Synchronous Improvement of Mechanical and Room-Temperature Damping Performance in Light-Weight Polyurethane Composites by a Simple Carbon-Coating Strategy
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of HGM@C/PU Composites
2.3. Characterization
3. Results and Discussion
3.1. Design of PU with Room Temperature Damping Property
3.1.1. Effect of Molecular Weight of PTMG
3.1.2. Effect of the Mole Ratio of PTMG and GL
3.1.3. Effect of the Content of DMTDA
3.2. Characterization of HGM@C
3.3. Characterization of HGM@C/PU
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, L.K.; Chua, J.W.; Li, X.W.; Zhao, Y.J.; Thai, B.Q.; Yu, X.; Yang, Y.; Zhai, W. Superior broadband sound absorption in hierarchical ultralight graphene oxide aerogels achieved through emulsion freeze-casting. Chem. Eng. J. 2023, 469, 143896. [Google Scholar] [CrossRef]
- Liu, L.H.; Chen, Z.F.; Yang, L.X.; Yang, M.M.; Wu, Q.; Shi, M.X.; Hou, B. Cage-like structured flexible hybrid fiber/SiO2 aerogel composite for noise reduction. Ceram. Int. 2023, 49, 31509–31516. [Google Scholar] [CrossRef]
- Chen, B.W.; Dai, J.W.; Song, T.S.; Guan, Q.S. Research and development of high-performance high-damping rubber materials for high-damping rubber isolation bearings: A review. Polymers 2022, 14, 2427. [Google Scholar] [CrossRef]
- Gao, W.K.; Guo, L.Y.; Li, B.X.; Liu, K.; Hua, J. Significantly enhanced interfacial compatibility for ultrahigh-damping rubber composites. J. Appl. Polym. Sci. 2025, 142, e56581. [Google Scholar] [CrossRef]
- Yin, D.X.; Liu, Y.; Wang, X.; Hu, S.K.; Liu, L.; Zhao, X.Y.; Zhang, L.Q. Novel bio-based polyurethane elastomers for adjustable room-temperature damping property. Compos. Commun. 2024, 49, 101975. [Google Scholar] [CrossRef]
- Wang, X.; Yin, D.X.; Chen, Z.; Hu, Y.Q.; Hu, S.K.; Zhao, X.Y. CO2-based polyurethane elastomers with enhanced mechanical and tunable room-temperature damping performances. Eur. Polym. J. 2024, 220, 113499. [Google Scholar] [CrossRef]
- Chen, S.B.; Wang, Q.H.; Wang, T.M. Preparation, tensile, damping and thermal properties of polyurethanes based on various structural polymer polyols: Effects of composition and isocyanate index. J. Polym. Res. 2012, 19, 9994. [Google Scholar] [CrossRef]
- Beniah, G.; Liu, K.; Heath, W.H.; Miller, M.D.; Scheidt, K.A.; Torkelson, J.M. Novel thermoplastic polyhydroxyurethane elastomers as effective damping materials over broad temperature ranges. Eur. Polym. J. 2016, 84, 770–783. [Google Scholar] [CrossRef]
- Yu, W.W.; Du, M.; Zhang, D.Z.; Lin, Y.; Zheng, Q. Influence of dangling chains on molecular dynamics of polyurethanes. Macromolecules 2013, 46, 7341–7351. [Google Scholar] [CrossRef]
- Rong, H.X.; Xu, M.; Jiang, X.L.; Lu, X. Synthesis and molecular dynamics study of high-damping polyurethane elastomers based on the synergistic effect of dangling chains and dynamic bonds. Polym. Chem. 2022, 13, 4260–4272. [Google Scholar] [CrossRef]
