Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential
Abstract
1. Introduction
2. Plant Fiber Integration in Polymer Composites: Applications, Matrix Compatibility, and Mechanical Performance
2.1. Applications of Plant Fibers in Polymer Composites and Waste-Derived Fiber Sources
2.2. Matrix Selection and Compatibility in Biocomposites
2.3. Mechanical Performance of Plant-Fiber-Reinforced Composites
3. Advanced Processing Techniques for Plant-Fiber-Reinforced Composites
3.1. Hand Lay-Up Process in the Production of Fiber-Reinforced Composites
3.2. Vacuum Infusion Techniques in the Production of Plant-Fiber-Reinforced Composites
3.2.1. Key Techniques Include
- VARTM (vacuum-assisted resin transfer molding): Resin is drawn into the fiber preform under vacuum. This method is scalable, reduces air voids, and offers high-quality laminate consolidation.
- RIFT (resin infusion under flexible tooling): A general category of resin infusion systems. Type I describes in-plane resin flow (parallel to fibers), and Type II refers to through-thickness flow. Additional types include resin film infusion (Type III) and semipreg infusion (Type XIV).
- SCRIMP (Seemann composite resin infusion molding process): A modified VARTM system that improves resin flow in woven or stitched fabrics by integrating flow-enhancing layers.
3.2.2. The Typical Vacuum Infusion Process Consists of the Following Steps
- Preparation of the fiber reinforcement: cleaning and orienting the natural fibers to optimize flow paths.
- Resin infusion: drawing resin into the preform under vacuum, enabling uniform saturation of the fiber bed.
- Curing: allowing the impregnated composite to harden, typically at room or elevated temperature.
- Demolding and post-curing: Removing the composite from the mold and, if required, further conditioning.
3.3. Injection Molding for the Production of Fiber-Reinforced Biocomposites
3.4. Pultrusion Process for Fiber-Reinforced Composite Production
3.4.1. Characteristics of the Pultrusion Process:
- Continuous Manufacturing:Pultrusion is a continuous process, making it highly suitable for the mass production of composite materials, particularly those with long dimensions, such as pipes and beams, which require consistent fiber reinforcement throughout the structure [78].
- Uniform Fiber Distribution:The continuous fibers are uniformly distributed within the composite matrix, ensuring that the material exhibits optimal mechanical properties, particularly in the longitudinal direction. This makes pultruded biocomposites particularly advantageous in load-bearing applications, where high stiffness-to-weight ratios are required [79].
- High-Performance Composites:The pultrusion process results in composites with excellent dimensional accuracy, high resistance to environmental degradation, and superior mechanical properties. Additionally, the closed-die design minimizes emissions and improves worker safety, making the process suitable for environmentally conscious production of sustainable materials.
3.4.2. Process Parameters:
- Temperature Control:The resin within the heated die is subjected to temperatures ranging between 150 °C and 200 °C, depending on the resin type and the specific end-use requirements. These elevated temperatures must be precisely controlled, especially when using thermally sensitive natural fibers, to avoid degradation and preserve fiber integrity [80].
- Pressure Application:The pultrusion process operates under controlled pressure conditions, typically ranging from 2 to 10 MPa. This ensures effective mold filling and optimal consolidation of the resin and fiber matrix [81].
- Pulling Speed:
3.5. Compression Molding of Plant-Fiber-Reinforced Polymer Composites
3.6. Thermal Stability of Reinforcing Fibers
4. Structure of Cellulose in Plant-Fiber-Reinforced Composites
- Comparison of Crystalline and Amorphous Domains
- Challenges with Hydrophilicity
- Impact on the Fiber–Matrix Interface
4.1. Chemical Modifications of Plant Fibers
4.2. Chemical Interactions Between Plant Fibers and Polymer Matrices
- Alkali Treatment of Plant Fibers
- Reaction:Cell–OH + NaOH → Cell–O−Na+ + H2O + extracted impurities
4.2.1. Acetylation of Plant Fibers
- Reaction:Cell–OH + (CH3CO)2O → Cell–O–COCH3 + CH3COOH
4.2.2. Peroxide Treatment
- Initiation Mechanism:RO–OR → 2RO•; RO• + CH– (Polymer) → crosslinked structure
4.2.3. Bleaching with Sodium Chlorite
- Reaction:Lignin + ClO2 → oxidized lignin fragments + water-soluble by-products
4.3. Mechanical Properties of Plant-Fiber-Reinforced Composites
5. Factors Influencing the Performance and Longevity of Plant-Fiber-Reinforced Biocomposites
- Alkali treatment disrupts hydrogen bonding in the cellulose microfibrils and removes hemicellulose and lignin, exposing reactive –OH groups.
- Acetylation substitutes hydroxyl groups with acetyl moieties, which limits hydrogen bonding with water.
