Free Vibration Behavior of CFRP Composite Sandwich Open Circular Cylindrical Shells with 3D Reentrant Negative Poisson’s Ratio Core
Abstract
1. Introduction
2. Theoretical Formulations
2.1. Assumption and Modeling
2.2. Equivalent Modulus of Re-Entrant Truss Core
2.3. Kinematic and Stress–Strain Relations
2.4. Energy Expressions
2.5. Admissible Displacement Functions and Solution
3. Experiments
3.1. Specimen Design and Composite Structure Fabrication
3.2. Modal Hammer-Impact Testing
4. Finite Element Analysis Method
5. Results and Discussion
5.1. Free Vibration Characterization
5.2. Influence of the Fiber Ply Angle
5.3. Influence of Geometric Parameters
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Xue, X.; Lin, C.; Wu, F.; Li, Z.; Liao, J. Lattice structures with negative Poisson’s ratio: A review. Mater. Today Commun. 2023, 34, 105132. [Google Scholar] [CrossRef]
- Lakes, R. Advances in negative Poisson’s ratio materials. Adv. Mater. 1993, 5, 293–296. [Google Scholar] [CrossRef]
- Garg, A.; Sharma, A.; Zheng, W.; Li, L. A review on artificial intelligence-enabled mechanical analysis of 3D printed and FEM-modelled auxetic metamaterials. Virtual Phys. Prototyp. 2024, 20, e2445712. [Google Scholar] [CrossRef]
- Dudek, K.K.; Martinez, J.A.I.; Ulliac, G.; Kadic, M. Micro-Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing. Adv. Mater. 2022, 34, e2110115. [Google Scholar] [CrossRef]
- Evans, K.; Nkansah, M. Molecular network design. Nature 1991, 353, 124. [Google Scholar] [CrossRef]
- Shukla, S.; Behera, B.K. Auxetic fibrous structures and their composites: A review. Compos. Struct. 2022, 290, 115530. [Google Scholar] [CrossRef]
- Nazir, A.; Gokcekaya, O.; Md Masum Billah, K.; Ertugrul, O.; Jiang, J.; Sun, J.; Hussain, S. Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater. Des. 2023, 226, 111661. [Google Scholar] [CrossRef]
- Gu, J.; Zhao, W.; Zeng, C.; Liu, L.; Leng, J.; Liu, Y. Construction of mechanical metamaterials and their extraordinary functions. Compos. Struct. 2025, 356, 118872. [Google Scholar] [CrossRef]
- Aghajani, S.; Wu, C.; Li, Q.; Fang, J. Additively manufactured composite lattices: A state-of-the-art review on fabrications, architectures, constituent materials, mechanical properties, and future directions. Thin-Walled Struct. 2024, 197, 111539. [Google Scholar] [CrossRef]
- Cao, H.; Zhong, Y.; Liu, X.; Shi, J. A VAM-based equivalent model for random vibration of composite sandwich plate with arrowhead-on cores. Compos. Struct. 2023, 313, 116946. [Google Scholar] [CrossRef]
- Yuan, H.; Zhong, Y.; Tang, Y.; Liu, R. Dynamic Characteristics of Composite Sandwich Panel with Triangular Chiral (Tri-Chi) Honeycomb under Random Vibration. Materials 2024, 17, 3973. [Google Scholar] [CrossRef]
- Heidari-Soureshjani, A.; Asadi, E.; Talebitooti, R.; Talebitooti, M. Non-alignment effects on the frequency behaviors of sandwich stepped cylindrical shells with auxetic 3D-ARCS core. Thin-Walled Struct. 2025, 212, 113162. [Google Scholar] [CrossRef]
- Nosrati, S.; Rahmani, O.; Hosseini, S.A. Free vibration analysis of butterfly-shaped auxetic doubly curved nano-shells with nonlocal strain gradient theory. Thin-Walled Struct. 2025, 214, 113380. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos. Part B Eng. 2020, 201, 108340. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Xiao, D.; Wu, W.; Fang, D. The Dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading. Int. J. Impact Eng. 2020, 137, 103442. [Google Scholar] [CrossRef]
- Lakes, R.S. Negative-Poisson’s-Ratio Materials: Auxetic Solids. Annu. Rev. Mater. Res. 2017, 47, 63–81. [Google Scholar] [CrossRef]
