Impact of Short- and Long-Term Exposure to Engineered Wood (Plywood and Particle Board) on Immune and Oxidative Biomarkers: A C57BL/6 Mouse Model Study
Abstract
1. Introduction
2. Materials and Methods
2.1. HS-GC/MS Analytical Conditions
2.2. Animal Groupings
2.3. Phytoncide, Formaldehyde, and Wood Exposure Protocol
2.4. Measurement of Body Weight
2.5. Histological Examination
2.6. White Blood Cell (WBC) and Its Differential Counts
2.7. Total ROS Estimation
2.8. Nitric Oxide (NO) Level Estimation
2.9. Intracellular Glutathione Peroxidase (GPx) and CAT Enzyme Activity Level Estimation
2.10. Measurement of Lactate Dehydrogenase (LDH) Activity
2.11. Alanine Aminotransferase (ALT) Activity Measurement
2.12. Aspartate Aminotransferase (AST) Activity Measurement
2.13. Measurement of Blood Urea Nitrogen (BUN)
2.14. Measurement of Creatinine
2.15. Determination of Blood Glucose and Lactate
2.16. IgE Level Measurement
2.17. Cytokine Analyses
2.18. Statistical Analysis Methods
3. Results
3.1. Characterization of VOCs Released from Plywood and Particle Board
3.2. Body Weight Assessment in C57BL/6 Mice Exposed to Plywood and Particle Board Wood Sample Treatments
3.3. Effects of Plywood and Particle Board Wood Samples Treatments on Major Organ Weights in C57BL/6 Mice
3.4. Histopathological Analysis of Skin, Brain, Liver, Kidney, and Spleen Following Plywood and Particle Board Wood Sample Treatments in C57BL/6 Mice
3.5. Measurement of Complete Blood Cells in Blood (WBC) Following Plywood and Particle Board Wood Sample Treatments in C57BL/6 Mice
3.6. Measurement of Oxidative Stress and Antioxidant Enzyme Activity Following Plywood and Particle Board Wood Sample Treatments in C57BL/6 Mice
3.7. Measurement of Toxicity Markers Following Plywood and Particle Board Wood Sample Treatments in C57BL/6 Mice
3.8. Measurement of Cytokines Following Plywood and Particle Board Wood Sample Treatments in C57BL/6 Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Pearce, N.; Blair, A.; Vineis, P.; Ahrens, W.; Andersen, A.; Anto, J.M.; Armstrong, B.K.; Baccarelli, A.A.; Beland, F.A.; Berrington, A. IARC monographs: 40 years of evaluating carcinogenic hazards to humans. Environ. Health Perspect. 2015, 123, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Protano, C.; Buomprisco, G.; Cammalleri, V.; Pocino, R.N.; Marotta, D.; Simonazzi, S.; Cardoni, F.; Petyx, M.; Iavicoli, S.; Vitali, M. The carcinogenic effects of formaldehyde occupational exposure: A systematic review. Cancers 2022, 14, 165. [Google Scholar] [CrossRef]
- Vecchio, D.; Sasco, A.J.; Cann, C.I. Occupational risk in health care and research. Am. J. Ind. Med. 2003, 43, 369–397. [Google Scholar] [CrossRef]
- Gatlin, C.G. IARC classifies formaldehyde as carcinogenic. Oncol. Times 2004, 26, 72. [Google Scholar] [CrossRef]
- Lino-dos-Santos-Franco, A.; Domingos, H.V.; de Oliveira, A.P.L.; Breithaupt-Faloppa, A.C.; Peron, J.P.S.; Bolonheis, S.; Muscará, M.N.; Oliveira-Filho, R.M.; Vargaftig, B.B.; Tavares-de-Lima, W. Differential effects of formaldehyde exposure on the cell influx and vascular permeability in a rat model of allergic lung inflammation. Toxicol. Lett. 2010, 197, 211–218. [Google Scholar] [CrossRef]
- Kaminsky, D.A.; van der Vliet, A.; Janssen-Heininger, Y. Reactive nitrogen species in refractory asthma: Markers or players? J. Allergy Clin. Immunol. 2008, 121, 338–340. [Google Scholar] [CrossRef]
- Gutteridge, J.M.; Halliwell, B. 1 Iron toxicity and oxygen radicals. Baillière’s Clin. Haematol. 1989, 2, 195–256. [Google Scholar] [CrossRef] [PubMed]
- İnci, M.; Zararsız, İ.; Davarcı, M.; Görür, S. Toxic effects of formaldehyde on the urinary system. Turk. J. Urol. 2013, 39, 48. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Song, J.; Yang, X.; Zhang, J.; Zhang, Y.; Li, R. Responses to Comments on “Differential Health Effects of Constant and Intermittent Exposure to Formaldehyde in Mice: Implications for Building Ventilation Strategies”. Environ. Sci. Technol. 2018, 52, 3322–3324. [Google Scholar] [CrossRef]
- KS F 3101; Ordinary Plywood. Korean Standards Association: Seoul, Republic of Korea, 2006.
