Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Pulping and Lignin Extraction
2.2.2. UV Spectrophotometry of Lignin
2.2.3. Liquefaction of Lignin and Formation of Bio-Polyols
2.2.4. Preparation of Lignin-Based Polyurethane Foams
2.2.5. Maldi-TOF/MS Acquisition
2.2.6. FTIR Analyses of Lignin
2.2.7. Thermogravimetric Analyses (TGA)
2.2.8. Differential Scanning Calorimetry (DSC) on SOL
2.2.9. Apparent Density of Foams
2.2.10. Viscosity of Polyols
2.2.11. Gel Permeation Chromatography (GPC)
2.2.12. Study of the Foam Process
- Cream time
- Gel time
- Rise time
2.2.13. Determination of the Hydroxyl Content of Polyols
2.2.14. 13C NMR Spectroscopy
2.2.15. Scanning Electron Microscopy Images
2.2.16. X-Ray Diffraction Analysis
2.2.17. Water Absorption in Foams
2.2.18. Mechanical Tests
3. Results and Discussion
3.1. Characterization of Lignin
3.1.1. FTIR Spectra
3.1.2. TG/DTG Curves of SOL
3.1.3. DSC Curve
3.1.4. Other Chemical Characteristics of SOL
3.1.5. MALDI-TOF Spectra of Lignin
3.2. Characteristics of Lignin-Based Bio-Polyols (LBPs)
3.2.1. Liquefaction Yield, Viscosity, and Hydroxyl Content of the Bio-Polyols
3.2.2. FTIR Spectra of the Bio-Polyols
3.2.4. Molecular Weights of the Bio-Polyols
3.3. Study of the Foaming Process
3.3.1. Foaming Images
3.3.2. Kinetics of the Foaming Process
3.4. Characteristics of Lignin-Based Polyurethane Foams (LBPUFs)
3.4.1. Surface Morphology and Density of Foams
3.4.2. FTIR Spectra of Lignin-Based Polyurethane Foams
3.4.3. TG/DTG Curves of Lignin-Based Polyurethane Foams
3.4.4. XRD Patterns of Lignin-Based Polyurethane Foams
3.4.5. Mechanical Properties of LBPUFs
3.4.6. Water Uptake of LBPUFs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.K.; Langan, M.P. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef]
- Rials, T.G.; Glasser, W.G. Engineering plastics from lignin-XIII. Effect of lignin structure on polyurethane network formation. Holzforschung 1986, 40, 353–360. [Google Scholar] [CrossRef]
- Xue, B.L.; Wen, J.L.; Sun, R.C. Producing lignin-based polyols through microwave-assisted liquefaction for rigid polyurethane foam production. Materials 2015, 8, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Delucis, R.D.A.; Magalhaes, W.L.E.; Petzhold, C.L.; Amigo, S.C. Forest-based resources as fillers in biobased polyurethane foams. J. Appl. Polym. Sci. 2018, 135, 45684. [Google Scholar] [CrossRef]
- Hakim, A.A.A.; Nassar, M.; Emam, A.; Sultan, M. Preparation and characterization of rigid polyurethane foams prepared from sugarcane bagasse polyol. Mater. Chem. Phys. 2011, 129, 301–307. [Google Scholar] [CrossRef]
- Czlonka, S.; Strakowska, A.; Kairyte, A. Application of walnut shells-derived biopolyol in the synthesis of rigid polyurethane foams. Materials 2020, 13, 2687. [Google Scholar] [CrossRef]
- Tavares, L.B.; Boas, C.V.; Schleder, G.R.; Nacas, A.M.; Rosa, D.S.; Santos, D.J. Bio-based polyurethane prepared from kraft lignin and modified castor oil. Exp. Polym. Let. 2016, 10, 927–940. [Google Scholar] [CrossRef]
- Czlonka, S.; Bertino, M.F.; Kosny, J.; Strakowska, A.; Maslowski, M.; Strzelec, K. Linseed oil as a natural modifier of rigid polyurethane foams. Ind. Crop. Prod. 2018, 115, 40–51. [Google Scholar] [CrossRef]
- Czlonka, S.; Sienkiewicz, N.; Strakowska, A.; Strzelec, K. Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol. Polym. Test. 2018, 72, 32–45. [Google Scholar] [CrossRef]
