Amphibian Egg Jelly as a Biocompatible Material: Physicochemical Characterization and Selective Cytotoxicity Against Melanoma Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of P. ridibundus Eggs
2.2. Characterization of P. Ridibundus Egg Jelly
2.2.1. FTIR
2.2.2. XRD
2.2.3. TGA
2.2.4. SEM-EDX
2.2.5. Elemental Analysis
2.2.6. Determination of Carbohydrate Concentration and Profile
2.2.7. Determination of Protein Concentration and Profile
2.3. Cell Culture Studies
2.3.1. MTT Assay
2.3.2. Real-Time Cell Analysis (RTCA) Using xCELLigence
2.3.3. Statistical Analysis
3. Results and Discussion
3.1. FTIR
3.2. XRD
3.3. TGA
3.4. SEM
3.5. Elemental Analysis and EDX
3.6. Determination and Profiling of Carbohydrate Content
3.7. Determination and Profiling of Protein Content
3.8. Cell Culture Studies
3.8.1. MTT Assay Results
3.8.2. xCELLigence Real-Time Cell Analysis Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halliday, T. Why amphibians are important. Int. Zoo Yearb. 2008, 42, 7–14. [Google Scholar] [CrossRef]
- Yurewicz, E.C.; Oliphant, G.; Hedrick, J.L. Macromolecular composition of Xenopus laevis egg jelly coat. Biochemistry 1975, 14, 3101–3107. [Google Scholar] [CrossRef]
- Olson, J.H.; Chandler, D.E. Xenopus laevis egg jelly contains small proteins that are essential to fertilization. Dev. Biol. 1999, 210, 401–410. [Google Scholar] [CrossRef]
- Lee, P.A. Studies of frog oviducal jelly secretion. I. Chemical analysis of secretory product. J. Exp. Zool. 1967, 166, 99–106. [Google Scholar]
- Steinke, J.; Benson, D., Jr. The structure and polysaccharide cytochemistry of the jelly envelopes of the egg of the frog, Rana pipiens. J. Morphol. 1970, 130, 57–65. [Google Scholar] [CrossRef]
- Freeman, S.B. A study of the jelly envelopes surrounding the egg of the amphibian, Xenopus laevis. Biol. Bull. 1968, 135, 501–513. [Google Scholar] [CrossRef]
- Folkes, B.; Grant, R.; Jones, J. 440. Frog-spawn mucin. J. Chem. Soc. (Resumed) 1950, 2136–2140. [Google Scholar] [CrossRef]
- Carroll, E.J., Jr.; Wei, S.H.; Nagel, G.M.; Ruibal, R. Structure and Macromolecular Composition of the Egg and Embryo Jelly Coats of the Anuran Lepidobatrachus laevis: (frog jelly coat/fertilization/glycoprotein). Dev. Growth Differ. 1991, 33, 37–43. [Google Scholar] [CrossRef]
- Humphries, A., Jr.; Hughes, W. A study of the polysaccharide histochemistry of the oviduct of the newt, Triturus viridescens. Biol. Bull. 1959, 116, 446–451. [Google Scholar] [CrossRef]
- Katagiri, C. Role of oviducal secretions in mediating gamete fusion in anuran amphibians. Zool. Sci. 1987, 4, 1–14. [Google Scholar]
- Ishihara, K.; Hosono, J.; Kanatani, H.; Katagiri, C. Toad egg-jelly as a source of divalent cations essential for fertilization. Dev. Biol. 1984, 105, 435–442. [Google Scholar] [CrossRef]
- Bakos, M.A.; Kurosky, A.; Hedrick, J.L. Physicochemical characterization of progressive changes in the Xenopus laevis egg envelope following oviductal transport and fertilization. Biochemistry 1990, 29, 609–615. [Google Scholar] [CrossRef]
