Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Methods
2.1.1. Database Creation
2.1.2. Descriptor Calculation
Author | HA a | ChiMA b | Gelatin | Alginate | MC c | Agarose | NOOC d | GelMA e | GG f | Chitosan | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Aguado et al. | x | [34] | |||||||||
Almeida et al. | x | [35] | |||||||||
Butler et al. | x | x | [36] | ||||||||
Chen et al. | x | x | [37] | ||||||||
Di Giuseppe et al. | x | x | [41] | ||||||||
Firipis et al. | x | x | [39] | ||||||||
Gao et al. | x | x | [50] | ||||||||
Jain et al. | x | [42] | |||||||||
Maíz-Fernandez et al. | x | x | [44] | ||||||||
Negrini et al. | x | [38] | |||||||||
Ouyang et al. | x | x | [43] | ||||||||
Soltan et al. | x | x | [51] |
2.1.3. Outcome Classification
2.1.4. Model Generation Process
Outcome (Unit) | Lim. Inf. | Avg | Lim. Supp. | n0 | n1 | Ref. |
---|---|---|---|---|---|---|
Uniformity, U | 0.93 | 0.98 | 1.03 | 62 | 36 | [44,50,51] |
Pore factor, Pr | 0.90 | 0.95 | 1.00 | 28 | 11 | [8,39,42,43,51] |
Integrity factor, I | 0.30 | 0.61 | 0.70 | 16 | 13 | [50,51] |
Viscosity (cP) | 1800.00 | 3054.86 | 15,000.00 | 10 | 4 | [34,51] |
Accuracy, Ac | 82.82 | 87.18 | 91.54 | 12 | 3 | [41] |
Width (mm) | 0.32 | 0.33 | 0.35 | 3 | 3 | [41] |
Parameter Optimzation Index, POI | 40.00 | 57.04 | 65.00 | 3 | 3 | [54] |
Compr. Modulus (kPa) | 35.00 | 38.13 | 42.00 | 3 | 3 | [55] |
Storage, G′ (Pa) | 25.00 | 468.10 | 95.00 | 12 | 7 | [34,36,50] |
Loss moduli, G″ (Pa) | 0.40 | 0.75 | 0.85 | 5 | 1 | [36] |
tan(G″/G′) | 0.20 | 0.32 | 0.40 | 6 | 4 | [50,51] |
Swelling ratio, Sw | 10.71 | 11.28 | 11.84 | 2 | 2 | [37] |
E (Pa) | 100.00 | 830.99 | 2000.00 | 2 | 4 | [50] |
Diameter (mm) | 100.00 | 735.44 | 772.21 | 18 | 30 | [38] |
Porosity (%) | 78.00 | 77.35 | 85.00 | 1 | 1 | [35] |
Expansion (%) | 8.00 | 10.18 | 25.00 | 628 | 632 | [44] |
Total | 811 | 757 |
3. Experimental Methods
3.1. Bioprinting Conditions
3.2. Image Caption and Analysis
4. Results and Discussion
4.1. Computational Model
4.1.1. IFPTML Linear Model
4.1.2. IFPTML Nonlinear Models
Input Variables ∆Dk(cj) | Descriptor Code | Name | Description | Related Condition (cj) | Condition Name | Nodes Count | Ref. |
---|---|---|---|---|---|---|---|
∆Wapi(c4) | Wapi | All-path Wiener index | Counts the number of bonds between pairs of atoms to generate a matrix. Does not take hydrogens into account. | 4 | Nozzle inner diameter | 3 | [64] |
∆Wapi(c1) | 1 | Extrusion pressure | 3 | ||||
∆WiDzvi(c0) | Wi_Dz(v)i | Wiener-like index from Barysz matrix weighted by van der Waals volume | 0 | Measured property | 1 | [61] | |
∆WiDzvi(c9) | 9 | Ethanol content | 4 | ||||
∆WiCoulombi(c0) | Wi_Coulombi | Wiener-like index from Coulomb matrix | 0 | Measured property | 2 | [65] | |
∆WiCoulombi(c5) | 5 | Layers printed | 2 | ||||
∆HRGi(c3) | H_RGi | Harary-like index from reciprocal squared geometrical matrix | It counts the number of bonds of disordered atoms, always taking the shortest path. | 3 | Nozzle | 2 | [59,66] |
∆HRGi(c2) | 2 | Extrusion speed | 1 | ||||
∆HCoulombi(c1) | H_Coulombi | Harary-like index from Coulomb matrix | 1 | Extrusion pressure | 3 | ||
∆HCoulombi(c4) | 4 | Nozzle inner diameter | 1 | ||||