- Ren, X.; Das, R.; Tran, P.; Ngo, T.D.; Xie, Y.M. Auxetic metamaterials and structures: A review. Smart Mater. Struct. 2018, 27, 023001–023039. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Ding, Q.; Han, H.; Xu, J.; Yan, H.; Sun, Y.; Yan, Q.; Gao, H. Low-frequency property and vibration reduction design of chiral star-shaped compositive mechanical metamaterials. Mech. Adv. Mater. Struct. 2022, 30, 3749–3763. [Google Scholar] [CrossRef]
- Zeng, H.; Ge, C.; Gao, Q. Parametric analysis and optimization of tubes filled with double-arrowed negative Poisson’s ratio under transverse impact loadings. Mech. Adv. Mater. Struct. 2022, 30, 4607–4626. [Google Scholar] [CrossRef]
- Feng, N.; Wang, S.; Tie, Y.; Liu, W.; Zhao, Z.; Guo, J. Elastic deformability and zero Poisson’s ratio within a novel structure inspired by the gardenia from nature. Mech. Adv. Mater. Struct. 2022, 31, 1300–1312. [Google Scholar] [CrossRef]
- Francisco, M.B.; Pereira, J.L.J.; Oliver, G.A.; Roque da Silva, L.R.; Cunha, S.S.; Gomes, G.F. A review on the energy absorption response and structural applications of auxetic structures. Mech. Adv. Mater. Struct. 2021, 29, 5823–5842. [Google Scholar] [CrossRef]
- Qian, C.; Kaminer, I.; Chen, H. A guidance to intelligent metamaterials and metamaterials intelligence. Nat. Commun. 2025, 16, 1154. [Google Scholar] [CrossRef] [PubMed]
- Mohandesi, N.; Talebitooti, M.; Fadaee, M. Mathematical modeling of free vibration of star-shaped auxetic rectangular plate. Arch. Appl. Mech. 2024, 94, 3455–3467. [Google Scholar] [CrossRef]
- Fang, X.; Shen, H.-S.; Wang, H. Nonlinear vibration analysis of sandwich plates with inverse-designed 3D auxetic core by deep generative model. Thin-Walled Struct. 2025, 206, 112599. [Google Scholar] [CrossRef]
- Namazinia, N.; Alibeigloo, A.; Karimiasl, M. Free vibration and static analysis of sandwich composite plate with auxetic core and GPLRC facing sheets in hygrothermal environment. Forces Mech. 2024, 15, 100264. [Google Scholar] [CrossRef]
- Amirabadi, H.; Mottaghi, A.; Sarafraz, M.; Afshari, H. Free vibrational behavior of a conical sandwich shell with a functionally graded auxetic honeycomb core. J. Vib. Control. 2024, 31, 1223–1240. [Google Scholar] [CrossRef]
- Pham, H.-A.; Tran, H.-Q.; Tran, M.-T.; Nguyen, V.-L.; Huong, Q.-T. Free vibration analysis and optimization of doubly-curved stiffened sandwich shells with functionally graded skins and auxetic honeycomb core layer. Thin-Walled Struct. 2022, 179, 109571. [Google Scholar] [CrossRef]
- Mahboubi Nasrekani, F.; Eipakchi, H. Geometrically Nonlinear Free Vibration Analysis of Axially Loaded Super-Light Auxetic Beams Reinforced by Functionally Graded Face Sheets. J. Vib. Eng. Technol. 2025, 13, 102. [Google Scholar] [CrossRef]
- Mahboubi Nasrekani, F.; Eipakchi, H. FG layers’ effect on nonlinear free vibrations of sandwich auxetic cylinders. Eur. J. Mech. A/Solids 2025, 114, 105784. [Google Scholar] [CrossRef]
- Chu, T.-B.; Tran, H.-Q.; Nguyen, V.-L.; Hoang, T.-P. Free Vibration Analysis of Functionally Graded Sandwich Circular Cylindrical Shells with Auxetic Honeycomb Core Layer and Partially Filled with Liquid. Iran. J. Sci. Technol. Trans. Mech. Eng. 2023, 48, 1301–1320. [Google Scholar] [CrossRef]
- Ghazwani, M.H.; Alnujaie, A.; Van Vinh, P. A general viscoelastic foundation model for vibration analysis of functionally graded sandwich plate with auxetic core. Def. Technol. 2025, 46, 40–58. [Google Scholar] [CrossRef]