- Balint, N.; Citrea, L.; Memetea, A.; Jurj, N.; Condure, N. Feeding ecology of the Pelophylax ridibundus (Anura, Ranidae) in Dobromir, Romania. Biharean Biol. 2008, 2, 27–37. [Google Scholar]
- Borković-Mitić, S.S.; Prokić, M.D.; Krizmanić, I.I.; Mutić, J.; Trifković, J.; Gavrić, J.; Despotović, S.G.; Gavrilović, B.R.; Radovanović, T.B.; Pavlović, S.Z. Biomarkers of oxidative stress and metal accumulation in marsh frog (Pelophylax ridibundus). Environ. Sci. Pollut. Res. 2016, 23, 9649–9659. [Google Scholar] [CrossRef]
- Leuenberger, J.; Gander, A.; Schmidt, B.R.; Perrin, N. Are invasive marsh frogs (Pelophylax ridibundus) replacing the native P. lessonae/P. esculentus hybridogenetic complex in Western Europe? Genetic evidence from a field study. Conserv. Genet. 2014, 15, 869–878. [Google Scholar]
- Blaustein, A.R.; Belden, L.K. Amphibian defenses against ultraviolet-B radiation. Evol. Dev. 2003, 5, 89–97. [Google Scholar] [CrossRef]
- Häkkinen, J.; Pasanen, S.; Kukkonen, J.V. The effects of solar UV-B radiation on embryonic mortality and development in three boreal anurans (Rana temporaria, Rana arvalis and Bufo bufo). Chemosphere 2001, 44, 441–446. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Jing, H.; Dong, X.; Leng, X. MWCNT-mediated combinatorial photothermal ablation and chemo-immunotherapy strategy for the treatment of melanoma. J. Mater. Chem. B 2020, 8, 4245–4258. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Martínez, D.C.C.; Zuluaga, C.L.; Restrepo-Osorio, A.; Álvarez-López, C. Characterization of sericin obtained from cocoons and silk yarns. Procedia Eng. 2017, 200, 377–383. [Google Scholar] [CrossRef]
- Jena, K.; Pandey, J.; Kumari, R.; Sinha, A.; Gupta, V.; Singh, G. Tasar silk fiber waste sericin: New source for anti-elastase, anti-tyrosinase and anti-oxidant compounds. Int. J. Biol. Macromol. 2018, 114, 1102–1108. [Google Scholar] [CrossRef]
- Jena, K.; Pandey, J.; Kumari, R.; Sinha, A.; Gupta, V.; Singh, G. Free radical scavenging potential of sericin obtained from various ecoraces of tasar cocoons and its cosmeceuticals implication. Int. J. Biol. Macromol. 2018, 120, 255–262. [Google Scholar] [CrossRef]
- Wilson, D.; Valluzzi, R.; Kaplan, D. Conformational transitions in model silk peptides. Biophys. J. 2000, 78, 2690–2701. [Google Scholar] [CrossRef]
- Teramoto, H.; Miyazawa, M. Molecular orientation behavior of silk sericin film as revealed by ATR infrared spectroscopy. Biomacromolecules 2005, 6, 2049–2057. [Google Scholar] [CrossRef]
- Hu, X.; Kaplan, D.; Cebe, P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 2006, 39, 6161–6170. [Google Scholar] [CrossRef]
- Keten, S.; Xu, Z.; Ihle, B.; Buehler, M.J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 2010, 9, 359–367. [Google Scholar] [CrossRef]
- Chan, N.J.-A.; Gu, D.; Tan, S.; Fu, Q.; Pattison, T.G.; O’Connor, A.J.; Qiao, G.G. Spider-silk inspired polymeric networks by harnessing the mechanical potential of β-sheets through network guided assembly. Nat. Commun. 2020, 11, 1630. [Google Scholar] [CrossRef]