∆Mor01si(c3) | Mor01si | Moran autocorrelation of lag 1 weighted by I-state | It is a correlation of two signals between atoms close to each other in space. | 3 | Nozzle | 1 | [67] |
∆GMTIVi(c1) | GMTIVi | Gutman molecular topological index by valence vertex degrees | A weighted sum that considers the vertices and valences of all pairs of atoms in a graph. | 1 | Extrusion pressure | 2 | [62,68] |
∆GMTIVi(c2) | 2 | 1 | |||||
∆SMTIi(c1) | SMTIi | Schultz molecular topological index | 1 | 4 | [48] | ||
∆SMTIi(c2) | 2 | 5 | |||||
∆IDMTi(c0) | IDMTi | Total information content on the distance magnitude | 0 | Measured property | 2 | ||
f(vi,j)ref | Reference function | Value dependent on the property to be calculated. | - | 2 |
Profile | Training | Validation | ||||||
---|---|---|---|---|---|---|---|---|
f(vi,j) | 0 a | 1 a | (%) | Par. | (%) | 0 a | 1 a | |
IFPTML-MLPC 1:1-100-100-1:1 | 0 b | 352 | 222 | 77.4 | Sp | 56.8 | 134 | 102 |
1 b | 118 | 405 | 61.3 | Sn | 77.4 | 53 | 182 | |
AUROC | 0.694 | 0.671 | ||||||
IFPTML-MLPC 1:1-100-100-100-1:1 | 0 b | 491 | 83 | 85.5 | Sp | 78.8 | 186 | 50 |
1 b | 170 | 353 | 67.5 | Sn | 63.8 | 85 | 750 | |
AUROC | 0.765 | 0.713 | ||||||
IFPTML-MLPC 1:1-100-1100-100-1:1 | 0 b | 187 | 82 | 85.7 | Sp | 79.2 | 187 | 49 |
1 b | 171 | 352 | 67.3 | Sn | 63.0 | 87 | 148 | |
AUROC | 0.765 | 0.711 |
4.2. Experimental and Computational Case of Study of ChiMA Gel
4.2.1. Experimental Characterization of Two New ChiMA and ChiMA + PEGDA Hydrogels
4.2.2. IFPTML Computational Simulation of ChiMA Gel
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roche, C.D.; Brereton, R.J.L.; Ashton, A.W.; Jackson, C.; Gentile, C. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur. J. Cardio-Thorac. Surg. 2020, 58, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Unagolla, J.M.; Jayasuriya, A.C. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl. Mater. Today 2020, 18, 100479. [Google Scholar] [CrossRef]
- Chimene, D.; Lennox, K.K.; Kaunas, R.R.; Gaharwar, A.K. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Ann. Biomed. Eng. 2016, 44, 2090–2102. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.P.; Shah, H.B.; Maniar, K.K.; Özel, T. Extrusion-based 3D bioprinting of alginate-based tissue constructs. Procedia CIRP 2020, 95, 143–148. [Google Scholar] [CrossRef]
- Huang, J.; Lei, X.; Huang, Z.; Rong, Z.; Li, H.; Xie, Y.; Duan, L.; Xiong, J.; Wang, D.; Zhu, S.; et al. Bioprinted Gelatin-Recombinant Type III Collagen Hydrogel Promotes Wound Healing. Int. J. Biopr. 2022, 8, 517. [Google Scholar] [CrossRef]
- Ding, Y.-W.; Zhang, X.-W.; Mi, C.-H.; Qi, X.-Y.; Zhou, J.; Wei, D.-X. Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications. Smart Mater. Med. 2023, 4, 59–68. [Google Scholar] [CrossRef]
- Piluso, S.; Skvortsov, G.A.; Altunbek, M.; Afghah, F.; Khani, N.; Koç, B.; Patterson, J. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments. Biofabrication 2021, 13, 045008. [Google Scholar] [CrossRef]
- Rodríguez-Rego, J.M.; Mendoza-Cerezo, L.; Macías-García, A.; Mendoza-Cerezo, L.; Carrasco-Amador, J.P.; Marcos-Romero, A.C. Methodology for characterizing the printability of hydrogels. Int. J. Biopr. 2023, 9, 667. [Google Scholar] [CrossRef]
- Dell, A.C.; Wagner, G.; Own, J.; Geibel, J.P. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics 2022, 14, 2596. [Google Scholar] [CrossRef]