- Ahmad, A.; Jamil, S.N.A.M.; Choong, T.S.Y.; Abdullah, A.H.; Mastuli, M.S.; Othman, N.; Jiman, N. Green flexible polyurethane foam as a potent support for Fe-Si adsorbent. Polymers 2019, 11, 2011. [Google Scholar] [CrossRef]
- Wang, T.P.; Zhang, L.H.; Li, D.; Yin, J.; Wu, S.; Mao, Z.H. Mechanical properties of polyurethane foams prepared from liquefied corn stover with PAPI. Biores. Technol. 2011, 99, 2265–2268. [Google Scholar] [CrossRef]
- Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C.C. Hydrolytic depolymerization of hydrolysis lignin: Effect of catalysts and solvents. Biores. Technol. 2015, 190, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Eberhardt, T.L.; Wang, C.; Gao, S.; Pan, H. Demethylation of alkali lignin with halogen acids and its application to phenolic resins. Polymers 2019, 11, 1771. [Google Scholar] [CrossRef] [PubMed]
- Muller, L.C.; Marx, S.; Vosloo, H.C.M.; Chiyanzu, I. Functionalising lignin in crude glycerol to prepare polyols and polyurethane. Polym. Renew. Res. 2019, 10, 3–18. [Google Scholar] [CrossRef]
- Luo, S.; Gao, L.; Guo, W. Effect of incorporation of lignin as bio-polyol on the performance of rigid lightweight wood-polyurethane composite foams. J. Wood. Sci. 2020, 66, 23. [Google Scholar] [CrossRef]
- Cheumani, A.M.Y.; Budija, F.; Hrastnik, D.; Kutnar, A.; Pavlic, A.; Pori, P.; Tavzes, C.; Petric, M. Preparation of two-component polyurethane coatings from bleached liquefied wood. Bioresources 2015, 20, 3347–3363. [Google Scholar] [CrossRef]
- Jin, Y.; Ruan, X.; Cheng, X.; Lu, Q. Liquefaction of lignin by polyethyleneglycol and glycerol. Biores. Technol. 2011, 102, 3581–3593. [Google Scholar] [CrossRef]
- Basso, M.C.; Giovando, S.; Pizzi, A.; Pasch, H.; Delmotte, L.; Celzard, A. Flexible-elastic copolymerized polyurethane-tannin foams. J. Appl. Polym. Sci. 2014, 131, 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Kim, Y.; Elsayed, I.; Taylor, M.; Eberhardt, T.L.; Hassam, B.; Shmulsky, R. Rigid polyurethane foam containing lignin oxyalkylated with ethlylene carbonate and polyethylene glycol. Ind. Crop. Prod. 2019, 141, 111797. [Google Scholar] [CrossRef]
- Gama, N.V.; Ferreira, A.; Timmons, A.B. Polyurethane foams: Past, Present and Future. Materials 2018, 11, 1841. [Google Scholar] [CrossRef]
- Izarra, I.; Borreguero, A.M.; Garrido, I.; Rodriguez, J.F.; Carmona, M. Comparison of flexible polyurethane foams properties from different polyether polyols. Polym. Test. 2021, 100, 107268. [Google Scholar] [CrossRef]
- Pan, X.; Saddler, J. Effect of replacing polyol by Organosolv and kraft lignin on the properties and structure of rigid polyurethane foam. Biotechnol. Biofuels 2013, 6, 12. [Google Scholar] [CrossRef]
- NF B52-001-1; Règles d’utilisation du bois la construction-Classement visuel pour l’emploi en structures des bois sciés français résineux et feuillus. ANFOR Editions: Paris, France, 2011.
- TAPPI T 211 om-93; Technical Association of Pulp and Paper Industry, Ash in wood, pulp, paper and paperboard: Combustion at 525 °C. TAPPI: Atlanta, GA, USA, 2002.
- ASTM C 494-11; Standard Test Methods for Testing Materials. Standard Specification for Chemical Admixtures for Concrete. ASTM: West Conshohocken, PA, USA, 2004.