- Chylińska, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman characterization of non-cellulosic polysaccharides fractions isolated from plant cell wall. Carbohydr. Polym. 2016, 154, 48–54. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Kurdtabar, M.; Mahdavinia, G.R.; Hosseinzadeh, H. Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym. Bull. 2006, 57, 813–824. [Google Scholar] [CrossRef]
- Ki, C.S.; Kim, J.W.; Oh, H.J.; Lee, K.H.; Park, Y.H. The effect of residual silk sericin on the structure and mechanical property of regenerated silk filament. Int. J. Biol. Macromol. 2007, 41, 346–353. [Google Scholar] [CrossRef]
- Meng, Z.; Zheng, X.; Tang, K.; Liu, J.; Ma, Z.; Zhao, Q. Dissolution and regeneration of collagen fibers using ionic liquid. Int. J. Biol. Macromol. 2012, 51, 440–448. [Google Scholar] [CrossRef]
- Nuerxiati, R.; Abuduwaili, A.; Mutailifu, P.; Wubulikasimu, A.; Rustamova, N.; Jingxue, C.; Aisa, H.A.; Yili, A. Optimization of ultrasonic-assisted extraction, characterization and biological activities of polysaccharides from Orchis chusua D. Don (Salep). Int. J. Biol. Macromol. 2019, 141, 431–443. [Google Scholar] [CrossRef]
- Ji, X.; Liu, F.; Peng, Q.; Wang, M. Purification, structural characterization, and hypolipidemic effects of a neutral polysaccharide from Ziziphus Jujuba cv. Muzao. Food Chem. 2018, 245, 1124–1130. [Google Scholar] [CrossRef]
- Zhang, M.; Haga, A.; Sekiguchi, H.; Hirano, S. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int. J. Biol. Macromol. 2000, 27, 99–105. [Google Scholar] [CrossRef]
- Kalita, E.; Nath, B.K.; Agan, F.; More, V.; Deb, P. Isolation and characterization of crystalline, autofluorescent, cellulose nanocrystals from saw dust wastes. Ind. Crops Prod. 2015, 65, 550–555. [Google Scholar] [CrossRef]
- Jiang, F.; Hsieh, Y.-L. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr. Polym. 2015, 122, 60–68. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Zang, L.-S.; Koc-Bilican, B.; Bilican, I.; Holland, C.; Cansaran-Duman, D.; Karaduman, T.; Çolak, A.; Bayır, Y.; Halici, Z. Macroporous surgical mesh from a natural cocoon composite. ACS Sustain. Chem. Eng. 2022, 10, 5728–5738. [Google Scholar] [CrossRef]
- Galeski, A. Strength and toughness of crystalline polymer systems. Progress. Polym. Sci. 2003, 28, 1643–1699. [Google Scholar] [CrossRef]
- Van Soest, J.J.; Vliegenthart, J.F. Crystallinity in starch plastics: Consequences for material properties. Trends Biotechnol. 1997, 15, 208–213. [Google Scholar] [CrossRef]
- Wiedemann, H.; Larnprechth, I. Wood Handbook of Thermal Analysis and Calorimetry. Chapter 1999, 14, 765. [Google Scholar]
- Dadras Chomachayi, M.; Jalali-Arani, A.; Beltrán, F.R.; de la Orden, M.U.; Martínez Urreaga, J. Biodegradable nanocomposites developed from PLA/PCL blends and silk fibroin nanoparticles: Study on the microstructure, thermal behavior, crystallinity and performance. J. Polym. Environ. 2020, 28, 1252–1264. [Google Scholar] [CrossRef]
- Kakkar, P.; Verma, S.; Manjubala, I.; Madhan, B. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Mater. Sci. Eng. C 2014, 45, 343–347. [Google Scholar] [CrossRef]