- Silane coupling agents form covalent bridges between fiber and matrix phases, drastically improving interfacial adhesion.
6. Sustainable Applications of Plant-Fiber-Reinforced Composites: Advances and Prospects
6.1. Thermoplastic Processing
6.2. Thermoset Processing
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourmaud, A.; Beaugrand, J.; Shah, D.U.; Placet, V.; Baley, C. Towards the design of high-performance plant fibre composites. Prog. Mater. Sci. 2018, 97, 347–408. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Goddard, J.J.; Kallis, G.; Norgaard, R.B. Keeping multiple antennae up: Coevolutionary foundations for methodological pluralism. Ecol. Econ. 2019, 165, 106420. [Google Scholar] [CrossRef]
- Hamid, N.H.; Hisan, W.S.I.W.B.; Abdullah, U.H.; Azim, A.A.A.; Tahir, P.M. Mechanical properties and moisture absorption of epoxy composites mixed with amorphous and crystalline silica from rice husk. BioResources 2019, 14, 7363–7374. [Google Scholar] [CrossRef]
- Ljungberg, L.Y. Materials selection and design for development of sustainable products. Mater. Des. 2007, 28, 466–479. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, X.; Bao, J.; Xie, J.; Tang, X.; Che, J.; Ma, Y.; Tong, J. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydr. Polym. 2019, 218, 179–187. [Google Scholar] [CrossRef]
- Mahmud, S.; Pervez, M.N.; Hasan, K.M.F.; Abu, T.M.; Liu, H.-H. In situ synthesis of green AgNPs on ramie fabric with functional and catalytic properties. Emerg. Mater. Res. 2019, 10, 12–20. [Google Scholar] [CrossRef]
- Mehmandost, N.; Soriano, M.L.; Lucena, R.; Goudarzi, N.; Chamjangali, M.A.; Cardenas, S. Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation. J. Environ. Eng. 2019, 7, 103424. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y.; Ansell, M.P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 2002, 84, 2222–2234. [Google Scholar] [CrossRef]
- Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.R.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Chen, M.; Lu, L.; Wang, S.; Zhao, P.; Zhang, W.; Zhang, S. Cyclic wetting and drying. Constr. Build. Mater. 2017, 143, 280–288. [Google Scholar] [CrossRef]
- Chang, I.; Im, J.; Prasidhi, A.K.; Cho, G.C. Effects of Xanthan gum biopolymer on soil strengthening. Constr. Build. Mater. 2015, 74, 65–72. [Google Scholar] [CrossRef]
- Rashid, A.S.A.; Tabatabaei, S.; Horpibulsuk, S.; Yunus, N.Z.M.; Hassan, W.H.W. Shear strength improvement of lateritic soil stabilized by biopolymer-based stabilizer. Geotech. Geol. Eng. 2019, 37, 5533–5541. [Google Scholar] [CrossRef]
- Cheng, Z.; Geng, X. Laboratory investigation for engineering properties of sodium alginate treated clay. Struct. Eng. Mech. 2022, 84, 465–474. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical greenness metric for sample preparation. Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Suarato, G.; Bertorelli, R.; Athanassiou, A. Borrowing from Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Front. Bioeng. Biotechnol. 2018, 6, 137. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Xiang, Q.; Meng, J.; Kou, C.; Ren, Q.; Lu, Y. Retinal image synthesis from multiple-landmarks input with generative adversarial networks. BioMed 2019, 18, 62. [Google Scholar] [CrossRef]
- Chen, F.M.; Liu, X. Recent advances in the development of tissue engineering scaffolds. Prog. Polym. Sci. 2016, 53, 86–91. [Google Scholar] [CrossRef]
- Montini-Ballarin, F.; Calvo, D.; Caracciolo, P.C.; Rojo, F.; Frontini, P.M. Development of advanced composite materials for biomedical applications. J. Biomed. Mater. Res. 2021, 109, 1234–1245. [Google Scholar] [CrossRef]
- Lawson, R.M.; Ogden, R.G.; Bergin, R. Application of modular construction in high-rise buildings. J. Archit. Eng. 2012, 18, 148–154. [Google Scholar] [CrossRef]
- Lawson, R.M.; Ogden, R.G. ‘Hybrid’ light steel panel and modular systems. Thin-Walled Struct. 2008, 46, 720–730. [Google Scholar] [CrossRef]
- Hough, M.J.; Lawson, R.M. Design and construction of high-rise modular buildings based on recent projects. Proc. Inst. Civ. Eng.—Civ. Eng. 2019, 172, 37–44. [Google Scholar] [CrossRef]
