α-Olefin Oligomerization Mediated by Group 4 Metallocene Catalysts: An Extreme Manifestation of the Multisite Nature of Methylaluminoxane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. 1-Octene Oligomerization
2.3. HR-HPLC Characterization
2.4. 1H NMR Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nifant’ev, I.E.; Ivchenko, P. Fair look at coordination oligomerization of higher α-olefins. Polymers 2020, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, D.S. Olefin oligomerization via metallacycles: Dimerization, trimerization, tetramerization, and beyond. Chem. Rev. 2011, 111, 2321–2341. [Google Scholar] [CrossRef] [PubMed]
- Olivier-Bourbigou, H.; Breuil, P.A.R.; Magna, L.; Michel, T.; Espada Pastor, M.F.; Delcroix, D. Nickel Catalyzed Olefin Oligomerization and Dimerization. Chem. Rev. 2020, 120, 7919–7983. [Google Scholar] [CrossRef] [PubMed]
- Skupinska, J. Oligomerization of α-olefins to higher oligomers. Chem. Rev. 1991, 91, 613–648. [Google Scholar] [CrossRef]
- Patel, N.; Valodkar, V.; Tembe, G. Recent developments in catalyst systems for selective oligomerization and polymerization of higher α-olefins. Polym. Chem. 2023, 14, 2542–2571. [Google Scholar] [CrossRef]
- Benda, R.; Bullen, J.; Plomer, A. Synthetics basics: Polyalphaolefins—Base fluids for high-performance lubricants. J. Synth. Lubr. 1996, 13, 41–57. [Google Scholar] [CrossRef]
- Sulima, S.I.; Bakun, V.G.; Chistyakova, N.S.; Larina, M.V.; Yakovenko, R.E.; Savost’yanov, A.P. Prospects for Technologies in the Production of Synthetic Base Stocks for Engine Oils. Pet. Chem. 2021, 61, 1178–1189. [Google Scholar] [CrossRef]
- Janiak, C.; Blank, F. Metallocene Catalysts for Olefin Oligomerization. Macromol. Symp. 2006, 236, 14–22. [Google Scholar] [CrossRef]
- Janiak, C.; Lange, K.C.H.; Marquardt, P.; Krüger, R.-P.; Hanselmann, R. Analyses of Propene and 1-Hexene Oligomers from Zirconocene/MAO Catalysts—Mechanistic Implications by NMR, SEC, and MALDI-TOF MS. Macromol. Chem. Phys. 2002, 203, 129–138. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Vinogradov, A.; Vinogradov, A.; Sedov, I.; Dorokhov, V.G.; Lyadov, A.S.; Ivchenko, P. Structurally uniform 1-hexene, 1-octene, and 1-decene oligomers: Zirconocene/MAO-catalyzed preparation, characterization, and prospects of their use as low-viscosity low-temperature oil base stocks. Appl. Catal. A Gen. 2018, 549, 40–50. [Google Scholar] [CrossRef]
- Park, J.H.; Jang, Y.E.; Jeon, J.Y.; Go, M.J.; Lee, J.; Kim, S.K.; Lee, S.-I.; Lee, B.Y. Preparation of ansa-metallocenes for production of poly(α-olefin) lubricants. Dalton Trans. 2014, 43, 10132–10138. [Google Scholar] [CrossRef] [PubMed]
- Parfenova, L.; Kovyazin, P.; Bikmeeva, A.K.; Palatov, E.R.; Ivchenko, P.; Nifant’ev, I.E.; Khalilov, L.M. Catalytic Properties of Zirconocene-Based Systems in 1-Hexene Oligomerization and Structure of Metal Hydride Reaction Centers. Molecules 2023, 28, 2420. [Google Scholar] [CrossRef] [PubMed]
- Frauenrath, H.; Keul, H.; Höcker, H. Deviation from Single-Site Behavior in Zirconocene/MAO Catalyst Systems, 1. Influence of Monomer, Catalyst, and Cocatalyst Concentration. Macromol. Chem. Phys. 2001, 202, 3543–3550. [Google Scholar] [CrossRef]
