-950. Publ. INEGI/FEUP, 2018; ISBN: 978-989-20-8313-1. Available online: https://fe.up.pt/irf/Proceedings_IRF2018/data/Papers.htm (accessed on 20 March 2024).
- Available online: https://www.youtube.com/watch?v=eqlrM86uCdM&ab_channel=ARBURGofficial (accessed on 8 April 2024).
- Schwalbe, K.H. On the beauty of analytical models for fatigue crack propagation and fracture. A personal historical review. J. ASTM Int. 2010, 7, 3–73. [Google Scholar] [CrossRef]
- Naderi, M.; Amiri, M.; Khonsari, M.M. On the thermodynamic entropy of fatigue fracture. Proc. R. Soc. A 2010, 466, 423–438. [Google Scholar] [CrossRef]
- Basaran, C. Entropy based fatigue, fracture, failure prediction and structural health monitoring. Entropy 2020, 22, 1178. [Google Scholar] [CrossRef]
- Mozafari, F.; Thamburaja, P.; Moslemi, N.; Srinivasa, A. Finite-element simulation of multi-axial fatigue loading in metals based on a novel experimentally-validated microplastic hysteresis-tracking method. Finite Elem. Anal. Des. 2021, 187, 103481. [Google Scholar] [CrossRef]
Descriptor | Mn (kDa) | Mw (kDa) | Mz (kDa) | χv [% v] | Dose (kGy) |
---|---|---|---|---|---|
HPE-12-75-350 | 12 | 75 | 350 | 74.4 | 0 |
HPE-8.4-51-230 | 8.4 | 51 | 230 | 71.4 | 0 |
HPE-4.4-197-1790 | 4.4 | 197 | 1790 | 74.2 | 0 |
HPE-12-75-350-50 | 7 | 120 | 880 | 75.2 | 50 |
HPE-8.4-51-230-50 | 9 | 74 | 610 | 71.8 | 50 |
HPE-4.4-197-1790-50 | 8 | 130 | 700 | 73.8 | 50 |
HPE-12-75-350-100 | 6 | 59 | 340 | 75.1 | 100 |
HPE-8.4-51-230-100 | 8 | 105 | 1000 | 71.2 | 100 |
HPE-4.4-197-1790-100 | 5 | 44 | 195 | 73.9 | 100 |
HPE-12-75-350-150 | 8 | 37 | 145 | 74.9 | 150 |
HPE-8.4-51-230-150 | 5 | 82 | 750 | 71 | 150 |
HPE-4.4-197-1790-150 | 3 | 21 | 77 | 73 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.; Kinloch, A.J.; Ang, A.S.M. Modelling Fatigue Crack Growth in High-Density Polyethylene and Acrylonitrile Butadiene Styrene Polymers. Polymers 2024, 16, 1299. https://doi.org/10.3390/polym16091299
Jones R, Kinloch AJ, Ang ASM. Modelling Fatigue Crack Growth in High-Density Polyethylene and Acrylonitrile Butadiene Styrene Polymers. Polymers. 2024; 16(9):1299. https://doi.org/10.3390/polym16091299
Chicago/Turabian StyleJones, Rhys, Anthony J. Kinloch, and Andrew S. M. Ang. 2024. "Modelling Fatigue Crack Growth in High-Density Polyethylene and Acrylonitrile Butadiene Styrene Polymers" Polymers 16, no. 9: 1299. https://doi.org/10.3390/polym16091299
APA StyleJones, R., Kinloch, A. J., & Ang, A. S. M. (2024). Modelling Fatigue Crack Growth in High-Density Polyethylene and Acrylonitrile Butadiene Styrene Polymers. Polymers, 16(9), 1299. https://doi.org/10.3390/polym16091299