- KS F 3104; Particle Board. Korean Standards Association: Seoul, Republic of Korea, 2006.
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2025 update. Nucleic Acids Res. 2025, 53, D1516–D1525. [Google Scholar] [CrossRef] [PubMed]
- Thoolen, B.; Maronpot, R.R.; Harada, T.; Nyska, A.; Rousseaux, C.; Nolte, T.; Malarkey, D.E.; Kaufmann, W.; Küttler, K.; Deschl, U.; et al. Proliferative and Nonproliferative Lesions of the Rat and Mouse Hepatobiliary System. Toxicol. Pathol. 2010, 38, 5S–81S. [Google Scholar] [CrossRef] [PubMed]
- Frazier, K.S.; Seely, J.C.; Hard, G.C.; Betton, G.; Burnett, R.; Nakatsuji, S.; Nishikawa, A.; Durchfeld-Meyer, B.; Bube, A. Proliferative and Nonproliferative Lesions of the Rat and Mouse Urinary System. Toxicol. Pathol. 2012, 40, 14S–86S. [Google Scholar] [CrossRef] [PubMed]
- Mecklenburg, L.; Kusewitt, D.; Kolly, C.; Treumann, S.; Adams, E.T.; Diegel, K.; Yamate, J.; Kaufmann, W.; Müller, S.; Danilenko, D.; et al. Proliferative and non-proliferative lesions of the rat and mouse integument. J. Toxicol. Pathol. 2013, 26, 27S–57S. [Google Scholar] [CrossRef]
- Kaufmann, W.; Bolon, B.; Bradley, A.; Butt, M.; Czasch, S.; Garman, R.H.; George, C.; Gröters, S.; Krinke, G.; Little, P.; et al. Proliferative and Nonproliferative Lesions of the Rat and Mouse Central and Peripheral Nervous Systems. Toxicol. Pathol. 2012, 40, 87S–157S. [Google Scholar] [CrossRef]
- Mire-Sluis, A.R. Cytokines: From technology to therapeutics. Trends Biotechnol. 1999, 17, 319–325. [Google Scholar] [CrossRef]
- Babbitt, J.; Kharazi, A.; Taylor, J.; Bonds, C.; Zhuang, D.; Mirell, S.; Frumkin, E.; Hahn, T. Increased body weight in C57BL/6 female mice after exposure to ionizing radiation or 60 Hz magnetic fields. Int. J. Radiat. Biol. 2001, 77, 875–882. [Google Scholar] [CrossRef]
- Ogiso, N.; Almunia, J.A.; Munesue, Y.; Yuri, S.; Nishikimi, A.; Watanabe, A.; Inui, M.; Takano, K.; Niida, S. Biological characteristics of age-related changes in C57BL/6 mice sub-strains in the national center for geriatrics and gerontology aging farm. Exp. Anim. 2025, 74, 229–238. [Google Scholar] [CrossRef]
- NTP. NTP Research Report on Baseline Characteristics of Diversity Outbred (J:DO) Mice Relevant to Toxicology Studies; National Toxicology Program: Research Triangle Park, NC, USA, 2018. [Google Scholar]
- Jafari, M.J.; Rahimi, A.; Omidi, L.; Behzadi, M.H.; Rajabi, M.H. Occupational exposure and health impairments of formaldehyde on employees of a wood industry. Health Promot. Perspect. 2016, 5, 296. [Google Scholar] [CrossRef]
- Ennin, I.E.; Frempong, M.A.; Dodoo, D.; Yeboah, F.A.; Maalman, R.S.-E. White Blood Cell Count and Serum Cytokine Profile in Tropical Hardwood Workers in Kumasi. Mediat. Inflamm. 2022, 2022, 8245717. [Google Scholar] [CrossRef]
- Babatope, I.; Omonkhuale, F.; Iyevhobu, K. Leucocytes and Cd4 Counts of Individuals Exposed to Wood Dust in Ekpoma, Edo State, Nigeria. Acta Sci. Med. Sci. 2024, 8, 63–69. [Google Scholar]