- Naghieh, S.; Chen, X. Printability–A key issue in extrusion-based bioprinting. J. Pharm. Anal. 2021, 11, 564–579. [Google Scholar] [CrossRef] [PubMed]
- Xie, S. Perspectives on development of biomedical polymer materials in artificial intelligence age. J. Biomater. Appl. 2023, 37, 1355–1375. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, T. Literature analysis of artificial intelligence in biomedicine. Ann. Transl. Med. 2022, 10, 1284. [Google Scholar] [CrossRef]
- Mazón-Ortiz, G.; Cerda-Mejía, G.; Gutiérrez Morales, E.; Diéguez-Santana, K.; Ruso, J.M.; González-Díaz, H. Trends in Nanoparticles for Leishmania Treatment: A Bibliometric and Network Analysis. Diseases 2023, 11, 153. [Google Scholar] [CrossRef]
- Nocedo-Mena, D.; Cornelio, C.; Camacho-Corona, M.D.R.; Garza-González, E.; Waksman de Torres, N.; Arrasate, S.; Sotomayor, N.; Lete, E.; González-Díaz, H. Modeling Antibacterial Activity with Machine Learning and Fusion of Chemical Structure Information with Microorganism Metabolic Networks. J. Chem. Inf. Model. 2019, 59, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Quevedo-Tumailli, V.; Ortega-Tenezaca, B.; González-Díaz, H. IFPTML Mapping of Drug Graphs with Protein and Chromosome Structural Networks vs. Pre-Clinical Assay Information for Discovery of Antimalarial Compounds. Int. J. Mol. Sci. 2021, 22, 13066. [Google Scholar] [CrossRef]
- Santana, R.; Zuluaga, R.; Gañán, P.; Arrasate, S.; Onieva Caracuel, E.; González-Díaz, H. PTML Model of ChEMBL Compounds Assays for Vitamin Derivatives. ACS Comb. Sci. 2020, 22, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.; Ortega-Tenezaca, B.; Barbolla, I.; Fundora-Ortiz, B.; Arrasate, S.; Dea-Ayuela, M.A.; González-Díaz, H.; Sotomayor, N.; Lete, E. Prediction of Antileishmanial Compounds: General Model, Preparation, and Evaluation of 2-Acylpyrrole Derivatives. J. Chem. Inf. Model. 2022, 62, 3928–3940. [Google Scholar] [CrossRef]
- Helguera, A.M.; Combes, R.D.; González, M.P.; Cordeiro, M.N. Applications of 2D descriptors in drug design: A DRAGON tale. Curr. Top. Med. Chem. 2008, 8, 1628–1655. [Google Scholar] [CrossRef] [PubMed]
- Leini, Z.; Xiaolei, S. Study on Speech Recognition Method of Artificial Intelligence Deep Learning. J. Phys. Conf. Ser. 2021, 1754, 012183. [Google Scholar] [CrossRef]
- Ennaji, O.; Vergütz, L.; El Allali, A. Machine learning in nutrient management: A review. Artif. Intell. Agric. 2023, 9, 1–11. [Google Scholar] [CrossRef]
- Kuzhagaliyeva, N.; Horváth, S.; Williams, J.; Nicolle, A.; Sarathy, S.M. Artificial intelligence-driven design of fuel mixtures. Commun. Chem. 2022, 5, 111. [Google Scholar] [CrossRef]
- Kakani, V.; Nguyen, V.H.; Kumar, B.P.; Kim, H.; Pasupuleti, V.R. A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2020, 2, 100033. [Google Scholar] [CrossRef]
- Elbadawi, M.; Muñiz Castro, B.; Gavins, F.K.H.; Ong, J.J.; Gaisford, S.; Pérez, G.; Basit, A.W.; Cabalar, P.; Goyanes, A. M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. Int. J. Pharm. 2020, 590, 119837. [Google Scholar] [CrossRef] [PubMed]
- Nadernezhad, A.; Groll, J. Machine Learning Reveals a General Understanding of Printability in Formulations Based on Rheology Additives. Adv. Sci. 2022, 9, 2202638. [Google Scholar] [CrossRef] [PubMed]