- Mekonnen, B.T.; Ragothaman, M.; Palanisamy, T. Bifunctional hybrid composites from collagen biowastes for heterogeneous applications. ACS Omega 2017, 2, 5260–5270. [Google Scholar] [CrossRef]
- Freddi, G.; Tsukada, M.; Beretta, S. Structure and physical properties of silk fibroin/polyacrylamide blend films. J. Appl. Polym. Sci. 1999, 71, 1563–1571. [Google Scholar] [CrossRef]
- Miyake, H.; Wakisaka, H.; Yamashita, Y.; Nagura, M. Moisture characteristic and structure of high molecular weight sericin film. Polym. J. 2003, 35, 683–687. [Google Scholar] [CrossRef]
- Kundu, J.; Dewan, M.; Ghoshal, S.; Kundu, S. Mulberry non-engineered silk gland protein vis-a-vis silk cocoon protein engineered by silkworms as biomaterial matrices. J. Mater. Sci. Mater. Med. 2008, 19, 2679–2689. [Google Scholar] [CrossRef]
- Okimura, M.; Watanabe, A.; Onitake, K. Organization of carbohydrate components in the egg-jelly layers of the newt, Cynops pyrrhogaster. Zool. Sci. 2001, 18, 909–918. [Google Scholar] [CrossRef]
- Chen, X.; Lam, K.F.; Mak, S.F.; Yeung, K.L. Precious metal recovery by selective adsorption using biosorbents. J. Hazard. Mater. 2011, 186, 902–910. [Google Scholar] [CrossRef]
- Wang, J.; Hu, W.; Liu, Q.; Zhang, S. Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Colloids Surf. B Biointerfaces 2011, 85, 241–247. [Google Scholar] [CrossRef]
- Bilican, I.; Pekdemir, S.; Onses, M.S.; Akyuz, L.; Altuner, E.M.; Koc-Bilican, B.; Zang, L.-S.; Mujtaba, M.; Mulerčikas, P.; Kaya, M. Chitosan loses innate beneficial properties after being dissolved in acetic acid: Supported by detailed molecular modeling. ACS Sustain. Chem. Eng. 2020, 8, 18083–18093. [Google Scholar] [CrossRef]
- Schulz, F.N.; Becker, M. Uber die Kohlenhydrate der Eiweissdruse von Rana esculenta. Biochem. Z. 1935, 280, 217–226. [Google Scholar]
- Coulombe, P.A.; Omary, M.B. ‘Hard’and ‘soft’principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 2002, 14, 110–122. [Google Scholar] [CrossRef]
- Herrmann, H.; Aebi, U. Intermediate filaments: Molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu. Rev. Biochem. 2004, 73, 749–789. [Google Scholar] [CrossRef]
- Jonas, E.; Sargent, T.D.; Dawid, I.B. Epidermal keratin gene expressed in embryos of Xenopus laevis. Proc. Natl. Acad. Sci. USA 1985, 82, 5413–5417. [Google Scholar] [CrossRef]
- Mathisen, P.M.; Miller, L. Thyroid hormone induces constitutive keratin gene expression during Xenopus laevis development. Mol. Cell. Biol. 1989, 9, 1823–1831. [Google Scholar]
- Abdallah, B.; Hourdry, J.; Krieg, P.A.; Denis, H.; Mazabraud, A. Germ cell-specific expression of a gene encoding eukaryotic translation elongation factor 1 alpha (eEF-1 alpha) and generation of eEF-1 alpha retropseudogenes in Xenopus laevis. Proc. Natl. Acad. Sci. USA 1991, 88, 9277–9281. [Google Scholar] [CrossRef]
- Deschamps, S.; Morales, J.; Mazabraud, A.; le Maire, M.; Denis, H.; Brown, D.D. Two forms of elongation factor 1 alpha (EF-1 alpha O and 42Sp50), present in oocytes, but absent in somatic cells of Xenopus laevis. J. Cell Biol. 1991, 114, 1109–1111. [Google Scholar] [CrossRef]