- Almeida, J.H.S.; Souza, S.D.; Botelho, E.C.; Amico, S.C. Carbon Fiber-Reinforced Epoxy Filament-Wound Composite Laminates Exposed to Hygrothermal Conditioning. J. Mater. Sci. 2016, 51, 4697–4708. [Google Scholar] [CrossRef]
- Biermann, D.; Feldhoff, M. Abrasive Points for Drill Grinding of Carbon Fibre Reinforced Thermoset. CIRP Ann. 2012, 61, 299–302. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, S. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- .Nishino, T.; Hirao, K.; Kotera, M.; Nakamae, K.; Inagaki, H. Kenaf reinforced biodegradable composite. Compos. Sci. Technol. 2003, 63, 1281–1286. [Google Scholar] [CrossRef]
- Radzuan, N.A.M.; Tholibon, D.; Sulong, A.B.; Muhamad, N.; Haron, C.H.C. New processing technique for biodegradable kenaf composites: A simple alternative to commercial automotive parts. Compos. Part B Eng. 2020, 184, 107644. [Google Scholar] [CrossRef]
- Hasan, K.M.F., Péter György; Gábor, M.; Tibor László, A. Thermo-mechanical characteristics of flax woven fabric reinforced PLA and PP biocomposites. Green Mater. 2020, 8, 231–242. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; György, H.P.; Tibor, A. Thermo-mechanical behavior of MDI bonded flax/glass woven fabric reinforced laminated composites. ACS Omega 2020, 5, 7210–7218. [Google Scholar] [CrossRef]
- Bledzki, A.; Gassan, J. Composites reinforced with cellulose-based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Naseem, A.; Tabasum, S.; Zia, K.M.; Zuber, M.; Ali, M.; Noreen, A. Lignin-derivatives based polymers, blends and composites: A review. Int. J. Biol. Macromol. 2016, 93, 296–313. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R.; Zainudin, E.S. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr. Polym. 2018, 202, 186–202. [Google Scholar] [CrossRef]
- Maslinda, A.B.; Abdul Majid, M.S.; Ridzuan, M.J.M.; Afendi, M.; Gibson, A.G. Effect of water absorption on the mechanical properties of hybrid interwoven cellulosic-cellulosic fibre reinforced epoxy composites. Compos. Struct. 2017, 167, 227–237. [Google Scholar] [CrossRef]
- Subramanian, S.G.; Rajkumar, R.; Ramkumar, T. Characterization of natural cellulosic fiber from cereus hildmannianus. J. Nat. Fibers 2019, 16, 220–231. [Google Scholar] [CrossRef]
- Akil, H.M.; Omar, M.F.; Mazuki, A.A.M.; Safiee, S.; Ishak, Z.A.M.; Abu Bakar, A. Kenaf fiber reinforced composites: A review. Mater. Des. 2011, 32, 4107–4121. [Google Scholar] [CrossRef]
- Adekunle, K.; Åkesson, D.; Skrifvars, M. Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural-fiber reinforcement. J. Appl. Polym. Sci. 2010, 116, 1759–1765. [Google Scholar] [CrossRef]
- Van de Velde, K.; Kiekens, P. Thermoplastic pultrusion of natural fibre reinforced composites. Compos. Struct. 2001, 54, 355–360. [Google Scholar] [CrossRef]
- Balla, V.K.; Kate, K.H.; Satyavolu, J.; Singh, P.; Tadimeti, J.G.D. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Compos. Part B Eng. 2019, 174, 106956. [Google Scholar] [CrossRef]
- Hindersmann, A. Confusion about infusion: An overview of infusion processes. Compos. Part A Appl. Sci. Manuf. 2019, 126, 105583. [Google Scholar] [CrossRef]
- Dewan, M.W.; Hossain, M.K.; Hosur, M.; Jeelani, S. Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. J. Appl. Polym. Sci. 2013, 128, 4110–4123. [Google Scholar] [CrossRef]
- Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Dufresne, A. Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Compos. Sci. Technol. 2007, 67, 1627–1635. [Google Scholar] [CrossRef]
- Shak, K.P.Y.; Pang, Y.L.; Mah, S.K. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein. J. Nanotechnol. 2018, 9, 2479–2498. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Kenned, J.J.; Sankaranarayanasamy, K.; Binoj, J.S.; Chelliah, S.K. Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos. Sci. Technol. 2020, 185, 107890. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Chakraborty, S.; Venkatesan, K.J. A Review on Natural Fiber Composites. Available online: https://www.fibre2fashion.com/industry-article/4951/a-review-on-natural-fiber-composites. (accessed on 1 December 2020).