- Heidari-Soureshjani, A.; Kalantari, A.; Hesari, A.E.; Talebitooti, R.; Talebitooti, M. Cutout effects on the vibration of sandwich auxetic cylindrical shells with an experimental validation. J. Sound Vib. 2024, 592, 118624. [Google Scholar] [CrossRef]
- Li, C.; Zhu, J.; Guo, J.; He, Q. Vibration and acoustic characteristics of novel auxetic honeycomb sandwich panels with polyurea-metal laminate face sheets. J. Sandw. Struct. Mater. 2025, 27, 1040–1062. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Jiang, W.; Ren, X.; Wang, S.L.; Zhang, X.G.; Zhang, X.Y.; Luo, C.; Xie, Y.M.; Scarpa, F.; Alderson, A.; Evans, K.E. Manufacturing, characteristics and applications of auxetic foams: A state-of-the-art review. Compos. Part B Eng. 2022, 235, 109733. [Google Scholar] [CrossRef]
- Saxena, K.K.; Das, R.; Calius, E.P. Three Decades of Auxetics Research-Materials with Negative Poisson’s Ratio: A Review. Adv. Eng. Mater. 2016, 18, 1847–1870. [Google Scholar] [CrossRef]
- Scarpa, F.; Tomlinson, G. Theoretical Characteristics of the Vibration of Sandwich Plates with in-Plane Negative Poisson’s Ratio Values. J. Sound Vib. 2000, 230, 45–67. [Google Scholar] [CrossRef]
- Scarpa, F.L.; Remillat, C.; Landi, F.P.; Tomlinson, G.R. Damping modelization of auxetic foams. In Proceedings of the SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, USA, 6–9 March 2000; pp. 336–343. [Google Scholar]
- Boldrin, L.; Hummel, S.; Scarpa, F.; Di Maio, D.; Lira, C.; Ruzzene, M.; Remillat, C.D.L.; Lim, T.C.; Rajasekaran, R.; Patsias, S. Dynamic behaviour of auxetic gradient composite hexagonal honeycombs. Compos. Struct. 2016, 149, 114–124. [Google Scholar] [CrossRef]
- Ma, Y.; Scarpa, F.; Zhang, D.; Zhu, B.; Chen, L.; Hong, J. A nonlinear auxetic structural vibration damper with metal rubber particles. Smart Mater. Struct. 2013, 22, 084012–084020. [Google Scholar] [CrossRef]
- Abasi, M.; Arshadi, K.; Rafiei, M.; Afshari, H. The aeroelastic stability characteristics of a ring-stiffened conical three-layered sandwich shell with an FG auxetic honeycomb core utilizing zig-zag shell theory. Aerosp. Sci. Technol. 2024, 155, 109551. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Pham, C.H. Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs. J. Sandw. Struct. Mater. 2016, 20, 692–717. [Google Scholar] [CrossRef]
- Dinh Dat, N.; Quoc Quan, T.; Dinh Duc, N. Vibration analysis of auxetic laminated plate with magneto-electro-elastic face sheets subjected to blast loading. Compos. Struct. 2022, 280, 114925. [Google Scholar] [CrossRef]
- Duc, N.D.; Seung-Eock, K.; Cong, P.H.; Anh, N.T.; Khoa, N.D. Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads. Int. J. Mech. Sci. 2017, 133, 504–512. [Google Scholar] [CrossRef]
- Cong, P.H.; Khanh, N.D.; Khoa, N.D.; Duc, N.D. New approach to investigate nonlinear dynamic response of sandwich auxetic double curves shallow shells using TSDT. Compos. Struct. 2018, 185, 455–465. [Google Scholar] [CrossRef]
- Duc, N.D.; Seung-Eock, K.; Tuan, N.D.; Tran, P.; Khoa, N.D. New approach to study nonlinear dynamic response and vibration of sandwich composite cylindrical panels with auxetic honeycomb core layer. Aerosp. Sci. Technol. 2017, 70, 396–404. [Google Scholar] [CrossRef]
- Cong, P.H.; Long, P.T.; Van Nhat, N.; Duc, N.D. Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson’s ratio in auxetic honeycombs core layer. Int. J. Mech. Sci. 2019, 152, 443–453. [Google Scholar] [CrossRef]