- Anastasi, A.; Erspamer, V.; Bucci, M. Isolation and structure of bombesin and alytesin, two analogous active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 1971, 27, 166–167. [Google Scholar] [CrossRef]
- Spindel, E. Mammalian bombesin-like peptides. Trends Neurosci. 1986, 9, 130–133. [Google Scholar] [CrossRef]
- Taché, Y.; Brown, M. On the role of bombesin in homeostasis. Trends Neurosci. 1982, 5, 431–433. [Google Scholar] [CrossRef]
- Brown, M.; Allen, R.; Villareal, J.; Rivier, J.; Vale, W. Bombesin-like activity: Radioimmunologic assessment in biological tissues. Life Sci. 1978, 23, 2721–2728. [Google Scholar] [CrossRef]
- Moody, T.W.; Pert, C.B. Bombesin-like peptides in rat brain: Quantitation and biochemical characterization. Biochem. Biophys. Res. Commun. 1979, 90, 7–14. [Google Scholar] [CrossRef]
- Ohki-Hamazaki, H.; Iwabuchi, M.; Maekawa, F. Development and function of bombesin-like peptides and their receptors. Int. J. Dev. Biol. 2003, 49, 293–300. [Google Scholar] [CrossRef]
- Yau, T.; Dan, X.; Ng, C.C.; Ng, T.B. Lectins with Potential for Anti-Cancer Therapy. Molecules 2015, 20, 3791–3810. [Google Scholar] [CrossRef]
- Palfree, R.G.; Bennett, H.P.; Bateman, A. The evolution of the secreted regulatory protein progranulin. PLoS ONE 2015, 10, e0133749. [Google Scholar] [CrossRef]
- Dong, C.; Lin, Z.; Diao, W.; Li, D.; Chu, X.; Wang, Z.; Zhou, H.; Xie, Z.; Shen, Y.; Long, J. The Elp2 subunit is essential for elongator complex assembly and functional regulation. Structure 2015, 23, 1078–1086. [Google Scholar] [CrossRef]
- Lin, S.; Lin, X.; Zhang, Z.; Jiang, M.; Rao, Y.; Nie, Q.; Zhang, X. Copy number variation in SOX6 contributes to chicken muscle development. Genes 2018, 9, 42. [Google Scholar] [CrossRef]
- Lau, N.C.; Ohsumi, T.; Borowsky, M.; Kingston, R.E.; Blower, M.D. Systematic and single cell analysis of Xenopus Piwi-interacting RNAs and Xiwi. EMBO J. 2009, 28, 2945–2958. [Google Scholar] [CrossRef]
- Tedeschi, G.; Pagliato, L.; Negroni, M.; Montorfano, G.; Corsetto, P.; Nonnis, S.; Negri, A.; Rizzo, A.M. Protein pattern of Xenopus laevis embryos grown in simulated microgravity. Cell Biol. Int. 2011, 35, 249–258. [Google Scholar] [CrossRef]
- Titani, K.; Takio, K.; Kuwada, M.; Nitta, K.; Sakakibara, F.; Kawauchi, H.; Takayanagi, G.; Hakomori, S. Amino acid sequence of sialic acid binding lectin from frog (Rana catesbeiana) eggs. Biochemistry 1987, 26, 2189–2194. [Google Scholar] [CrossRef]
- Sakakibara, F.; Takayanagi, G.; Ise, H.; Kawauchi, H. Isolation of two agglutinins with different biological properties from the eggs of Rana catesbiana (author’s transl). Yakugaku Zasshi J. Pharm. Soc. Jpn. 1977, 97, 855–862. [Google Scholar] [CrossRef]
- Nakajima, Y.; Suzuki, H.; Sakakibara, F.; Kawauchi, H.; Mizuno, D.; Yamazaki, M. Induction of a cytotoxin from murine macrophages by an animal lectin. Jpn. J. Exp. Med. 1986, 56, 19–25. [Google Scholar]