- Jiang, X.L.; Xu, M.; Wang, M.H.; Ma, Y.H.; Zhang, W.C.; Zhang, Y.A.; Rong, H.X.; Lu, X. Preparation and molecular dynamics study of polyurethane damping elastomer containing dynamic disulfide bond and multiple hydrogen bond. Eur. Polym. J. 2022, 162, 110893. [Google Scholar] [CrossRef]
- Tang, X.H.; Guo, X.; Liu, X.; Liu, G.Y.; Liu, L.; Zhang, B.G. Self-healing polyurethane elastomer with wider damping temperature range by synergistic interaction of suspended chains and dynamic disulfide bonds. Polym. Test. 2023, 124, 108070. [Google Scholar] [CrossRef]
- Dong, G.C.; Chang, Y.Z.; Li, C.A.; Zhao, L.F.; Tian, X.J.; Liu, X.P. Study on damping and self-healing properties of polyurethane materials based on dynamic synergetic control of disulfide bond and imine bond. J. Appl. Polym. Sci. 2023, 140, e54544. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, H.J.; Zhang, X.L.; Li, Y.Z.; Li, Y.T. Preparation and characterization of polyurethane damping materials derived from mixed-base prepolymers containing numerous side methyls. E-Polymers 2015, 15, 323–327. [Google Scholar] [CrossRef]
- Lv, X.S.; Huang, Z.X.; Huang, C.; Shi, M.X.; Gao, G.B.; Gao, Q.Q. Damping properties and the morphology analysis of the polyurethane/epoxy continuous gradient IPN materials. Compos. Part B-Eng. 2016, 88, 139–149. [Google Scholar] [CrossRef]
- Liu, K.; Lv, Q.Q.; Hua, J. Study on damping properties of HVBR/EVM blends prepared by polymerization. Polym. Test. 2017, 60, 321–325. [Google Scholar] [CrossRef]
- Liang, J.Z. Tensile properties of hollow glass bead-filled polypropylene composites. J. Appl. Polym. Sci. 2007, 104, 1697–1701. [Google Scholar] [CrossRef]
- Qiao, Y.J.; Li, Q.W.; Li, Q.; Bian, X.T.; Lu, C.C.; Yang, K.; Zheng, T.; Zhang, X.H.; Wang, X.D. Lightweight epoxy foams prepared with arranged hollow-glass-microspheres/epoxy hollow spheres. Compos. Commun. 2022, 33, 101197. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, M.; Chen, Y.; He, J.C.; Wang, X.L.; Xie, J.; Li, Z.W.; Chen, Z.M.; Fu, Y.H.; Xiong, C.X.; et al. Epoxy resin/hollow glass microspheres composite materials with low dielectric constant and excellent mechanical performance. J. Appl. Polym. Sci. 2022, 139, e52787. [Google Scholar] [CrossRef]
- Loubrieu, G.; Le Gall, M.; Priour, D.; Stewart, G.; Melot, D.; Le Gac, P.Y. Hydrostatic strength of hollow glass microspheres composites: Influencing factors and modelling. Compos. Part C-Open. 2022, 8, 100286. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Liu, Y.; Xian, G.Y.; Wang, Y.; Wu, C.M.; Peng, X.B.; Wang, J.X.; Kong, L.B. Effect of compound coupling agent treatment on mechanical property and water absorption of hollow glass microspheres/epoxy composite. Macromol. Res. 2023, 31, 771–779. [Google Scholar] [CrossRef]