- Frauenrath, H.; Keul, H.; Höcker, H. Deviation from Single-Site Behavior in Zirconocene/MAO Catalyst Systems, 2. Influence of Polymerization Temperature. Macromol. Chem. Phys. 2001, 202, 3551–3559. [Google Scholar] [CrossRef]
- Christoffers, J.; Bergman, R.G. Catalytic Dimerization Reactions of α-Olefins and α,ω-Dienes with Cp2ZrCl2/Poly(methylalumoxane): Formation of Dimers, Carbocycles, and Oligomers. J. Am. Chem. Soc. 1996, 118, 4715–4716. [Google Scholar] [CrossRef]
- Christoffers, J.; Bergman, R.G. Zirconocene-alumoxane (1:1)—A catalyst for the selective dimerization of α-olefins. Inorg. Chim. Acta 1998, 270, 20–27. [Google Scholar] [CrossRef]
- Dagorne, S.; Bellemin-Laponnaz, S.; Romain, C. Neutral and Cationic N-Heterocyclic Carbene Zirconium and Hafnium Benzyl Complexes: Highly Regioselective Oligomerization of 1-Hexene with a Preference for Trimer Formation. Organometallics 2013, 32, 2736–2743. [Google Scholar] [CrossRef]
- Nifant’ev, I.; Ivchenko, P.; Tavtorkin, A.; Vinogradov, A.; Vinogradov, A. Non-traditional Ziegler-Natta catalysis in α-olefin transformations: Reaction mechanisms and product design. Pure Appl. Chem. 2017, 89, 1017–1032. [Google Scholar] [CrossRef]
- Nifant’ev, I.E.; Vinogradov, A.; Vinogradov, A.; Ivchenko, P. Zirconocene-catalyzed dimerization of 1-hexene: Two-stage activation and structure–catalytic performance relationship. Catal. Commun. 2016, 79, 6–10. [Google Scholar] [CrossRef]
- Hanifpour, A.; Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Poater, A. Coordinative chain transfer polymerization of 1-decene in the presence of a Ti-based diamine bis(phenolate) catalyst: A sustainable approach to produce low viscosity PAOs. Green Chem. 2020, 22, 4617–4626. [Google Scholar] [CrossRef]
- Hanifpour, A.; Ahmadi, M.; Nekoomanesh-Haghighi, M.; Bahri-Laleh, N. Effect of different chain transfer agents in the coordinative chain transfer oligomerization of dec-1-ene. J. Mol. Struct. 2022, 1263, 133157. [Google Scholar] [CrossRef]
- Small, B.L.; Hope, K.D.; Yang, Q.; Masino, A.P.; McDaniel, M.P.; Buck, E.J.; Beaulieu, R.M.; Baralt, W.B.; Netemeyer, E.J. Oligomerization of Alpha Olefins Using Metallocene-SSA Catalyst Systems and Use of the Resultant Polyalphaolefins to Prepare Lubricant Blends. U.S. Patent US9334203B2, 10 May 2016. [Google Scholar]
- Shinjiro, F.; Kiyohiko, Y.; Masaki, O.; Minako, T. Method for Producing α-Olefin Oligomer and Lubricating Oil Composition. U.S. Patent 2011207977A1, 25 August 2011. [Google Scholar]
- Wu, M.M.-S.; Coker, P.; Walzer, C.L.; Jiang, J.F., Jr. Process to Produce Low Viscosity Poly-Alpha-Olefins. U.S. Patent 8207390B2, 26 June 2012. [Google Scholar]
- Bagheri, V.; Eisenberg, K.S.; Ratliff, D.C.; Benda, R.; Lanier, C.W. Oligomer Oils and Their Manufacture. U.S. Patent 6548723B2, 15 April 2003. [Google Scholar]
- Zijlstra, H.S.; Harder, S. Methylalumoxane—History, production, properties, and applications. Eur. J. Inorg. Chem. 2015, 2015, 19–43. [Google Scholar] [CrossRef]
- Zijlstra, H.S.; Joshi, A.; Linnolahti, M.; Collins, S.; McIndoe, J.S. Modifying methylalumoxane via alkyl exchange. Dalton Trans. 2018, 47, 17291–17298. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, M.; Destro, M.; Fusco, O.; Piemontesi, F.; Camurati, I. Ethene/propene copolymerization from metallocene-based catalytic systems: Role of the alumoxane. Macromolecules 1999, 32, 258–263. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R.; Cutillo, F.; Friederichs, N.; Ronca, S.; Wangt, B. Improving the performance of methylalumoxane: A facile and efficient method to trap “free” trimethylaluminum. J. Am. Chem. Soc. 2003, 125, 12402–12403. [Google Scholar] [CrossRef]