- Krajhanzl, A. Fish oocyte lectins. Further physicochemical characterization of lectins from oocytes of the bream Abramis brama L., and the perch Perca fluviatilis L. Interaction of perch lectin I with components of the mature egg jelly envelope. Lectins-Biol. Biochem. Clin. Biochem. 1985, 4, 377–396. [Google Scholar]
Elemental Analysis | % N | % C | % H | % S |
5.46 | 36.84 | 5.36 | 1.33 | |
EDX Analysis | Weight (%) | |||
C K | N K | O K | S K | |
51.00 | 7.66 | 34.11 | 5.48 |
Master | Accession Number | Description |
---|---|---|
Protein | P02537 | Keratin-3, type I cytoskeletal 51 kDa OS = Xenopus laevis OX = 8355 PE = 2 SV = 1 |
Protein | P05782 | Keratin, type I cytoskeletal 47 kDa (Fragment) OS = Xenopus laevis OX = 8355 GN = xk81b1 PE = 3 SV = 2 |
Protein | P08776 | Keratin, type II cytoskeletal 8 OS = Xenopus laevis OX = 8355 PE = 2 SV = 1 |
Protein | P13549 | Elongation factor 1-alpha, somatic form OS = Xenopus laevis OX = 8355 GN = eef1as PE = 2 SV = 1 |
Protein | P16878 | Keratin, type II cytoskeletal OS = Xenopus laevis OX = 8355 PE = 2 SV = 2 |
Protein | P18839 | Sialic acid-binding lectin OS = Rana japonica OX = 8402 PE = 1 SV = 3 |
Protein | P21591 | Bombesin OS = Bombina orientalis OX = 8346 PE = 2 SV = 1 |
Protein | Q0IHW6 | KAT8 regulatory NSL complex subunit 1-like protein OS = Xenopus tropicalis OX = 8364 GN = kansl1l PE = 2 SV = 1 |
Protein | Q5EBD9 | Elongator complex protein 2 OS = Xenopus tropicalis OX = 8364 GN = elp2 PE = 2 SV = 1 |
Protein | Q5FW46 | Protein FAM214A OS = Xenopus tropicalis OX = 8364 GN = fam214a PE = 2 SV = 1 |
Protein | Q5M7P8 | Tudor a protein 7 OS = Xenopus tropicalis OX = 8364 GN = tdrd7 PE = 2 SV = 1 |
Protein | Q66IV5 | Arpin OS = Xenopus laevis OX = 8355 GN = arpin PE = 2 SV = 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koc-Bilican, B.; Karaduman-Yesildal, T.; Tornaci, S.; Cansaran-Duman, D.; Oner, E.T.; Gül, S.; Kaya, M. Amphibian Egg Jelly as a Biocompatible Material: Physicochemical Characterization and Selective Cytotoxicity Against Melanoma Cells. Polymers 2025, 17, 2046. https://doi.org/10.3390/polym17152046
Koc-Bilican B, Karaduman-Yesildal T, Tornaci S, Cansaran-Duman D, Oner ET, Gül S, Kaya M. Amphibian Egg Jelly as a Biocompatible Material: Physicochemical Characterization and Selective Cytotoxicity Against Melanoma Cells. Polymers. 2025; 17(15):2046. https://doi.org/10.3390/polym17152046
Chicago/Turabian StyleKoc-Bilican, Behlul, Tugce Karaduman-Yesildal, Selay Tornaci, Demet Cansaran-Duman, Ebru Toksoy Oner, Serkan Gül, and Murat Kaya. 2025. "Amphibian Egg Jelly as a Biocompatible Material: Physicochemical Characterization and Selective Cytotoxicity Against Melanoma Cells" Polymers 17, no. 15: 2046. https://doi.org/10.3390/polym17152046
APA StyleKoc-Bilican, B., Karaduman-Yesildal, T., Tornaci, S., Cansaran-Duman, D., Oner, E. T., Gül, S., & Kaya, M. (2025). Amphibian Egg Jelly as a Biocompatible Material: Physicochemical Characterization and Selective Cytotoxicity Against Melanoma Cells. Polymers, 17(15), 2046. https://doi.org/10.3390/polym17152046