Comonomer Reactivity Trends in Catalytic Ethene/1-Alkene Copolymerizations to Linear Low-Density Polyethylene
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LLDPE | Linear low-density polyethylene |
PE | Polyethylene |
ZN | Ziegler–Natta |
HDPE | High-density polyethylene |
QSPR | Quantitative Structure–Property Relationship |
HTE | High-Throughput Experimentation |
PPR | Parallel Pressure Reactor |
DoE | Design of Experiment |
GPC | Gel Permeation Chromatography |
ODCB | 1,2-Dichlorobenzene |
BHT | Butylated Hydroxytoluene |
CEF | Crystallization Elution Fractionation |
TIBA | Triisobutyl-aluminum |
References
- Platzer, N. Communications Branched Polyethylene: LDPE and LLDPE. Ind. Eng. Chem. Prod. Res. Dev. 1983, 22, 158–160. [Google Scholar] [CrossRef]
- Simpson, D.M.; Vaughan, G.A. Ethylene Polymers, LLDPE. In Encyclopedia of Polymer Science and Technology; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Kitphaitun, S.; Takeshita, H.; Nomura, K. Analysis of Ethylene Copolymers with Long-Chain α-Olefins (1-Dodecene, 1-Tetradecene, 1-Hexadecene): A Transition between Main Chain Crystallization and Side Chain Crystallization. ACS Omega 2022, 7, 6900–6910. [Google Scholar] [CrossRef]
- Kebritchi, A.; Nekoomansh, M.; Mohammadi, F.; Ali Khonakdar, H. The Role of 1-Hexene Comonomer Content in thermal Behavior of Medium Density Polyethylene(MDPE) Synthesized Using Phillips Catalyst. Polyolefins J. 2014, 1, 117–129. [Google Scholar] [CrossRef]
- Al-Malaika, S.; Peng, X.; Watson, H. Metallocene Ethylene-1-Octene Copolymers: Influence of Comonomer Content on Thermo-Mechanical, Rheological, and Thermo-Oxidative Behaviours before and after Melt Processing in an Internal Mixer. Polym. Degrad. Stab. 2006, 91, 3131–3148. [Google Scholar] [CrossRef]
- Rungswang, W.; Jarumaneeroj, C.; Makkaroon, B.; Charernsuk, M.; Duekunthod, R.; Nakawong, N.; Soontaranon, S.; Rugmai, S. Influences of the Comonomer Type on the Crystallization Kinetics of High-Density Polyethylene. Polym. J. 2025, 57, 711–722. [Google Scholar] [CrossRef]
- Galgali, G.; Kaliappan, S.K.; Pandit, T. Influence of Ethylene-1-Alkene Copolymers Microstructure on Thermo-Rheological Behavior of Model Blends for Enhanced Recycling. Macromol 2022, 2, 168–183. [Google Scholar] [CrossRef]
- Clas, S.D.; Heyding, R.D.; McFaddin, D.C.; Russell, K.E.; Scammell-Bullock, M.V. Crystallinities of Copolymers of Ethylene and 1-alkenes. J. Polym. Sci. B Polym. Phys. 1988, 26, 1271–1286. [Google Scholar] [CrossRef]
- Santonja-Blasco, L.; Zhang, X.; Alamo, R.G. Crystallization of Precision Ethylene Copolymers. In Advances in Polymer Science; Springer New York LLC: New York, NY, USA, 2015; Volume 276, pp. 133–182. [Google Scholar]
- Fineman, M.; Ross, S.D. Linear Method for Determining Monomer Reactivity Ratios in Copolymerization. J. Polym. Sci. 1950, 5, 259–262. [Google Scholar] [CrossRef]
- Mayo, F.R.; Lewis, F.M. Copolymerization. I. A Basis for Comparing the Behavior of Monomers in Copolymerization; The Copolymerization of Styrene and Methyl Methacrylate. J. Am. Chem. Soc. 1944, 66, 1594–1601. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R.; Corradini, P.; Landriani, L.; Vacatello, M.; Segre, A.L. Advances in the 13C NMR Microstructural Characterization of Propene Polymers. Macromolecules 1995, 28, 1887–1892. [Google Scholar] [CrossRef]
- Kakugo, M.; Naito, Y.; Mizunuma, K.; Miyatake, T. 13C NMR Determination of Monomer Sequence Distribution in Ethylene-Propylene Copolymers Prepared with δ-TiCl3-Al(C2H5)2Cl. Macromolecules 1982, 15, 1150–1152. [Google Scholar] [CrossRef]
- Gahleitner, M.; Resconi, L.; Doshev, P. Heterogeneous Ziegler-Natta, Metallocene, and Post-Metallocene Catalysis: Successes and Challenges in Industrial Application. MRS Bull. 2013, 38, 229–233. [Google Scholar] [CrossRef]
- Zhao, Z.; Mikenas, T.B.; Guan, P.; Matsko, M.A.; Zakharov, V.A.; Wu, W. Copolymerization of Ethylene with 1-Hexene over Highly Active Supported Ziegler–Natta Catalysts with Vanadium Active Component but Different Vanadium Contents. Iran. Polym. J. 2025, 34, 625–635. [Google Scholar] [CrossRef]