- Zaccaria, F.; Zuccaccia, C.; Cipullo, R.; Budzelaar, P.H.M.; Macchioni, A.; Busico, V.; Ehm, C. BHT-Modified MAO: Cage Size Estimation, Chemical Counting of Strongly Acidic Al Sites, and Activation of a Ti-Phosphinimide Precatalyst. ACS Catal. 2019, 9, 2996–3010. [Google Scholar] [CrossRef]
- Zaccaria, F.; Zuccaccia, C.; Cipullo, R.; Budzelaar, P.H.M.; Macchioni, A.; Busico, V.; Ehm, C. On the Nature of the Lewis Acidic Sites in “TMA-Free” Phenol-Modified Methylaluminoxane. Eur. J. Inorg. Chem. 2020, 2020, 1088–1095. [Google Scholar] [CrossRef]
- Zaccaria, F.; Sian, L.; Zuccaccia, C.; Macchioni, A. Ion pairing in transition metal catalyzed olefin polymerization. In Advances in Organometallic Chemistry; Perez, P.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–78. [Google Scholar]
- Chen, E.Y.X.; Marks, T.J. Cocatalysts for metal-catalyzed olefin polymerization: Activators, activation processes, and structure-activity relationships. Chem. Rev. 2000, 100, 1391–1434. [Google Scholar] [CrossRef]
- Zaccaria, F.; Zuccaccia, C.; Cipullo, R.; Budzelaar, P.H.M.; Vittoria, A.; Macchioni, A.; Busico, V.; Ehm, C. Methylaluminoxane’s Molecular Cousin: A Well-defined and “Complete” Al-Activator for Molecular Olefin Polymerization Catalysts. ACS Catal. 2021, 11, 4464–4475. [Google Scholar] [CrossRef]
- Urciuoli, G.; Zaccaria, F.; Zuccaccia, C.; Cipullo, R.; Budzelaar, P.H.M.; Vittoria, A.; Ehm, C.; Macchioni, A.; Busico, V. A Hydrocarbon Soluble, Molecular and “Complete” Al-Cocatalyst for High Temperature Olefin Polymerization. Polymers 2023, 15, 1378. [Google Scholar] [CrossRef]
- a Urciuoli, G.; Zaccaria, F.; Zuccaccia, C.; Cipullo, R.; Budzelaar, P.H.M.; Vittoria, A.; Ehm, C.; Macchioni, A.; Busico, V. Cocatalyst effects in Hf-catalysed olefin polymerization: Taking well-defined Al-alkyl borate salts into account. Dalton Trans. 2024, 53, 2286–2293. [Google Scholar] [CrossRef] [PubMed]
- Urciuoli, G.; Zaccaria, F.; Zuccaccia, C.; Cipullo, R.; Budzelaar, P.H.M.; Tensi, L.; Vittoria, A.; Ehm, C.; Macchioni, A.; Busico, V. Al-alkyl borate salt cocatalysts for olefin polymerization: Exploration of N-donor ligand variations. Inorg. Chem. Front. 2024, 11, 7872–7885. [Google Scholar] [CrossRef]
- Vittoria, A.; Busico, V.; Cannavacciuolo, F.D.; Cipullo, R. Molecular Kinetic Study of “chain Shuttling” Olefin Copolymerization. ACS Catal. 2018, 8, 5051–5061. [Google Scholar] [CrossRef]
- Ehm, C.; Mingione, A.; Vittoria, A.; Zaccaria, F.; Cipullo, R.; Busico, V. High-Throughput Experimentation in Olefin Polymerization Catalysis: Facing the Challenges of Miniaturization. Ind. Eng. Chem. Res. 2020, 59, 13940–13947. [Google Scholar] [CrossRef]
- Cannavacciuolo, F.D.; Yadav, R.; Esper, A.; Vittoria, A.; Antinucci, G.; Zaccaria, F.; Cipullo, R.; Budzelaar, P.H.M.; Busico, V.; Goryunov, G.P.; et al. A High-Throughput Approach to Repurposing Olefin Polymerization Catalysts for Polymer Upcycling. Angew. Chem. Int. Ed. 2022, 61, e202202258. [Google Scholar] [CrossRef]