- Dai, Q.; Liu, Y.; Qin, Z.; Chu, F. Nonlinear Damping and Forced Response of Laminated Composite Cylindrical Shells with Inherent Material Damping. Int. J. Appl. Mech. 2021, 13, 2150060. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Chu, F. Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear Dyn. 2021, 104, 1007–1021. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, C.; Wang, H.; Han, Q.; Shen, J. Dynamic characteristics of composite damping sandwich open conical shell. Mech. Adv. Mater. Struct. 2022, 31, 1152–1166. [Google Scholar] [CrossRef]
- Ren, S.; Zhao, G.; Zhang, S. A layerwise finite element formulation for vibration and damping analysis of sandwich plate with moderately thick viscoelastic core. Mech. Adv. Mater. Struct. 2019, 27, 1201–1212. [Google Scholar] [CrossRef]
- Yolcu, D.A.; Öztürk, B.; Sarı, G.; Baba, B.O. Free vibration response of sandwich composites with auxetic chiral core. Eur. J. Mech. A/Solids 2025, 113, 105700. [Google Scholar] [CrossRef]
- Gunaydin, K.; Gülcan, O.; Tamer, A. Application of Homogenization Method in Free Vibration of Multi-Material Auxetic Metamaterials. Vibration 2025, 8, 2. [Google Scholar] [CrossRef]
- Mortazavi, N.; Ziaei-Rad, S. Energy harvesting from vibrations of a beam under mass passage by arc-shaped auxetic cantilever beams. Eur. J. Mech. A/Solids 2025, 109, 105432. [Google Scholar] [CrossRef]
- Yavari, F.; Alibeigloo, A. Free vibrations and buckling analyses of sandwich cylindrical shells with auxetic core and shape memory alloy wires reinforced face sheets. Compos. Struct. 2025, 360, 118994. [Google Scholar] [CrossRef]
- Hunt, C.J.; Morabito, F.; Grace, C.; Zhao, Y.; Woods, B.K.S. A review of composite lattice structures. Compos. Struct. 2022, 284, 115120. [Google Scholar] [CrossRef]
- Pan, C.; Han, Y.; Lu, J. Design and Optimization of Lattice Structures: A Review. Appl. Sci. 2020, 10, 6374. [Google Scholar] [CrossRef]
- Cheng, P.; Peng, Y.; Li, S.; Rao, Y.; Le Duigou, A.; Wang, K.; Ahzi, S. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook. Compos. Part B Eng. 2023, 250, 110450. [Google Scholar] [CrossRef]
- Lakes, R.S. High damping composite materials: Effect of structural hierarchy. J. Compos. Mater. 2002, 36, 287–297. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhang, H.; Qin, Z.; Wang, Z.; Deng, Y.; Xiong, J.; Wang, X.; Kyu Ha, S. Amplitude-dependent damping characteristics of all-composite sandwich plates with a foam-filled hexagon honeycomb core. Mech. Syst. Signal Process. 2023, 186, 109845. [Google Scholar] [CrossRef]
- Reddy, J.N. Theory and Analysis of Elastic Plates; Taylor and Francis: Abingdon, UK, 1999. [Google Scholar]
Property | Symbol | Unidirectional | Plain-Weave |
---|---|---|---|
Young’s modulus | 122 GPa | 48.4 GPa | |
8.5 GPa | 48.4 GPa | ||
Poisson’s ratio | 0.28 | 0.3 | |
0.28 | 0.3 | ||
Shear modulus | 4 GPa | 4 GPa | |
3 GPa | 3 GPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.-C.; Chen, Y.-L. Free Vibration Behavior of CFRP Composite Sandwich Open Circular Cylindrical Shells with 3D Reentrant Negative Poisson’s Ratio Core. Polymers 2025, 17, 2276. https://doi.org/10.3390/polym17172276
Liu S-C, Chen Y-L. Free Vibration Behavior of CFRP Composite Sandwich Open Circular Cylindrical Shells with 3D Reentrant Negative Poisson’s Ratio Core. Polymers. 2025; 17(17):2276. https://doi.org/10.3390/polym17172276
Chicago/Turabian StyleLiu, Shi-Chen, and Yun-Long Chen. 2025. "Free Vibration Behavior of CFRP Composite Sandwich Open Circular Cylindrical Shells with 3D Reentrant Negative Poisson’s Ratio Core" Polymers 17, no. 17: 2276. https://doi.org/10.3390/polym17172276
APA StyleLiu, S.-C., & Chen, Y.-L. (2025). Free Vibration Behavior of CFRP Composite Sandwich Open Circular Cylindrical Shells with 3D Reentrant Negative Poisson’s Ratio Core. Polymers, 17(17), 2276. https://doi.org/10.3390/polym17172276