- Anirudh, S.; Jayalakshmi, C.G.; Anand, A.; Kandasubramanian, B.; Ismail, S.O. Epoxy/hollow glass microsphere syntactic foams for structural and functional application-A review. Eur. Polym. J. 2022, 171, 111163. [Google Scholar] [CrossRef]
- Fei, Y.P.; Fang, W.; Zhong, M.Q.; Jin, J.M.; Fan, P.; Yang, J.T.; Fei, Z.D.; Chen, F.; Kuang, T.R. Morphological structure, rheological behavior, mechanical properties and sound insulation performance of thermoplastic rubber composites reinforced by different inorganic fillers. Polymers 2018, 10, 276. [Google Scholar] [CrossRef]
- Shao, H.L.; Fei, Z.F.; Zhang, Z.; Li, X.H.; Chen, G.B.; Li, K.F.; Zhao, S.; Luo, Z.Y.; Yang, Z.C. Low shrinkage polyimide aerogel cross-linked with amino-functionalized hollow glass microbeads for thermal and acoustic insulation. Polymer 2024, 299, 126955. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Jiang, H.; Li, R.; Gao, S.; Wang, Q.; Wang, G.J.; Ouyang, X.; Wei, H. High-damping polyurethane/hollow glass microspheres sound insulation materials: Preparation and characterization. J. Appl. Polym. Sci. 2021, 138, e49970. [Google Scholar] [CrossRef]
- Wang, T.M.; Chen, S.B.; Wang, Q.H.; Pei, X.Q. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead. Mater. Des. 2010, 31, 3810–3815. [Google Scholar] [CrossRef]
- Zeng, X.K.; Li, G.W.; Zhu, J.M.; Sain, M.; Jian, R.R. NBR/CR-based high-damping rubber composites containing multiscale structures for tailoring sound insulation. Macromol. Mater. Eng. 2023, 308, 2200464. [Google Scholar] [CrossRef]
- Mizera, K.; Chrzaszcz, M.; Ryszkowska, J. Thermal and mechanical properties of ureaurethane elastomer composites with hollow glass spheres. Polym. Compos. 2018, 39, 2019–2028. [Google Scholar] [CrossRef]
- Dimchev, M.; Caeti, R.; Gupta, N. Effect of carbon nanofibers on tensile and compressive characteristics of hollow particle filled composites. Mater. Design. 2010, 31, 1332–1337. [Google Scholar] [CrossRef]
- Kumar, D.; Shahapurkar, K.; Venkatesh, C.; Muruganandhan, R.; Tirth, V.; Manivannan, C.; Alarifi, I.M.; Soudagar, M.E.M.; El-Shafay, A.S. Influence of graphene nano fillers and carbon nano tubes on the mechanical and thermal properties of hollow glass microsphere epoxy composites. Processes 2022, 10, 40. [Google Scholar]
- Kang, D.; Hwang, S.W.; Jung, B.N.; Shim, J.K. Effect of hollow glass microsphere (HGM) on the dispersion state of single-walled carbon nanotube (SWNT). Compos. Part B-Eng. 2017, 117, 35–42. [Google Scholar] [CrossRef]
- Kim, J.J.; Brown, A.D.; Bakis, C.E.; Smith, E.C. Hybrid carbon nanotube-carbon fiber composites for high damping. Compos. Sci. Technol. 2021, 207, 108712. [Google Scholar] [CrossRef]
- Chang, S.L.; Lou, H.Q.; Meng, W.X.; Li, M.; Guo, F.M.; Pang, R.; Xu, J.; Zhang, Y.J.; Shang, Y.Y.; Cao, A.Y. Carbon nanotube/polymer coaxial cables with strong interface for damping composites and stretchable conductors. Adv. Funct. Mater. 2022, 32, 2112231. [Google Scholar] [CrossRef]