- Casati, R.; Vedani, M. Metal Matrix Composites Reinforced by Nano-Particles—A Review. Metals 2014, 4, 65–83. [Google Scholar] [CrossRef]
- Chen, J.; An, Q.; Ming, W.; Chen, M. Investigation on Machined Surface Quality in Ultrasonic-Assisted Grinding of Cf/SiC Composites Based on Fracture Mechanism of Carbon Fibers. Int. J. Adv. Manuf. Technol. 2020, 109, 1583–1599. [Google Scholar] [CrossRef]
- Suzuki, D.; Takida, D.; Kawano, Y.; Minamide, H.; Terasaki, N. Carbon nanotube-based, serially connected terahertz sensor with enhanced thermal and optical efficiencies. Sci. Technol. Adv. Mater. 2022, 23, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Lau, K.; Hung, P.; Zhu, M.-H.; Hui, D. Properties of natural fibre composites for structural engineering applications. Compos. Part B Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Muñoz, E.; García-Manrique, J.A. Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int. J. Polym. Sci. 2015, 390275. [Google Scholar] [CrossRef]
- Doan, T.-T.-L.; Brodowsky, H.; Mäder, E. Jute fibre/polypropylene composites II. Thermal, hydrothermal, and dynamic mechanical behaviour. Compos. Sci. Technol. 2007, 67, 2707–2714. [Google Scholar] [CrossRef]
- Saidane, E.H.; Scida, D.; Assarar, M.; Sabhi, H.; Ayad, R. Hybridisation effect on diffusion kinetics and tensile mechanical behaviour of epoxy-based flax–glass composites. Compos. Part A Appl. Sci. Manuf. 2016, 87, 153–160. [Google Scholar] [CrossRef]
- Debnath, B.; Duarah, P.; Haldar, D.; Purkait, M.K. Improving the properties of corn starch films for application as packaging material via reinforcement with microcrystalline cellulose synthesized from elephant grass. Food Packag. Shelf Life 2022, 34, 100937. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Yang, Q.; Song, X.; Qin, C.; Wang, S.; Li, K. Effects of residual lignin on composition, structure and properties of mechanically defibrillated cellulose fibrils and films. Cellulose 2019, 26, 1577–1593. [Google Scholar] [CrossRef]
- Xie, L.; Shen, M.; Wang, Z.; Xie, J. Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends Food Sci. Technol. 2021, 118, 539–557. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Y.; Zhao, L.; Li, Y.; Zhang, S.; Wang, X.; He, Y.; Gao, J. Toward Sustainable Certification and Labeling for Bio-Based Products: Challenges and Opportunities. Sustainability 2023, 15, 15758. [Google Scholar] [CrossRef]
- Tian, F.; Zhong, Z.; Pan, Y. Modeling of natural fiber reinforced composites under hygrothermal ageing. Compos. Struct. 2018, 200, 144–152. [Google Scholar] [CrossRef]
- Haske-Cornelius, O.; Bischof, S.; Beer, B.; Jimenez Bartolome, M.; Olakanmi, E.O.; Mokoba, M.; Guebitz, G.M.; Nyanhongo, G.S. Enzymatic synthesis of highly flexible lignin cross-linked succinyl-chitosan hydrogels reinforced with reed cellulose fibres. Eur. Polym. J. 2019, 120, 109201. [Google Scholar] [CrossRef]
- He, Y.; Wang, H.; Zhou, Y.; Wu, H.; Bai, Z.; Chen, C.; Chen, X.; Qin, S.; Guo, J.; Long, J.; et al. Functionalized soybean/tung oils for combined plasticization of jute fiber-reinforced polypropylene. Mater. Chem. Phys. 2020, 252, 123247. [Google Scholar] [CrossRef]
- Habibi, M.; Laperrière, L.; Mahi Hassanabadi, H. Replacing stitching and weaving in natural fiber reinforcement manufacturing, part 1: Mechanical behavior of unidirectional flax fiber composites. J. Nat. Fibers 2019, 16, 1064–1076. [Google Scholar] [CrossRef]
- Trindade, A.C.C.; Heravi, A.A.; Curosu, I.; Liebscher, M.; de Andrade Silva, F.; Mechtcherine, V. Tensile behavior of strain-hardening geopolymer composites (SHGC) under impact loading. Cem. Concr. Compos. 2020, 113, 103703. [Google Scholar] [CrossRef]
- He, L.; Wang, X.S.; Mahmud, S.; Jiang, Y.H.; Zhu, J.; Liu, X.Q. New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): Role of furan ring’s polarity. Eur. Polym. J. 2019, 118, 642–650. [Google Scholar] [CrossRef]
- Jayalatha, G.; Kutty, S.K. Effect of short nylon-6 fibres on natural rubber-toughened polystyrene. Mater. Des. 2013, 43, 291–298. [Google Scholar] [CrossRef]
- Bhuvaneshwaran, M.; Sampath, P.; Sagadevan, S. Influence of fiber length, fiber content and alkali treatment on mechanical properties of natural fiber-reinforced epoxy composites. Polimery 2019, 64, 115–123. [Google Scholar] [CrossRef]