- Bediaga, H.; Moreno, M.I.; Arrasate, S.; Vilas, J.L.; Orbe, L.; Unzueta, E.; Mercader, J.P.; González-Díaz, H. Multi-output chemometrics model for gasoline compounding. Fuel 2022, 310, 122274. [Google Scholar] [CrossRef]
- Cabrera-Andrade, A.; López-Cortés, A.; Munteanu, C.R.; Pazos, A.; Pérez-Castillo, Y.; Tejera, E.; Arrasate, S.; González-Díaz, H. Perturbation-Theory Machine Learning (PTML) Multilabel Model of the ChEMBL Dataset of Preclinical Assays for Antisarcoma Compounds. ACS Omega 2020, 5, 27211–27220. [Google Scholar] [CrossRef]
- Aranzamendi, E.; Arrasate, S.; Sotomayor, N.; González-Díaz, H.; Lete, E. Chiral Brønsted Acid-Catalyzed Enantioselective α-Amidoalkylation Reactions: A Joint Experimental and Predictive Study. ChemistryOpen 2016, 5, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Blay, V.; Yokoi, T.; González-Díaz, H. Perturbation Theory–Machine Learning Study of Zeolite Materials Desilication. J. Chem. Inf. Model. 2018, 58, 2414–2419. [Google Scholar] [CrossRef]
- Carracedo-Reboredo, P.; Aranzamendi, E.; He, S.; Arrasate, S.; Munteanu, C.; Fernandez-Lozano, C.; Sotomayor, N.; Lete, E.; González-Díaz, H. MATEO: InterMolecular α-Amidoalkylation Theoretical Enantioselectivity Optimization. Online Tool for Selection and Design of Chiral Catalysts and Products. J. Cheminform. 2024, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Concu, R.; MN, D.S.C.; Munteanu, C.R.; González-Díaz, H. PTML Model of Enzyme Subclasses for Mining the Proteome of Biofuel Producing Microorganisms. J. Proteome Res. 2019, 18, 2735–2746. [Google Scholar] [CrossRef]
- Correa Gonzalez, S.; Kroyan, Y.; Sarjovaara, T.; Kiiski, U.; Karvo, A.; Toldy, A.I.; Larmi, M.; Santasalo-Aarnio, A. Prediction of Gasoline Blend Ignition Characteristics Using Machine Learning Models. Energy Fuels 2021, 35, 9332–9340. [Google Scholar] [CrossRef]
- Ewald, J.; Jansen, P.M.; Brunke, S.; Hiller, D.; Luther, C.; González-Díaz, H.; Dittrich, M.; Fleißner, A.; Hube, B.; Schuster, S.; et al. The landscape of toxic intermediates in the metabolic networks of pathogenic fungi reveals targets for antifungal drugs. Life Sci. Wkly. 2021, 6348. [Google Scholar] [CrossRef]
- Quevedo-Tumailli, V.F.; Ortega-Tenezaca, B.; González-Díaz, H. Chromosome Gene Orientation Inversion Networks (GOINs) of Plasmodium Proteome. J. Proteome Res. 2018, 17, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Aguado, B.A.; Mulyasasmita, W.; Su, J.; Lampe, K.J.; Heilshorn, S.C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part. A 2012, 18, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.R.; Serra, T.; Oliveira, M.I.; Planell, J.A.; Barbosa, M.A.; Navarro, M. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomater. 2014, 10, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Butler, H.M.; Naseri, E.; MacDonald, D.S.; Tasker, R.A.; Ahmadi, A. Investigation of rheology, printability, and biocompatibility of N,O-carboxymethyl chitosan and agarose bioinks for 3D bioprinting of neuron cells. Materialia 2021, 18, 101169. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, X.; Liu, X.; Cui, R.; Wang, C.; Zhao, G.; Zhi, W.; Lu, M.; Duan, K.; Weng, J.; et al. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. J. Mater. Chem. B 2020, 8, 5500–5514. [Google Scholar] [CrossRef]