- TAPPI T 207 cm-99; Technical Association of Pulp and Paper Industry, Water solubility of wood and pulp. TAPPI: Atlanta, GA, USA, 1999.
- Sung, G.; Kim, J.H. Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Compos. Sci. Technol. 2017, 146, 147–154. [Google Scholar] [CrossRef]
- Payne, M.E.; Grayson, S.M. Characterization of synthetic polymers via Matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. J. Visual. Exper. 2018, 136, e57174. [Google Scholar] [CrossRef]
- Mewoli, A.E.; Segovia, C.; Njom, A.E.; Ebanda, F.B.; Biwole, J.J.E.; Xinyi, C.; Ateba, A.; Girods, P.; Pizzi, A.; Brosse, N. Characterization of tannin extracted from Aning eria altissima bark and formulation of bioresins for the manufacture of Triumfetta cordifolia needle-punched nonowens fiberboards: Novel green composite panels for sustainability. Ind. Crops. Prod. 2023, 206, 117734. [Google Scholar] [CrossRef]
- Oertel, G.A.L. Polyurethane Handbook: Chemistry-Raw Materials-Processing-Application-Properties; Hanser/Gardner Publications: Cincinnati, OH, USA; Hanser Publishers: Munich, Germany, 1993. [Google Scholar]
- ASTM D 4274-99; Standard Test Methods for Testing Polyurethane Raw Materials Determination of hydroxyl Numbers of Polyols. ASTM: West Conshohocken, PA, USA, 1999.
- ISO 4590; Plastiques alvéoles rigides-Détermination du pourcentage volumique de cellules ouvertes et des cellules fermées. ISO: Geneva, Switzerland, 2016.
- Segal, L.G.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystalinity of native cellulose using x-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- ASTM D 1621-16; Standard Test Method for Compressive Properties of Rigid Cellular Plastics. ASTM: West Conshohocken, PA, USA, 2023.
- ASTM D 3574-11; Standard Test Methods for Flexible Cellular Materials-Slab, Bonded and Molded Urethane Foams. ASTM: West Conshohocken, PA, USA, 2011.
- UNE-EN 1798:2008; Matériaux polymèes alvéonaires souples. Détermination de la résistance à la traction et de l’allongement à la rupture. AFNOR Editions: Paris, France, 2008.
- Aatikah, M.; Jawaid, M.; Singh, S.P.; Nasef, M.M.; Ariffin, H.; Fouad, H.; Abu-Jdayil, B. Isolation and characterization of lignin using natural deep eutectic solvents pretreated kenaf fiber biomass. Sci. Rep. 2024, 14, 8672. [Google Scholar] [CrossRef]
- Singh, S.K.; Matsagar, B.M.; Dhebe, P.L. Lignocellulosic biomass analysis: Acidic lignin recovery, characterization and depolymerisation. Biomass Convers. Biorefinery 2022, 14, 5239–5249. [Google Scholar] [CrossRef]
- Wu, T.; Li, X.; Ma, X.; Ye, J.; Shen, L.; Tan, W. Modification of lignin by hexamethylene diisocyanate to synthetize lignin-based polyurethane as an organic polymer for marine polyurethane anticorrosive coatings. Mater. Res. Express 2022, 9, 105302. [Google Scholar] [CrossRef]
- Luong, N.D.; Binh, N.T.T.; Duong, L.D.; Kim, D.O.; Kim, D.S.; Lee, S.H.; Kim, B.J.; Lee, Y.S.; Nam, J.D. An eco-friendly and efficient route of lignin extraction from black liquor and a copolyester synthesis. Polym. Bull. 2012, 68, 879–890. [Google Scholar] [CrossRef]