- Ehm, C.; Vittoria, A.; Goryunov, G.P.; Izmer, V.V.; Kononovich, D.S.; Samsonov, O.V.; Di Girolamo, R.; Budzelaar, P.H.M.; Voskoboynikov, A.Z.; Busico, V.; et al. An integrated high throughput experimentation/predictive QSAR modeling approach to ansa-zirconocene catalysts for isotactic polypropylene. Polymers 2020, 12, 1005. [Google Scholar] [CrossRef]
- Taniike, T.; Cannavacciuolo, F.D.; Khoshsefat, M.; De Canditiis, D.; Antinucci, G.; Chammingkwan, P.; Cipullo, R.; Busico, V. End-to-End High-Throughput Approach for Data-Driven Internal Donor Development in Heterogeneous Ziegler–Natta Propylene Polymerization. ACS Catal. 2024, 14, 7589–7599. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R.; Friederichs, N.; Linssen, H.; Segre, A.; Van Axel Castelli, V.; van der Velden, G. 1H NMR Analysis of Chain Unsaturations in Ethene/1-Octene Copolymers Prepared with Metallocene Catalysts at High Temperature. Macromolecules 2005, 38, 6988–6996. [Google Scholar] [CrossRef]
- Antinucci, G.; Vittoria, A.; Cipullo, R.; Busico, V. Regioirregular Monomeric Units in Ziegler–Natta Polypropylene: A Sensitive Probe of the Catalytic Sites. Macromolecules 2020, 53, 3789–3795. [Google Scholar] [CrossRef]
- Zuccaccia, C.; Tensi, L.; Kuhlman, R.L.; Gies, A.P.; Macchioni, A. C-H activation and olefin insertion as sources of multiple sites in olefin polymerization catalyzed by Cp-alkyl Hf(IV) complexes. ACS Catal. 2017, 7, 563–567. [Google Scholar] [CrossRef]
- Gies, A.P.; Kuhlman, R.L.; Zuccaccia, C.; Macchioni, A.; Keaton, R.J. Mass Spectrometric Mechanistic Investigation of Ligand Modification in Hafnocene-Catalyzed Olefin Polymerization. Organometallics 2017, 36, 3443–3455. [Google Scholar] [CrossRef]
- Tensi, L.; Moretti, F.; Amendola, A.; Froese, R.D.J.; Macchioni, A.; Kuhlman, R.L.; Pearson, D.M.; Zuccaccia, C. Solution Structure and Dynamics of Hf–Al and Hf–Zn Heterobimetallic Adducts Mimicking Relevant Intermediates in Chain Transfer Reactions. Inorg. Chem. 2024, 63, 8222–8236. [Google Scholar] [CrossRef] [PubMed]
- Zaccaria, F.; Budzelaar, P.H.M.; Cipullo, R.; Zuccaccia, C.; Macchioni, A.; Busico, V.; Ehm, C. Reactivity Trends of Lewis Acidic Sites in Methylaluminoxane and Some of Its Modifications. Inorg. Chem. 2020, 59, 5751–5759. [Google Scholar] [CrossRef] [PubMed]
- Zurek, E.; Ziegler, T. Theoretical studies of the structure and function of MAO (methylaluminoxane). Prog. Polym. Sci. 2004, 29, 107–148. [Google Scholar] [CrossRef]
- Collins, S.; Hasan, G.; Joshi, A.; McIndoe, J.S.; Linnolahti, M. Are Methylaluminoxane Activators Sheets? ChemPhysChem 2021, 22, 1326–1335. [Google Scholar] [CrossRef]
- Collins, S.; Joshi, A.; Linnolahti, M. Formation and Structure of Hydrolytic Methylaluminoxane Activators. Chem.-Eur. J. 2021, 27, 15460–15471. [Google Scholar] [CrossRef]
- Linnolahti, M.; Severn, J.R.; Pakkanen, T.A. Formation of Nanotubular Methylaluminoxanes and the Nature of the Active Species in Single-Site α-Olefin Polymerization Catalysis. Angew. Chem. 2008, 120, 9419–9423. [Google Scholar] [CrossRef]
- Babushkin, D.E.; Naundorf, C.; Brintzinger, H.H. Distinct methylalumoxane(MAO)-derived Me–MAO− anions in contact with a zirconocenium cation—A 13C-NMR study. Dalton Trans. 2006, 4539–4544. [Google Scholar] [CrossRef]