- Chandekar, H.; Chaudhari, V.; Waigaonkar, S. A review of jute fiber reinforced polymer composites. Mater. Today 2020, 26, 2079–2082. [Google Scholar] [CrossRef]
- Xia, T.; Huang, H.; Wu, G.; Sun, E.; Jin, X.; Tang, W. The characteristic changes of rice straw fibers in anaerobic digestion and its effect on rice straw-reinforced composites. Ind. Crops Prod. 2018, 121, 73–79. [Google Scholar] [CrossRef]
- Hidalgo-Salazar, M.A.; Salinas, E. Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Colombian biocomposites. Compos. Part B Eng. 2019, 176, 107135. [Google Scholar] [CrossRef]
- Ferrández-García, M.T.; Ferrández-García, C.E.; Garcia-Ortuño, T.; Ferrández-García, A.; Ferrández-Villena, M. Experimental evaluation of a new giant reed (Arundo donax L.) composite using citric acid as a natural binder. Agronomy 2019, 9, 882. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Haque, M.M.; Hasan, M.; Islam, M.S.; Ali, M.E. Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Georgiopoulos, P.; Kontou, E.; Georgousis, G. Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Compos. Commun. 2018, 10, 6–10. [Google Scholar] [CrossRef]
- Jabbar, A.; Militký, J.; Wiener, J.; Kale, B.M.; Ali, U.; Rwawiire, S. Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior. Compos. Struct. 2017, 161, 340–349. [Google Scholar] [CrossRef]
- Dunne, R.; Desai, D.; Sadiku, R. Material characterization of blended sisal-kenaf composites with an ABS matrix. Appl. Acoust. 2017, 125, 184–193. [Google Scholar] [CrossRef]
- Mahmud, S.; Long, Y.; Abu Taher, M.; Hu, H.; Zhang, R.; Zhu, J. Fully Bio-based micro-cellulose incorporated poly(butylene 2,5-furandicarboxylate) transparent composites: Preparation and characterization. Fiber Polym. 2020, 21, 1550–1559. [Google Scholar] [CrossRef]
- Adekomaya, O. Adaption of green composite in automotive part replacements: Discussions on material modification and future patronage. Environ. Sci. Pollut. Res. 2020, 27, 8807–8813. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Song, G.; Ye, X.; Lu, Y.; Zhang, Q.; Chen, G.; Wang, C.; Cao, Y. Novel poly(vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application. Macromol. Biosci. 2020, 20, 1900385. [Google Scholar] [CrossRef]
- Arregi, B.; Garay, R.; Astudillo, J.; García-González, M.; Ramos, J.C. Experimental and numerical thermal performance assessment of a multi-layer building envelope component made of biocomposite materials. Energy Build. 2020, 214, 109846. [Google Scholar] [CrossRef]
- Sommerhuber, P.F.; Wenker, J.L.; Rüter, S.; Krause, A. Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option. Resour. Conserv. Recycl. 2017, 117, 235–248. [Google Scholar] [CrossRef]
- Ferri, M.; Vannini, M.; Ehrnell, M.; Eliasson, L.; Xanthakis, E.; Monari, S.; Sisti, L.; Marchese, P.; Celli, A.; Tassoni, A. From winery waste to bioactive compounds and new polymeric biocomposites: A contribution to the circular economy concept. J. Adv. Res. 2020, 24, 1–11. [Google Scholar] [CrossRef]
- Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renew. Sustain. Energy Rev. 2016, 54, 533–549. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I. Bio-polyethylene (bio-PE), bio-polypropylene (bio-PP) and bio-poly(ethylene terephthalate)(bio-PET): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef]
- Selvaraj, V.; Jayanthi, K.P.; Alagar, M. Livestock chicken feather fiber reinforced cardanol benzoxazine-epoxy composites for low dielectric and microbial corrosion resistant applications. Polym. Compos. 2019, 40, 4142–4153. [Google Scholar] [CrossRef]
- Yorseng, K.; Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S. green composites: Bioepoxy composites reinforced with bamboo/basalt/carbon fabrics. J. Clean. Prod. 2022, 363, 132314. [Google Scholar] [CrossRef]
- Mustapha, R.; Rahmat, A.R.; Abdul Majid, R.; Mustapha, S.N.H. Vegetable oil-based epoxy resins and their composites with bio-based hardener: A short review. Polym. Technol. Mater. 2019, 58, 1311–1326. [Google Scholar] [CrossRef]
- McGauran, T.; Dunne, N.; Smyth, B.M.; Cunningham, E. Feasibility of the use of poultry waste as polymer additives and implications for energy, cost and carbon. J. Clean. Prod. 2021, 291, 125948. [Google Scholar] [CrossRef]