- Katsiropoulos, C.V.; Pappas, P.; Koutroumanis, N.; Kokkinos, A.; Galiotis, C. Enhancement of damping response in polymers and composites by the addition of graphene nanoplatelets. Compos. Sci. Technol. 2022, 227, 109562. [Google Scholar] [CrossRef]
- Feng, J.G.; Safaei, B.; Qin, Z.Y.; Chu, F.L. Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene. Compos. Sci. Technol. 2023, 233, 109925. [Google Scholar] [CrossRef]
- Gong, L.Y.; Zhang, F.J.; Peng, X.Q.; Scarpa, F.; Huang, Z.G.; Tao, G.M.; Liu, H.Y.; Zhou, H.L.Z.; Zhou, H.M. Improving the damping properties of carbon fiber reinforced polymer composites by interfacial sliding of oriented multilayer graphene oxide. Compos. Sci. Technol. 2022, 224, 109309. [Google Scholar] [CrossRef]
- Liu, T.T.; Zhou, L.Y.; Sun, C.; Ma, X.F.; Huang, X.; Luo, H.J. Graphene wrapped hollow glass beads for polymer composites: From thermal insulators to conductors. Compos. Sci. Technol. 2023, 233, 109890. [Google Scholar] [CrossRef]
- Yu, M.; Hou, Y.; Bai, M.Q.; Zhao, D.L.; Wang, B.; Zhang, Y.N. Lightweight composite from graphene-coated hollow glass microspheres for microwave absorption. Ceram. Int. 2024, 50, 50955–50964. [Google Scholar] [CrossRef]
- Shi, X.J.; Wu, J.Y.; Wang, X.E.; Zhou, X.P.; Xie, X.L.; Xue, Z.G. Novel sound insulation materials based on epoxy/hollow silica nanotubes composites. Compos. Part B-Eng. 2017, 131, 125–133. [Google Scholar] [CrossRef]
- Zhou, Q.; Cao, L.; Li, Q.; Yao, Y.L.; Ouyang, Z.F.; Su, Z.Q.; Chen, X.N. Investigation of the curing process of spray polyurea elastomer by FTIR, DSC, and DMA. J. Appl. Polym. Sci. 2012, 125, 3695–3701. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wang, L.P.; Zhang, K.Q.; Zhou, K.Y.; Hou, K.Y.; Zhao, Z.X.; Li, G.L.; Yao, Q.; Sun, N.; Wang, X. Hybrid soft segments boost the development of ultratough thermoplastic elastomers with tunable hardness. Adv. Mater. 2025, 37, e2414720. [Google Scholar] [CrossRef]
- Zheng, J.Q.; Sun, S.; Hu, X.; Yu, Z.H.; Fu, Y.; Chen, D.; Wang, D.; Cai, W.H.; Zhou, H.M.; Wang, Y.M. Ultra-damping composites enhanced by yolk-shell piezoelectric damping mechanism. Adv. Funct. Mater. 2023, 33, 2213343. [Google Scholar] [CrossRef]
- Kang, Z.H.; Xi, M.; Li, N.; Zhang, S.D.; Wang, Z.Y. Anisotropic thermal conductivity of 3D printed graphene enhanced thermoplastic polyurethanes structure toward photothermal conversion. Carbon 2025, 234, 120023. [Google Scholar] [CrossRef]
- Lin, X.B.; Zheng, L.; Wang, X.D.; Xu, P.; Zhang, Z.; Sun, H.N.; Zhang, M.Y.; Huang, Q.Z. Recycled carbon fiber reinforced carbon matrix composites with improved strength via a polydopamine interface enhancer. Appl. Surf. Sci. 2025, 701, 163285. [Google Scholar] [CrossRef]
- Zhou, S.H.; Lai, Y.C.; Ma, J.C.; Liu, B.; Ni, N.N.; Dai, F.; Xu, Y.H.; Wang, Z.D.; Yang, X. Synchronous improvement of mechanical and damping properties of structural damping composites with polyetherimide non-woven fabric interlayers loaded with polydopamine and carbon nanotubes. Polymers 2023, 15, 3117. [Google Scholar] [CrossRef]