- Talsi, E.P.; Semikolenova, N.V.; Panchenko, V.N.; Sobolev, A.P.; Babushkin, D.E.; Shubin, A.A.; Zakharov, V.A. The metallocene/methylaluminoxane catalysts formation: EPR spin probe study of Lewis acidic sites of methylaluminoxane. J. Mol. Catal. A Chem. 1999, 139, 131–137. [Google Scholar] [CrossRef]
Entry | Activator | [Al]/[Zr] ×10−2 | [B]/[Zr] | T (min) | Conv. (%) | Conv.,av (%) | Rp (a) | Mn (Da) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | MAO | 5.0 | - | 30 | 2.7 | 2.7 | 3.1 | 3.2 | 342 | 347 | 3.1 |
2 | 2.8 | 3.3 | 351 | ||||||||
3 | MAO | 10 | - | 30 | 7.4 | 7.5 | 8.7 | 8.8 | 356 | 359 | 3.2 |
4 | 7.7 | 9.0 | 362 | ||||||||
5 | MAO | 20 | - | 5 | 4.6 | 4.2 | 32 | 29 | 452 | 459 | 4.1 |
6 | 3.7 | 26 | 465 | ||||||||
7 | MAO | 20 | - | 10 | 6.4 | 6.5 | 23 | 23 | 450 | 450 | 4.0 |
8 | 6.5 | 23 | 449 | ||||||||
9 | MAO | 20 | - | 20 | 8.0 | 10 | 14 | 16 | 417 | 422 | 3.8 |
10 | 11 | 19 | 426 | ||||||||
11 | MAO | 20 | - | 30 | 15 | 13 | 17 | 15 | 430 | 426 | 3.8 |
12 | 11 | 12 | 421 | ||||||||
13 | MAO | 20 | - | 45 | 20 | 20 | 16 | 15 | 423 | 421 | 3.8 |
14 | 19 | 15 | 418 | ||||||||
15 | MAO | 20 | - | 60 | 20 | 20 | 12 | 12 | 402 | 394 | 3.5 |
16 | 19 | 11 | 386 | ||||||||
17 | TIBA/AB | 2.0 | 2.0 | 60 | 16 | 16 | 9.3 | 8.9 | 528 | 537 | 4.8 |
18 | 15 | 8.5 | 546 | ||||||||
19 | TIBA/TTB | 2.0 | 2.0 | 60 | 22 | 23 | 14 | 13 | 568 | 572 | 5.1 |
20 | 23 | 13 | 575 | ||||||||
21 | MMAO-12 | 20 | - | 60 | 23 | 23 | 13 | 14 | 411 | 419 | 3.7 |
22 | 24 | 14 | 427 | ||||||||
23 | MAO/BHT (b) | 20 | - | 60 | 4.6 | 4.6 | 2.7 | 2.7 | 425 | 427 | 3.8 |
24 | 4.7 | 2.7 | 428 | ||||||||
25 | AlHAl | 0.10 | 5.0 | 60 | 4.9 | 4.6 | 2.8 | 2.6 | 592 | 595 | 5.3 |
26 | 4.3 | 2.5 | 598 | ||||||||
27 | TIBA/TMA/AB (c) | 4.0 | 2.0 | 60 | 1.5 | 2.2 | 0.9 | 1.3 | 585 | 575 | 5.1 |
28 | 2.8 | 1.7 | 564 | ||||||||
29 | MAO(DFB) (d) | 20 | - | 60 | 69 | 56 | 30 | 24 | 617 | 612 | 5.5 |
30 | 42 | 18 | 607 | ||||||||
31 | MAO(Tol) (e) | 20 | - | 60 | 22 | 23 | 9.2 | 10 | 351 | 355 | 3.2 |
32 | 25 | 11 | 358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaccaria, F.; Vittoria, A.; Antinucci, G.; Cipullo, R.; Busico, V. α-Olefin Oligomerization Mediated by Group 4 Metallocene Catalysts: An Extreme Manifestation of the Multisite Nature of Methylaluminoxane. Polymers 2025, 17, 46. https://doi.org/10.3390/polym17010046
Zaccaria F, Vittoria A, Antinucci G, Cipullo R, Busico V. α-Olefin Oligomerization Mediated by Group 4 Metallocene Catalysts: An Extreme Manifestation of the Multisite Nature of Methylaluminoxane. Polymers. 2025; 17(1):46. https://doi.org/10.3390/polym17010046
Chicago/Turabian StyleZaccaria, Francesco, Antonio Vittoria, Giuseppe Antinucci, Roberta Cipullo, and Vincenzo Busico. 2025. "α-Olefin Oligomerization Mediated by Group 4 Metallocene Catalysts: An Extreme Manifestation of the Multisite Nature of Methylaluminoxane" Polymers 17, no. 1: 46. https://doi.org/10.3390/polym17010046
APA StyleZaccaria, F., Vittoria, A., Antinucci, G., Cipullo, R., & Busico, V. (2025). α-Olefin Oligomerization Mediated by Group 4 Metallocene Catalysts: An Extreme Manifestation of the Multisite Nature of Methylaluminoxane. Polymers, 17(1), 46. https://doi.org/10.3390/polym17010046