- Contessi Negrini, N.; Bonetti, L.; Contili, L.; Farè, S. 3D printing of methylcellulose-based hydrogels. Bioprinting 2018, 10, e00024. [Google Scholar] [CrossRef]
- Firipis, K.; Footner, E.; Boyd-Moss, M.; Dekiwadia, C.; Nisbet, D.; Kapsa, R.M.I.; Pirogova, E.; Williams, R.J.; Quigley, A. Biodesigned bioinks for 3D printing via divalent crosslinking of self-assembled peptide-polysaccharide hybrids. Mater. Today Adv. 2022, 14, 100243. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, W.; Yu, Z.; Xin, F.; Jiang, M. Emerging Applications of 3D Printing in Biomanufacturing. Trends Biotechnol. 2021, 39, 1114–1116. [Google Scholar] [CrossRef] [PubMed]
- Giuseppe, M.D.; Law, N.; Webb, B.; Macrae, R.A.; Liew, L.J.; Sercombe, T.B.; Dilley, R.J.; Doyle, B.J. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J. Mech. Behav. Biomed. Mater. 2018, 79, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Baker, H.B.; Gipsov, A.; Fisher, J.P.; Joy, A.; Kaplan, D.S.; Isayeva, I. Impact of cell density on the bioprinting of gelatin methacrylate (GelMA) bioinks. Bioprinting 2021, 22, e00131. [Google Scholar] [CrossRef]
- Ouyang, L.; Yao, R.; Zhao, Y.; Sun, W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 2016, 8, 035020. [Google Scholar] [CrossRef]
- Maiz-Fernández, S.; Pérez-Álvarez, L.; Silván, U.; Vilas-Vilela, J.L.; Lanceros-Méndez, S. Dynamic and Self-Healable Chitosan/Hyaluronic Acid-Based In Situ-Forming Hydrogels. Gels 2022, 8, 477. [Google Scholar] [CrossRef]
- Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- van Rossum, G. Python Reference Manual. 1995. Available online: https://ir.cwi.nl/pub/5008 (accessed on 1 February 2023).
- Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Mauri, A. alvaDesc: A Tool to Calculate and Analyze Molecular Descriptors and Fingerprints. In Ecotoxicological QSARs; Roy, K., Ed.; Springer: New York, NY, USA, 2020; pp. 801–820. [Google Scholar]
- Available online: https://ochem.eu/ (accessed on 18 September 2022).
- Gao, T.; Gillispie, G.J.; Copus, J.S.; Pr, A.K.; Seol, Y.-J.; Atala, A.; Yoo, J.J.; Lee, S.J. Optimization of gelatin-alginate composite bioink printability using rheological parameters: A systematic approach. Biofabrication 2018, 10, 034106. [Google Scholar] [CrossRef]
- Soltan, N.; Ning, L.; Mohabatpour, F.; Papagerakis, P.; Chen, X. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. ACS Biomater. Sci. Eng. 2019, 5, 2976–2987. [Google Scholar] [CrossRef]
- Fattah, J.; Ezzine, L.; Aman, Z.; El Moussami, H.; Lachhab, A. Forecasting of demand using ARIMA model. Int. J. Eng. Bus. Manag. 2018, 10, 1847979018808673. [Google Scholar] [CrossRef]
- Boland, J. Box–Jenkins Time Series Models. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 178–181. [Google Scholar]
- Lewicki, J.; Bergman, J.; Kerins, C.; Hermanson, O. Optimization of 3D bioprinting of human neuroblastoma cells using sodium alginate hydrogel. Bioprinting 2019, 16, e00053. [Google Scholar] [CrossRef]