- Azman, N.A.N.; Islam, M.R.; Parimalam, M.; Rashidi, N.M.; Mupit, M. Mechanical, structural, thermal and morphological properties of epoxy composites filled with chicken eggshell and inorganic CaCO3 particles. Polym. Bull. 2020, 77, 805–821. [Google Scholar] [CrossRef]
- Pakdel, M.; Moosavi-Nejad, Z.; Kermanshahi, R.K.; Hosano, H. Self-assembled uniform keratin nanoparticles as building blocks for nanofibrils and nanolayers derived from industrial feather waste. J. Clean. Prod. 2022, 335, 130331. [Google Scholar] [CrossRef]
- Baba, B.O.; Özmen, U. Preparation and mechanical characterization of chicken feather/PLA composites. Polym. Compos. 2017, 38, 837–845. [Google Scholar] [CrossRef]
- Manral, A.; Kumar Bajpai, P.; Ahmad, F.; Joshi, R. Processing of sustainable thermoplastic based biocomposites: A comprehensive review on performance enhancement. J. Clean. Prod. 2021, 316, 128068. [Google Scholar] [CrossRef]
- Ayub, Y.; Mehmood, A.; Ren, J.; Lee, C.K.M. Sustainable recycling of poultry litter to value-added products in developing countries of South Asia. J. Clean. Prod. 2022, 357, 132029. [Google Scholar] [CrossRef]
- Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S.; Jawaid, M.; Ozbakkaloglu, T. Bioepoxy based hybrid composites from nano-fillers of chicken feather and lignocellulose Ceiba Pentandra. Sci. Rep. 2022, 12, 397. [Google Scholar] [CrossRef]
- Sreenivasan, D.P.; Sujith, A.; Rajesh, C. Cure characteristics and mechanical properties of biocomposites of natural rubber reinforced with chicken feather fibre: Effect of fibre loading, alkali treatment, bonding and vulcanizing systems. Mater. Today Commun. 2019, 20, 100555. [Google Scholar] [CrossRef]
- Khaliq, A.D.; Chafidz, A.; Maddun, F.R.; Nuzuli, A.I.; Ilmi, B. The Use of Chicken Feather Wastes as Filler for Production of Composites Boards: Effect of Filler Loadings. AIP Conf. Proc. 2019, 2138, 050012. [Google Scholar] [CrossRef]
- Li, Z.; Reimer, C.; Picard, M.; Mohanty, A.K.; Misra, M. Characterization of chicken feather biocarbon for use in sustainable biocomposites. Front. Mater. 2020, 7, 3. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Seshadri, S.A.; Devnani, G.L.; Sanjay, M.R.; Siengchin, S.; Maran, J.P.; Al-Dhabi, N.A.; Karuppiah, P.; Mariadhas, V.A.; Sivarajasekar, N.; et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites—A comprehensive review. J. Clean. Prod. 2021, 310, 127483. [Google Scholar] [CrossRef]
- Khaw, Y.Y.; Chee, C.Y.; Gan, S.N.; Singh, R.; Ghazali, N.N.N.; Liu, N.S. Poly(lactic acid) composite films reinforced with microcrystalline cellulose and keratin from chicken feather fiber in 1-butyl-3-methylimidazolium chloride. J. Appl. Polym. Sci. 2019, 136, 47642. [Google Scholar] [CrossRef]
- Manral, A.R.S.; Gariya, N.; Bansal, G.; Singh, H.P.; Rawat, A. Computational stress analysis of chicken feather fibre (CFF) with epoxy-resin matrix composite material. Mater. Today Proc. 2019, 26, 2805–2810. [Google Scholar] [CrossRef]
- Indu, S.V.B.; Raj, V. Studies on the physical properties of chicken feathers. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 309–315. [Google Scholar] [CrossRef]
- Tesfaye, T.; Sithole, B.; Ramjugernath, D.; Chunilall, V. Valorisation of chicken feathers: Characterisation of physical properties and morphological structure. J. Clean. Prod. 2017, 149, 349–365. [Google Scholar] [CrossRef]
- Vinod, A.; Yashas Gowda, T.G.; Vijay, R.; Sanjay, M.R.; Gupta, M.K.; Jamil, M.; Kushvaha, V.; Siengchin, S. Novel Muntingia Calabura bark fiber reinforced greenepoxy composite: A sustainable and green material for cleaner production. J. Clean. Prod. 2021, 294, 126337. [Google Scholar] [CrossRef]
- Nurkhasanah, U.; Susanti, E.; Idris, A.M.; Suharti, S. Keratin biofilm from chicken feathers. In IOP Conference Series: Earth and Environmental Science; IOP Science: Bristol, UK, 2020; Volume 475, p. 12073. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, A.; Kumar, A.; Kee, C.G.; Kamyab, H.; Saufi, S.M. An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol. Environ. Policy 2018, 20, 2157–2167. [Google Scholar] [CrossRef]