- Ruwoldt, J.; Tanase-Opedal, M.; Syverud, K. Ultraviolet spectroscopy of lignin revisited: Exploring solvents with low harmfulness, lignin purity, Hansen solubility parameter, and determination of phenolic hydroxyl groups. ACS Omega 2022, 7, 46371–46383. [Google Scholar] [CrossRef]
- Joshi, K.H.; Shinde, D.R.; Nikam, L.K.; Panmand, R.; Sethi, Y.A.; Kale, B.B.; Chaskar, M.G. Fragmentated lignin-assisted synthesis of a hierarchical ZnO nanostructure for ammonia gas sensing. RSC Adv. 2019, 9, 2484–2492. [Google Scholar] [CrossRef]
- Chen, L.; Wei, X.; Wang, H.; Yao, M.; Zhang, L.; Gellerstedt, G.G.; Lindstrom, M.E.; Ek, M.; Wang, S.; Min, D. A modified ionization difference UV-vis method for fast quantitative of guaiacyl-type phenolic hydroxyl groups in lignin. Int. J. Biol. Macromol. 2022, 201, 330–337. [Google Scholar] [CrossRef]
- Evstigneyev, E.I.; Kalugina, A.V.; Ivanov, A.Y.; Vasilyev, A.V. Contents of α-O-4 and β-O-4 bonds in native lignin and isolated lignin preparations. J. Wood Chem. Technol. 2017, 37, 294–306. [Google Scholar] [CrossRef]
- Jasiukaityte, E.; Kunaver, M.; Crestini, C. Lignin behavior during wood liquefaction-characterization by quantitative 31P, 13C NMR and size-exclusion chromatography. Catal. Today 2010, 156, 23–30. [Google Scholar] [CrossRef]
- Gondaliya, A.; Nejad, M. Lignin as a partial polyol replacement in polyurethane flexile foam. Molecules 2021, 26, 2302. [Google Scholar] [CrossRef] [PubMed]
- Dababi, I.; Gimello, O.; Elaloui, E.; Quignard, F.; Brosse, N. Organosolv lignin-based wood adhesive. Influence of the lignin extraction conditions on the adhesive performance. Polymers 2016, 8, 340. [Google Scholar] [CrossRef]
- Hamada, Y.; Yoshida, K.; Asai, R.; Hayase, S.; Nokami, T.; Izumi, S.; Itoh, T. A possible means of realizing a sacrifice-free three component separation of lignocellulosic from wood biomass using an amino acid ionic liquid. Green Chem. 2013, 15, 1863–1868. [Google Scholar] [CrossRef]
- Shaveta, K.H.; Singh, P. Microwave assisted degradation of lignin of monolignols. Pharma. Anal. Acta. 2014, 5, 1000308. [Google Scholar] [CrossRef]
- D’Souza, J.; Yan, N. Producing bark-based polyols through liquefaction: Effect of liquefaction temperature. ACS Sustain. Chem. Eng. 2013, 1, 534–540. [Google Scholar] [CrossRef]
- Xue, Y.; Xu, Q.; Jiang, G.; Teng, D. Preparation and properties of lignin-based polyurethane materials. Arab. J. Chem. 2024, 17, 105471. [Google Scholar] [CrossRef]
- Zhang, X.; Jeremic, D.; Kim, Y.; Street, J.; Shmulsky, R. Effects of surface functionalization of lignin on synthesis and properties of rigid bio-based polyurethanes foams. Polymers 2018, 10, 706. [Google Scholar] [CrossRef]
- Ghandi, T.S.; Patel, M.R.; Dholakiya, B.Z. Synthesis of cashew mannich polyol via a three step continuous route and development of PU rigid foams with mechanical, thermal and fire studies. J. Polym. Eng. 2015, 35, 533–544. [Google Scholar] [CrossRef]
- Kuranska, M.; Polaczek, K.; Auguscik-Krolikowska, M.; Prociak, A.; Ryszkowska, J. Open-cell polyurethane based on modified cooking oil. Polimery 2020, 65, 216–225. [Google Scholar] [CrossRef]