- Koch, F.; Thaden, O.; Conrad, S.; Tröndle, K.; Finkenzeller, G.; Zengerle, R.; Kartmann, S.; Zimmermann, S.; Koltay, P. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel. J. Mech. Behav. Biomed. Mater. 2022, 130, 105219. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Boedeker, P.; Kearns, N.T. Linear Discriminant Analysis for Prediction of Group Membership: A User-Friendly Primer. Adv. Methods Pract. Psychol. Sci. 2019, 2, 250–263. [Google Scholar] [CrossRef]
- Chen, X.W.; Jeong, J.C. Enhanced recursive feature elimination. In Proceedings of the Sixth International Conference on Machine Learning and Applications (ICMLA 2007), Cincinnati, OH, USA, 13–15 December 2007; pp. 429–435. [Google Scholar]
- Xu, K.; Das, K.C. On Harary index of graphs. Discret. Appl. Math. 2011, 159, 1631–1640. [Google Scholar] [CrossRef]
- Schrier, J. Can One Hear the Shape of a Molecule (from its Coulomb Matrix Eigenvalues)? J. Chem. Inf. Model. 2020, 60, 3804–3811. [Google Scholar] [CrossRef] [PubMed]
- Ivanciuc, O. QSAR Comparative Study of Wiener Descriptors for Weighted Molecular Graphs. J. Chem. Inf. Comput. Sci. 2000, 40, 1412–1422. [Google Scholar] [CrossRef] [PubMed]
- Kavithaa, S.; Kaladevi, V. Gutman Index and Detour Gutman Index of Pseudo-Regular Graphs. J. Appl. Math. 2017, 2017, 4180650. [Google Scholar] [CrossRef]
- Bonchev, D.; Markel, E.; Dekmezian, A. Topological Analysis of Long-Chain Branching Patterns in Polyolefins. J. Chem. Inf. Comput. Sci. 2001, 41, 1274–1285. [Google Scholar] [CrossRef]
- Lukovits, I. An All-Path Version of the Wiener Index. J. Chem. Inf. Comput. Sci. 1998, 38, 125–129. [Google Scholar] [CrossRef]
- Montavon, G.; Rupp, M.; Gobre, V.; Vazquez-Mayagoitia, A.; Hansen, K.; Tkatchenko, A.; Müller, K.-R.; Anatole von Lilienfeld, O. Machine learning of molecular electronic properties in chemical compound space. New J. Phys. 2013, 15, 095003. [Google Scholar] [CrossRef]
- Plavšić, D.; Nikolić, S.; Trinajstić, N.; Mihalić, Z. On the Harary index for the characterization of chemical graphs. J. Math. Chem. 1993, 12, 235–250. [Google Scholar] [CrossRef]
- Hollas, B. An Analysis of the Autocorrelation Descriptor for Molecules. J. Math. Chem. 2003, 33, 91–101. [Google Scholar] [CrossRef]
- Liu, X.; Zhan, Q. The Expected Values for the Gutman Index and Schultz Index in the Random Regular Polygonal Chains. Molecules 2022, 27, 6838. [Google Scholar] [CrossRef]
- Developers, T. TensorFlow, v2.15.0-rc1; Zenodo. 2023. [Google Scholar]
- Chollet, F. Keras: The Python Deep Learning Library. 2015. Available online: https://ascl.net/1806.022 (accessed on 15 May 2023).
cj | Condition |
---|---|
c1 | Extrusion pressure (kPa) |
c2 | Extrusion speed (mm/s) |
c3 | Nozzle |
c4 | Nozzle inner diameter (μm) |
c5 | Layers printed |
c6 | Mixture temperature (°C) |
c7 | Syringe temperature (°C), |
c8 | Platform temperature (°C) |
c9 | Ethanol content (Yes or No) |
Model | Data | Classes | f(vi,j)pred | ||||
Set | f(vi,j)obs | Stat. | (%) | nj | 0 | 1 | |
training | 0 | Sp | 72.8 | 558 | 406 | 103 | |
IFPTML-LDA | 1 | Sn | 80.9 | 539 | 152 | 436 | |
validation | 0 | Sp | 71.0 | 252 | 179 | 50 | |
1 | Sn | 77.2 | 219 | 73 | 169 | ||
Data | Classes | f(vi,j)pred | |||||
Set | f(vi,j)obs | Stat. | (%) | nj | 0 | 1 | |
IFPTML-DTC | training | 0 | Sp | 88.4 | 562 | 497 | 74 |
1 | Sn | 86.2 | 535 | 65 | 461 | ||
validation | 0 | Sp | 85.9 | 248 | 213 | 44 | |