- Saal, K.; Kallakas, H.; Tuhkanen, E.; Just, A.; Rohumaa, A.; Kers, J.; Kalamees, T.; Lohmus, R. Fiber-Reinforced Plywood: Increased Performance with Less Raw Material. Materials 2024, 17, 3218. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Crocetti, R.; Wålinder, M. In-plane mechanical properties of birch plywood. Constr. Build. Mater. 2022, 340, 127852. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from agricultural biomass and recycled wood waste: A review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Marcano-Gómez, E.C.; de Souza, A.B.F.; Machado-Junior, P.A.; Rodríguez-Herrera, A.J.; Castro, T.D.F.; da Silva, S.P.G.; Vieira, R.G.; Talvani, A.; Nogueira, K.D.O.P.C.; de Oliveira, L.A.M. N-acetylcysteine modulates redox imbalance and inflammation in macrophages and mice exposed to formaldehyde. Free Radic. Res. 2023, 57, 444–459. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Wang, F.; Li, C.; Liu, W.; Jin, Y.; Guo, L. Effects of subchronic exposure to low-dose volatile organic compounds on lung inflammation in mice. Environ. Toxicol. 2014, 29, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, C.; Liu, W.; Jin, Y. Oxidative damage and genotoxic effect in mice caused by sub-chronic exposure to low-dose volatile organic compounds. Inhal. Toxicol. 2013, 25, 235–242. [Google Scholar] [CrossRef]
- Wilbur, S.B.; Harris, M.O.; McClure, P.R.; Spoo, W. Toxicological Profile for Formaldehyde; ATSDR: Atlanta, GA, USA, 1999. [Google Scholar]
- Baatjies, R.; Chamba, P.; Jeebhay, M.F. Wood dust and asthma. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 76–84. [Google Scholar] [CrossRef]
- Tajima, S.; Yamamoto, N.; Masuda, S. Clinical prospects of biomarkers for the early detection and/or prediction of organ injury associated with pharmacotherapy. Biochem. Pharmacol. 2019, 170, 113664. [Google Scholar] [CrossRef]
- Kabesch, M.; Schedel, M.; Carr, D.; Woitsch, B.; Fritzsch, C.; Weiland, S.K.; von Mutius, E. IL-4/IL-13 pathway genetics strongly influence serum IgE levels and childhood asthma. J. Allergy Clin. Immunol. 2006, 117, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Gour, N.; Wills-Karp, M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015, 75, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From clinical significance to quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, P.Z. Cytokines & their physiologic and pharmacologic functions in inflammation: A review. Int. J. Pharm. Life Sci. 2011, 2, 1247–1263. [Google Scholar]
- Boshtam, M.; Asgary, S.; Kouhpayeh, S.; Shariati, L.; Khanahmad, H. Aptamers against pro-and anti-inflammatory cytokines: A review. Inflammation 2017, 40, 340–349. [Google Scholar] [CrossRef]
- Al-Qahtani, A.A.; Alhamlan, F.S.; Al-Qahtani, A.A. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop. Med. Infect. Dis. 2024, 9, 13. [Google Scholar] [CrossRef]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef]
Parameters | Groups | Treatment Time | |||
---|---|---|---|---|---|
30 Days | 60 Days | 120 Days | 180 Days | ||