- Zuo, Z.; Liu, B.; Essawy, H.; Huang, Z.; Tang, J.; Miao, Z.; Chen, F.; Zhang, J. Preparation and characterization of biomass tannin-based flexible insoles for athletes. Polymers 2023, 15, 3480. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Chen, K.; Xu, J.; Li, J.; Mo, L. Bio-based polyurethane foam preparation employing lignin from corn stalk enzymatic hydrolysis residues. RSC Adv. 2018, 8, 15754–15761. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, S.H. Shape memory polyurethanes crosslinked with castor oil-based multifunctional polyols. Sci. Rep. 2023, 13, 14983. [Google Scholar] [CrossRef] [PubMed]
- Kairyte, A.; Kirpluks, M.; Ivdre, A.; Cabulis, U.; Vejelis, S.; Balciunas, G. Paper waste sludge enhanced eco-efficient polyurethane foam composites: Physical-mechanical properties and microstructure. Polym. Compos. 2018, 39, 1852–1860. [Google Scholar] [CrossRef]
Component | Part by Mass (%) |
---|---|
Bio-polyol | 100 |
TDI prepolymer | 2225 |
Surfactant | 2.5 |
Blowing agent | 1.5 |
Catalyst | 2 |
Ash Content (%) | Carbohydrate (%) | -OH Phenolic (%) | Mw (g/mol) | Mn (g/mol) | Mw/Mn | -OH Content (mmol/g) |
---|---|---|---|---|---|---|
1.12 | 1.83 | 3.64 | 2056 | 885 | 2.32 | 4.885 |
Bio-Polyols | Cooking Time (min) | Liquefaction Yield (%) | Viscosity (cP) | Hydroxyl Number (mmol/g) |
---|---|---|---|---|
LBP1 | 90 | 94.27 | 11.3 | 6.973 |
LBP2 | 120 | 96.38 | 12.9 | 7.446 |
LBP3 | 150 | 98.51 | 13.6 | 7.637 |
Samples | Lignin | LBP1 | LBP2 | LBP3 |
---|---|---|---|---|
Mw (g/mol) | 2056 | 687 | 894 | 1106 |
Mn (g/mol) | 885 | 453 | 471 | 490 |
Mw/Mn (Đ) | 2.32 | 1.52 | 1.90 | 2.25 |
Sample | Cell Diameter (μm) | Density (kg/m3) |
---|---|---|
LBPUF1 | 605 ± 6 | 39 ± 3 |
LBPUF2 | 546 ± 2 | 24 ± 2 |
LBPUF3 | 482 ± 5 | 18 ± 3 |
Sample | T0 (°C) | Tmax (°C) | T50% (°C) | Char Residue (%) |
---|---|---|---|---|
lignin | 184 | 216 | 244 | 31.7 |
LBPUF1 | 347 | 389 | 398 | 35.6 |
LBPUF2 | 345 | 394 | 405 | 36.1 |
LBPUF3 | 345 | 395 | 407 | 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nnanga Guissele, H.J.; Yona, A.M.C.; Mewoli, A.E.; Chimeni-Yomeni, D.; Tsague, L.F.; Abo, T.M.; Saha-Tchinda, J.-B.; Ndikontar, M.K.; Pizzi, A. Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production. Polymers 2025, 17, 2156. https://doi.org/10.3390/polym17152156
Nnanga Guissele HJ, Yona AMC, Mewoli AE, Chimeni-Yomeni D, Tsague LF, Abo TM, Saha-Tchinda J-B, Ndikontar MK, Pizzi A. Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production. Polymers. 2025; 17(15):2156. https://doi.org/10.3390/polym17152156
Chicago/Turabian StyleNnanga Guissele, Hubert Justin, Arnaud Maxime Cheumani Yona, Armel Edwige Mewoli, Désiré Chimeni-Yomeni, Lucioni Fabien Tsague, Tatiane Marina Abo, Jean-Bosco Saha-Tchinda, Maurice Kor Ndikontar, and Antonio Pizzi. 2025. "Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production" Polymers 17, no. 15: 2156. https://doi.org/10.3390/polym17152156
APA StyleNnanga Guissele, H. J., Yona, A. M. C., Mewoli, A. E., Chimeni-Yomeni, D., Tsague, L. F., Abo, T. M., Saha-Tchinda, J.-B., Ndikontar, M. K., & Pizzi, A. (2025). Isolation and Characterization of Lignin from Sapele (Entandrophragma cylindricum): Application in Flexible Polyurethane Foam Production. Polymers, 17(15), 2156. https://doi.org/10.3390/polym17152156