1 | Sn | 80.3 | 223 | 35 | 179 |
Epoch | Batch Size | Train | Test | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Sp (%) | Sn (%) | Ac (%) | AUC | Sp (%) | Sn (%) | Ac (%) | AUC | Loss | ||
32 | 66.9 | 80.1 | 73.2 | 0.832 | 61.8 | 82.6 | 72.2 | 0.783 | 0.611 | |
100 | 64 | 84.8 | 66.7 | 76.2 | 0.807 | 78.8 | 63 | 70.9 | 0.761 | 0.582 |
128 | 60.8 | 78.2 | 69.1 | 0.818 | 56.7 | 78.3 | 67.5 | 0.774 | 0.61 | |
200 | 32 | 79.4 | 74.6 | 77.1 | 0.861 | 73.7 | 73.6 | 73.7 | 0.792 | 0.596 |
64 | 69.8 | 83.4 | 76.3 | 0.858 | 64.0 | 78.3 | 71.1 | 0.788 | 0.614 | |
128 | 83.0 | 69.8 | 76.6 | 0.856 | 76.3 | 66.8 | 71.5 | 0.789 | 0.602 | |
500 | 32 | 86.6 | 68.6 | 78.3 | 0.895 | 78.4 | 66 | 72.2 | 0.815 | 0.656 |
1000 | 32 | 83.5 | 80.7 | 82.1 | 0.906 | 75.0 | 78.7 | 76.8 | 0.830 | 0.659 |
2000 | 32 | 79.4 | 81.2 | 80.3 | 0.915 | 72.5 | 80.0 | 76.2 | 0.815 | 0.886 |
Parameter | Value | Classification Observed | Classification Predicted | |
---|---|---|---|---|
ChiMA | Uniformity | 0.94 | 1 | 1 |
Expansion | 6.44 | 0 | 0 | |
Porosity | 0.38 | 0 | 0 | |
ChiMA + PEGDA | Uniformity | 0.98 | 1 | 0 |
Expansion | 2.78 | 0 | 0 | |
Porosity | 0.69 | 0 | 0 |
Extrusion Speed (mm/s) (c2) | Property | |||||
---|---|---|---|---|---|---|
1 | 7 | 10 | 25 | |||
Extrusion P (kPa) (c1) | 25 | 0.071 | 0.927 | 0.071 | 0.148 | Expansion |
30 | 0.583 | 0.148 | 0.583 | 0.071 | ||
35 | 0.148 | 0.071 | 0.148 | 0.927 | ||
48 | 0.071 | 0.927 | 0.071 | 0.148 | ||
25 | 0.071 | 0.927 | 0.071 | 0.148 | Pr | |
30 | 0.583 | 0.148 | 0.583 | 0.071 | ||
35 | 0.148 | 0.071 | 0.148 | 0.927 | ||
48 | 0.071 | 0.927 | 0.071 | 0.148 | ||
25 | 0.927 | 0.148 | 0.927 | 0.071 | U | |
30 | 0.148 | 0.071 | 0.148 | 0.583 | ||
35 | 0.071 | 0.927 | 0.071 | 0.148 | ||
48 | 0.927 | 0.148 | 0.927 | 0.071 | ||
25 | 0.071 | 0.927 | 0.071 | 1.000 | I | |
30 | 0.583 | 1.000 | 0.583 | 0.071 | ||
35 | 1.000 | 0.071 | 1.000 | 0.927 | ||
48 | 0.071 | 0.927 | 0.071 | 1.000 | ||
Color-scale for probability values | Low | Medium | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bediaga-Bañeres, H.; Moreno-Benítez, I.; Arrasate, S.; Pérez-Álvarez, L.; Halder, A.K.; Cordeiro, M.N.D.S.; González-Díaz, H.; Vilas-Vilela, J.L. Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study. Polymers 2025, 17, 121. https://doi.org/10.3390/polym17010121
Bediaga-Bañeres H, Moreno-Benítez I, Arrasate S, Pérez-Álvarez L, Halder AK, Cordeiro MNDS, González-Díaz H, Vilas-Vilela JL. Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study. Polymers. 2025; 17(1):121. https://doi.org/10.3390/polym17010121
Chicago/Turabian StyleBediaga-Bañeres, Harbil, Isabel Moreno-Benítez, Sonia Arrasate, Leyre Pérez-Álvarez, Amit K. Halder, M. Natalia D. S. Cordeiro, Humberto González-Díaz, and José Luis Vilas-Vilela. 2025. "Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study" Polymers 17, no. 1: 121. https://doi.org/10.3390/polym17010121
APA StyleBediaga-Bañeres, H., Moreno-Benítez, I., Arrasate, S., Pérez-Álvarez, L., Halder, A. K., Cordeiro, M. N. D. S., González-Díaz, H., & Vilas-Vilela, J. L. (2025). Artificial Intelligence-Driven Modeling for Hydrogel Three-Dimensional Printing: Computational and Experimental Cases of Study. Polymers, 17(1), 121. https://doi.org/10.3390/polym17010121