- Guo, R.D.; Su, D.; Chen, F.; Cheng, Y.Z.; Wang, X.; Gong, R.Z.; Luo, H. Hollow beaded Fe C/N-doped carbon fibers toward broadband microwave absorption. Acs. Appl. Mater. Inter. 2022, 14, 3084–3094. [Google Scholar] [CrossRef]
- Wu, M.J.; Han, W.S.; Zhang, C.; Zhang, S.; Zhang, X.Y.; Chen, X.G.; Naito, K.; Yu, X.Y.; Zhang, Q.X. Rational design of fluorinated phthalonitrile/hollow glass microsphere composite with low dielectric constant and excellent heat resistance for microelectronic packaging. Nanomaterials 2022, 12, 3973. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, Z.X.; Lv, X.S.; Zhang, G.W.; Wang, Q.; Wang, B. Surface modification of hollow glass microsphere with different coupling agents for potential applications in phenolic syntactic foams. J. Appl. Polym. Sci. 2017, 134, e44415. [Google Scholar] [CrossRef]
- Yang, J.; Gong, X.L.; Deng, H.X.; Qin, L.J.; Xuan, S.H. Investigation on the mechanism of damping behavior of magnetorheological elastomers. Smart Mater. Struct. 2012, 21, 125015. [Google Scholar] [CrossRef]
- Wang, X.W.; Yan, J.; Yu, Y.; Qiu, H.Y.; Li, X.C.; Joseph, P.; Zhong, M.L.; Hu, X.Y.; Zhang, R.C. An evaluation of the damping characteristics of some silicon rubber/ferric oxide composites. Polym. Advan. Technol. 2024, 35, e70018. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, N.; Zhang, D.S.; He, B.B.; Chen, X. Study on optimization of damping performance and damping temperature range of silicone rubber by polyborosiloxane gel. Polymers 2020, 12, 1196. [Google Scholar] [CrossRef] [PubMed]
Sample | HMDI (mmol) | PTMG (mmol) | DMTDA (mmol) | GL (mmol) |
---|---|---|---|---|
PU2000-5.5 | 10 | 5.5 (Mr = 2000 g/mol) | 0 | 3 |
PU1000-5.5 | 10 | 5.5 (Mr = 1000 g/mol) | 0 | 3 |
PU650-5.5 | 10 | 5.5 (Mr = 650 g/mol) | 0 | 3 |
PU650-7 | 10 | 7 (Mr = 650 g/mol) | 0 | 2 |
PU650-8.5 | 10 | 8.5 (Mr = 650 g/mol) | 0 | 1 |
PU650-7(6/9) | 10 | 7 (Mr = 650 g/mol) | 1.5 | 1 |
PU650-7(2/9) | 10 | 7 (Mr = 650 g/mol) | 2.25 | 0.5 |
PU650-7(0/9) | 10 | 7 (Mr = 650 g/mol) | 3 | 0 |
Assignment | Wavenumber (cm−1) | Area (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
PU650-7 | PU650-7(6/9) | PU650-7(2/9) | PU650-7(0/9) | PU650-7 | PU650-7(6/9) | PU650-7(2/9) | PU650-7(0/9) | ||
-NHCOO- | Free | I (1721) | I (1720) | I (1720) | I (1720) | 18.2 | 8.2 | 9.8 | 9.5 |
H-bonded (ordered) | II (1697) | II (1703) | II (1701) | II (1701) | 81.8 | 60.3 | 62.4 | 57.4 | |
-NHCONH- | Free | III / | III (1692) | III (1692) | III (1693) | / | 9.4 | 4.3 | 3.5 |
H-bonded (disordered) | IV / | IV (1665) | IV (1658) | IV (1653) | / | 13.4 | 18.5 | 21.4 | |
H-bonded (ordered) | V / | V (1636) | V (1633) | V (1631) | / | 8.7 | 5.0 | 8.2 | |
Total degree of H-bonded | 81.8 | 82.4 | 84.2 | 86.2 |