Brain Weight (gram) | NT | 0.463 ± 0.035 | 0.463 ± 0.015 | 0.464 ± 0.032 | 0.466 ± 0.028 |
PC | 0.453 ± 0.005 | 0.460 ± 0.024 | 0.449 ± 0.020 | 0.451 ± 0.028 | |
NC | 0.473 ± 0.018 | 0.453 ± 0.009 | 0.450 ± 0.023 | 0.456 ± 0.038 | |
Plywood | 0.478 ± 0.025 | 0.455 ± 0.005 | 0.459 ± 0.029 | 0.450 ± 0.010 | |
PB | 0.453 ± 0.005 | 0.450 ± 0.014 | 0.476 ± 0.029 | 0.448 ± 0.021 | |
Liver Weight (gram) | NT | 0.883 ± 0.161 | 1.19 ± 0.221 | 1.33 ± 0.229 | 1.30 ± 0.182 |
PC | 1.13 ± 0.152 | 1.13 ± 0.238 | 1.26 ± 0.183 | 1.26 ± 0.134 | |
NC | 1.05 ± 0.101 | 1.21 ± 0.075 | 1.35 ± 0.175 | 1.34 ± 0.203 | |
Plywood | 0.975 ± 0.023 | 1.29 ± 0.104 * | 1.07 ± 0.147 | 1.34 ± 0.146 | |
PB | 1.16 ± 0.115 * | 1.28 ± 0.225 | 1.19 ± 0.081 | 1.19 ± 0.160 | |
Kidney Weight (gram) | NT | 0.30 ± 0.047 | 0.340 ± 0.008 | 0.364 ± 0.029 | 0.333 ± 0.048 |
PC | 0.280 ± 0.024 | 0.275 ± 0.020 * | 0.309 ± 0.050 | 0.333 ± 0.032 | |
NC | 0.290 ± 0.034 | 0.288 ± 0.036 | 0.319 ± 0.035 | 0.330 ± 0.025 | |
Plywood | 0.275 ± 0.050 | 0.308 ± 0.033 | 0.281 ± 0.024 *** | 0.335 ± 0.028 | |
PB | 0.283 ± 0.022 | 0.313 ± 0.033 | 0.311 ± 0.025 | 0.319 ± 0.027 | |
Spleen Weight (gram) | NT | 0.082 ± 0.0206 | 0.082 ± 0.0222 | 0.103 ± 0.0128 | 0.118 ± 0.0423 |
PC | 0.082 ± 0.0126 | 0.082 ± 0.0222 | 0.113 ± 0.0306 | 0.105 ± 0.0273 | |
NC | 0.080 ± 0.0216 | 0.825 ± 0.0222 | 0.101 ± 0.0236 | 0.104 ± 0.0207 | |
Plywood | 0.095 ± 0.019 | 0.113 ± 0.0095 | 0.088 ± 0.0173 | 0.103 ± 0.0238 | |
PB | 0.0875 ± 0.0150 | 0.100 ± 0.0294 | 0.093 ± 0.0130 | 0.093 ± 0.0272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Kim, K.-H.; Eom, C.-D.; Rahman, M.H.; Bajgai, J.; Abdul-Nasir, S.; Mo, C.; Hwang, W.-J.; Goh, S.H.; Kim, B.; et al. Impact of Short- and Long-Term Exposure to Engineered Wood (Plywood and Particle Board) on Immune and Oxidative Biomarkers: A C57BL/6 Mouse Model Study. Polymers 2025, 17, 1794. https://doi.org/10.3390/polym17131794
Ma H, Kim K-H, Eom C-D, Rahman MH, Bajgai J, Abdul-Nasir S, Mo C, Hwang W-J, Goh SH, Kim B, et al. Impact of Short- and Long-Term Exposure to Engineered Wood (Plywood and Particle Board) on Immune and Oxidative Biomarkers: A C57BL/6 Mouse Model Study. Polymers. 2025; 17(13):1794. https://doi.org/10.3390/polym17131794
Chicago/Turabian StyleMa, Hui, Keon-Ho Kim, Chang-Deuk Eom, Md. Habibur Rahman, Johny Bajgai, Sofian Abdul-Nasir, Chaodeng Mo, Won-Joung Hwang, Seong Hoon Goh, Bomi Kim, and et al. 2025. "Impact of Short- and Long-Term Exposure to Engineered Wood (Plywood and Particle Board) on Immune and Oxidative Biomarkers: A C57BL/6 Mouse Model Study" Polymers 17, no. 13: 1794. https://doi.org/10.3390/polym17131794
APA StyleMa, H., Kim, K.-H., Eom, C.-D., Rahman, M. H., Bajgai, J., Abdul-Nasir, S., Mo, C., Hwang, W.-J., Goh, S. H., Kim, B., Lee, K.-J., Yang, J., & Kim, C.-S. (2025). Impact of Short- and Long-Term Exposure to Engineered Wood (Plywood and Particle Board) on Immune and Oxidative Biomarkers: A C57BL/6 Mouse Model Study. Polymers, 17(13), 1794. https://doi.org/10.3390/polym17131794