- Aluigi, A.; Zoccola, M.; Vineis, C.; Tonin, C.; Ferrero, F.; Canetti, M. Study on the structure and properties of wool keratin regenerated from formic acid. Int. J. Biol. Macromol. 2007, 41, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, Y.; Li, J.; Li, K.; Li, J. Perm-inspired high-performance soy protein isolate and chicken feather keratin-based wood adhesive without external crosslinker. Macromol. Mater. Eng. 2021, 306, 2100498. [Google Scholar] [CrossRef]
- Mattiello, S.; Guzzini, A.; Del Giudice, A.; Santulli, C.; Antonini, M.; Lupidi, G.; Gunnella, R. Physico-chemical characterization of keratin from wool and chicken feathers extracted using refined chemical methods. Polymers 2023, 15, 181. [Google Scholar] [CrossRef]
- Ma, B.; Qiao, X.; Hou, X.; Yang, Y. Pure keratin membrane and fibers from chicken feather. Int. J. Biol. Macromol. 2016, 89, 614–621. [Google Scholar] [CrossRef]
- Tesfaye, T.; Sithole, B.; Ramjugernath, D.; Chunilall, V. Valorisation of chicken feathers: Characterisation of chemical properties. Waste Manag. 2017, 68, 626–635. [Google Scholar] [CrossRef]
- Qin, X.; Yang, C.; Guo, Y.; Liu, J.; Bitter, J.H.; Scott, E.L.; Zhang, C. Effect of ultrasound on keratin valorization from chicken feather waste: Process optimization and keratin characterization. Ultrason. Sonochem. 2023, 93, 106297. [Google Scholar] [CrossRef]
- Lyu, L.; Su, S.; Lu, J.; Zhou, X.; Gao, Y. Structural characteristics and sound absorption properties of different kinds of waste feather fibers. Text. Res. J. 2023, 93, 2138–2148. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Structure and properties of chicken feather barbs as natural protein fibers. J. Polym. Environ. 2007, 15, 81–87. [Google Scholar] [CrossRef]
- Manral, A.R.S.; Gariya, N.; Bansal, G.; Singh, H.P.; Negi, P. Structural and modal analysis of chicken feather fibre (CFF) with epoxy-resin matrix composite material. Mater. Today Proc. 2019, 26, 2558–2563. [Google Scholar] [CrossRef]
- Nayak, S.Y.; Heckadka, S.S.; Baby, A.; Samant, R.; Shenoy, K.R. Influence of bio-filler on the mechanical properties of glass/nylon fibre reinforced epoxy based hybrid composites. J. Comput. Methods Sci. Eng. 2021, 21, 631–639. [Google Scholar] [CrossRef]
- Vivek, S.; Kanthavel, K.; Torris, A.; Kavimani, V. Effect of bio-filler on hybrid sisal-Banana-Kenaf-flax based epoxy composites: A statistical correlation on flexural strength. J. Bionic Eng. 2020, 17, 1263–1271. [Google Scholar] [CrossRef]
- Dinesh, S.; Kumaran, P.; Mohanamurugan, S.; Vijay, R.; Singaravelu, D.L.; Vinod, A.; Sanjay, M.R.; Siengchin, S.; Bhat, K.S. Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J. Polym. Res. 2020, 27. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.R.; Siengchin, S. Fatigue and thermo-mechanical properties of chemically treated Morinda citrifolia fiber-reinforced bio-epoxy composite: A sustainable green material for cleaner production. J. Clean. Prod. 2021, 326, 129411. [Google Scholar] [CrossRef]
- Colom, X.; Cãnavate, J.; Carrillo-Navarrete, F. Towards circular economy by the valorization of different waste subproducts through their incorporation in composite materials: Ground tire rubber and chicken feathers. Polymers 2022, 14, 1091. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Ramesh, M.; Faria, J.L.; Silva, A.L.; Correia, J.R. Ballistic performance of composites made from natural fibers. Compos. Struct. 2016, 139, 1075–1083. [Google Scholar] [CrossRef]
- Vinod, A.; Sanjay, M.R.; Siengchin, S.; Rajendran, S.; Bhat, K.S. An assessment of renewable and sustainable biocomposites: Influence of biofibers on polymer matrix composites. J. Clean. Prod. 2019, 239, 118014. [Google Scholar] [CrossRef]
- Liu, W.; Lee, J.; Kim, K. Biodegradable composite materials: A review of the development and application. Compos. Sci. Technol. 2017, 151, 85–98. [Google Scholar] [CrossRef]
- Nayak, S.; Patra, B.R.; Samant, R.; Siengchin, S. Review on the development of natural fiber reinforced composites for sustainable applications. Compos. Part A Appl. Sci. Manuf. 2021, 141, 106138. [Google Scholar] [CrossRef]
- Fakirov, S.; Bhattacharyya, D. Engineering Biopolymers: Homopolymers, Blends, and Composites; Carl Hanser Verlag GmbH Co. KG: Munich, Germany, 2007; pp. 1–453. [Google Scholar]