Peak Position | Temperature Range of Effective Damping (°C) | E’ at 20 °C (MPa) | TA Value | |||
---|---|---|---|---|---|---|
Tg (°C) | tanδmax | (T1, T2) | ΔT | |||
PU2000-5.5 | −41.58 | 0.576 | (−70, −18.20) | 51.8 | 5.8 | 25.721 |
PU1000-5.5 | −0.88 | 0.507 | (−23.67, 19.01) | 42.68 | 10.2 | 18.350 |
PU650-5.5 | 32.85 | 0.587 | (7.53, 53.89) | 46.36 | 118.9 | 23.407 |
PU650-7 | 17.69 | 0.738 | (−1.68, 37.78) | 39.46 | 28.1 | 22.033 |
PU650-8.5 | −0.61 | 0.894 | (−17.52, 17.18) | 34.70 | 6.2 | 21.345 |
PU650-7(6/9) | 8.36 | 0.630 | (−7.32, 30.19) | 37.51 | 15.7 | 18.763 |
PU650-7(2/9) | 10.77 | 0.559 | (−5.50, 31.38) | 36.88 | 18.9 | 16.385 |
PU650-7(0/9) | 3.38 | 0.460 | (−12.41, 26.42) | 38.83 | 18.3 | 15.708 |
h | w | DE (%) | |
---|---|---|---|
PU | 0.80 | 2.54 | 23.95 |
PU-5C | 1.23 | 3.23 | 27.90 |
PU-10C | 1.66 | 3.37 | 30.66 |
PU-15C | 2.09 | 3.62 | 35.13 |
PU-5 | 1.14 | 3.38 | 25.38 |
PU-10 | 1.16 | 5.38 | 21.56 |
PU-15 | 1.45 | 4.73 | 23.46 |
Sample | Peak Position | Temperature Range of Effective Damping (°C) | TA Value | Ea (kJ/mol) | R2 Value | ||
---|---|---|---|---|---|---|---|
Tg (°C) | tanδmax | (T1, T2) | ΔT | ||||
PU | 8.36 | 0.630 | (−7.32, 30.19) | 37.51 | 18.763 | 279.7 | 0.98644 |
PU-5C | 8.25 | 0.608 | (−8.10, 29.38) | 37.48 | 17.823 | 228.6 | 0.98312 |
PU-10C | 8.50 | 0.595 | (−8.11, 30.53) | 38.64 | 17.817 | 247.2 | 0.99929 |
PU-15C | 9.92 | 0.574 | (−11.31, 36.35) | 47.66 | 21.260 | 288.8 | 0.99679 |
PU-5 | 11.83 | 0.544 | (−6.70, 30.62) | 37.32 | 14.955 | 244.6 | 0.98437 |
PU-10 | 13.33 | 0.536 | (−4.52, 31.88) | 36.40 | 14.741 | 373.6 | 0.98433 |
PU-15 | 14.45 | 0.508 | (−3.67, 32.31) | 35.98 | 14.152 | 420.9 | 0.97933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Zhu, Z.; Yao, J.; Sun, Q.; Fan, Q.; Liu, H.; Dong, Q.; Li, H. Synchronous Improvement of Mechanical and Room-Temperature Damping Performance in Light-Weight Polyurethane Composites by a Simple Carbon-Coating Strategy. Polymers 2025, 17, 2115. https://doi.org/10.3390/polym17152115
Zheng Q, Zhu Z, Yao J, Sun Q, Fan Q, Liu H, Dong Q, Li H. Synchronous Improvement of Mechanical and Room-Temperature Damping Performance in Light-Weight Polyurethane Composites by a Simple Carbon-Coating Strategy. Polymers. 2025; 17(15):2115. https://doi.org/10.3390/polym17152115
Chicago/Turabian StyleZheng, Qitan, Zhongzheng Zhu, Junyi Yao, Qinyu Sun, Qunfu Fan, Hezhou Liu, Qiuxia Dong, and Hua Li. 2025. "Synchronous Improvement of Mechanical and Room-Temperature Damping Performance in Light-Weight Polyurethane Composites by a Simple Carbon-Coating Strategy" Polymers 17, no. 15: 2115. https://doi.org/10.3390/polym17152115
APA StyleZheng, Q., Zhu, Z., Yao, J., Sun, Q., Fan, Q., Liu, H., Dong, Q., & Li, H. (2025). Synchronous Improvement of Mechanical and Room-Temperature Damping Performance in Light-Weight Polyurethane Composites by a Simple Carbon-Coating Strategy. Polymers, 17(15), 2115. https://doi.org/10.3390/polym17152115