- Kumar, S.; Patel, A.; Parmar, V.; Mishra, A.; Sharma, S.; Shukla, R. Advances in bio-based composites: Mechanisms, manufacturing, and applications. Compos. Part B Eng. 2019, 165, 430–441. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Zhou, W.; Yang, H.; Liu, Y.; Wang, J. Enhancing the mechanical properties of cellulose nanocrystal-filled bio-based polymer composites. Compos. Sci. Technol. 2018, 164, 197–206. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Yu, J.; Zhang, S.; Yan, X. Fabrication and performance of natural fiber reinforced green composites. J. Clean. Prod. 2018, 180, 303–312. [Google Scholar] [CrossRef]
- Perumal, A.; Chidambaram, R.; Siengchin, S.; Aravind, S. Hybrid bio-based composites: A review on recent trends and applications. Polymers 2020, 12, 314. [Google Scholar] [CrossRef]
Plant Fiber | Tensile Strength (MPa) | Elastic Modulus (GPa) | Density (g/cm3) | Cellulose Content (%) |
---|---|---|---|---|
Hemp | 550–900 | 30–70 | 1.48 | 70–74 |
Flax | 500–1500 | 50–70 | 1.50 | 65–85 |
Jute | 400–800 | 10–30 | 1.46 | 61–71 |
Kenaf | 400–600 | 22–60 | 1.45 | 60–72 |
Coir | 100–200 | 4–6 | 1.20 | 32–43 |
Property | Thermosetting Polymers | Thermoplastic Polymers |
---|---|---|
Fiber Interaction | Excellent | Temperature-dependent |
Resin Viscosity | Low | High |
Recyclability | Challenging | Easily recyclable |
Thermal Resistance | High | Moderate |
Processing Method | Advantages | Disadvantages | Applications |
---|---|---|---|
Injection Molding | High throughput, precise shaping, suitable for complex geometries | Requires high pressure and high temperatures, limited to short fibers | Packaging, consumer goods, small technical parts |
Vacuum-Assisted Resin Transfer Molding (VARTM) | Reduced voids, accurate fiber control, scalable for large parts | High equipment cost, resin viscosity dependent | Aerospace, automotive, structural composites |
Hand Lay-up | Low cost, simplicity, suitable for prototyping | Labor-intensive, high variability, risk of defects | Manual or custom components, prototyping |
Pultrusion | Continuous process, uniform fiber distribution, structural quality | Limited to linear profiles, expensive dies | Rods, beams, civil and marine infrastructure |
Compression Molding | Short cycle times, well-suited for mats and sheets | Less effective for thick sections or irregular shapes | Automotive interiors, paneling, structural parts |
Process | Modification Goal | Effect |
---|---|---|
Scouring | Removal of organic impurities | Increased fiber purity |
Bleaching | Removal of surface impurities | Improved surface appearance |
Mercerization | Increase bonding ability with polymers | Enhanced fiber–matrix adhesion and strength |
Acetylation | Enhance resistance to moisture/chemicals | Improved durability and thermal stability |
Benzoylation | Improve resistance to environmental factors | Increased hydrophobicity and UV resistance |
Fiber Orientation Type | Tensile Strength | Compressive Strength | Advantages |
---|---|---|---|
Longitudinal Fibers | High | Low | Highest uniaxial tensile strength |
Diagonal Fibers | Medium | Medium | Balanced, multidirectional loads |
Random Fibers | Low to Medium | Medium | Impact resistance, flexibility |
Industry | Application | Example |
---|---|---|
Automotive | Lightweight components for vehicles | Door panels, seat backs, headliners, floor mats |
Construction | Energy-efficient building materials | Insulated panels, eco-friendly building envelopes |
Biomedical | Biocompatible materials for healthcare | Wound dressings, tissue scaffolds, biosensors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pęśko, M.; Masek, A. Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential. Polymers 2025, 17, 2286. https://doi.org/10.3390/polym17172286
Pęśko M, Masek A. Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential. Polymers. 2025; 17(17):2286. https://doi.org/10.3390/polym17172286
Chicago/Turabian StylePęśko, Mateusz, and Anna Masek. 2025. "Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential" Polymers 17, no. 17: 2286. https://doi.org/10.3390/polym17172286
APA StylePęśko, M., & Masek, A. (2025). Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential. Polymers, 17(17), 2286. https://doi.org/10.3390/polym17172286