- Kissin, Y.V.; Mink, R.I.; Nowlin, T.E. Ethylene Polymerization Reactions with Ziegler-Natta Catalysts. I. Ethylene Polymerization Kinetics and Kinetic Mechanism. J. Polym. Sci. A Polym. Chem. 1999, 37, 4255–4272. [Google Scholar] [CrossRef]
- Pullukat, T.J.; Hoff, R.E. Silica-Based Ziegler–Natta Catalysts: A Patent Review. Catal. Rev. Sci. Eng. 1999, 41, 389–428. [Google Scholar] [CrossRef]
- McDaniel, M.P. A Review of the Phillips Supported Chromium Catalyst and Its Commercial Use for Ethylene Polymerization. In Advances in Catalysis; Academic Press: Cambridge, MA, USA, 2010; Volume 53, pp. 123–606. [Google Scholar]
- Nifant’ev, I.; Komarov, P.; Sadrtdinova, G.; Safronov, V.; Kolosov, N.; Ivchenko, P. Mechanistic Insights of Ethylene Polymerization on Phillips Chromium Catalysts. Polymers 2024, 16, 681. [Google Scholar] [CrossRef]
- Groppo, E.; Martino, G.A.; Piovano, A.; Barzan, C. The Active Sites in the Phillips Catalysts: Origins of a Lively Debate and a Vision for the Future. ACS Catal. 2018, 8, 10846–10863. [Google Scholar] [CrossRef]
- Delley, M.F.; Praveen, C.S.; Borosy, A.P.; Núñez-Zarur, F.; Comas-Vives, A.; Copéret, C. Olefin Polymerization on Cr(III)/SiO2: Mechanistic Insights from the Differences in Reactivity between Ethene and Propene. J. Catal. 2017, 354, 223–230. [Google Scholar] [CrossRef]
- Amor Nait Ajjou, J.; Scott, S.L. A Kinetic Study of Ethylene and 1-Hexene Homo- and Copolymerization Catalyzed by a Silica-Supported Cr(IV) Complex: Evidence for Propagation by a Migratory Insertion Mechanism. J. Am. Chem. Soc. 2000, 122, 8968–8976. [Google Scholar] [CrossRef]
- Hosoda, S. Structural Distribution of Linear Low-Density Polyethylenes. Polym. J. 1988, 20, 383–397. [Google Scholar] [CrossRef]
- Kakugo, M.; Miyatake, T.; Mizunuma, K. Chemical Composition Distribution of Ethylene-1-Hexene Copolymer Prepared with Titanium Trichloride-Diethylaluminum Chloride Catalyst. Macromolecules 1991, 24, 1469–1472. [Google Scholar] [CrossRef]
- Soares, J.B.P.; Hamielec, A.E. Temperature Rising Elution Fractionation of Linear Polyolefins. Polymer 1995, 36, 1639–1654. [Google Scholar] [CrossRef]
- Czaja, K.; Białek, M. Microstructure of Ethylene-1-Hexene and Ethylene-1-Octene Copolymers Obtained over Ziegler–Natta Catalysts Supported on MgCl2(THF)2. Polymer 2001, 42, 2289–2297. [Google Scholar] [CrossRef]
- Zhang, B.; Qian, Q.; Yang, P.; Jiang, B.; Fu, Z.; Fan, Z. Responses of a Supported Ziegler−Natta Catalyst to Comonomer Feed Ratios in Ethylene−Propylene Copolymerization: Differentiation of Active Centers with Different Catalytic Features. Ind. Eng. Chem. Res. 2021, 60, 4575–4588. [Google Scholar] [CrossRef]
- Białek, M.; Czaja, K. The Effect of the Comonomer on the Copolymerization of Ethylene with Long Chain α-Olefins Using Ziegler–Natta Catalysts Supported on MgCl2(THF)2. Polymer 2000, 41, 7899–7904. [Google Scholar] [CrossRef]
- Galimberti, M.; Piemontesi, F.; Mascellani, N.; Camurati, I.; Fusco, O.; Destro, M. Metallocenes for Ethene/Propene Copolymerizations with High Product of Reactivity Ratios. Macromolecules 1999, 32, 7968–7976. [Google Scholar] [CrossRef]
- Friederichs, N.; Wang, B.; Budzelaar, P.H.M.; Coussens, B.B. A Combined Experimental—Molecular Modeling Approach for Ethene–Propene Copolymerization with C2-Symmetric Metallocenes. J. Mol. Catal. A Chem. 2005, 242, 91–104. [Google Scholar] [CrossRef]
- Aitola, E.; Hakala, K.; Byman-Fagerholm, H.; Leskelä, M.; Repo, T. High Molar Mass Ethene/1-Olefin Copolymers Synthesized with Acenaphthyl Substituted Metallocene Catalysts. J. Polym. Sci. A Polym. Chem. 2008, 46, 373–382. [Google Scholar] [CrossRef]
- Cossoul, E.; Baverel, L.; Martigny, E.; Macko, T.; Boisson, C.; Boyron, O. Homogeneous Copolymers of Ethylene with α-olefins Synthesized with Metallocene Catalysts and Their Use as Standards for TREF Calibration. Macromol. Symp. 2013, 330, 42–52. [Google Scholar] [CrossRef]
- Uborsky, D.V.; Mladentsev, D.Y.; Guzeev, B.A.; Borisov, I.S.; Vittoria, A.; Ehm, C.; Cipullo, R.; Hendriksen, C.; Friederichs, N.; Busico, V.; et al. C1-Symmetric Si-Bridged (2-Indenyl)(1-Indenyl) ansa-Metallocenes as Efficient Ethene/1-Hexene Copolymerization Catalysts. Dalton Trans. 2020, 49, 3015–3025. [Google Scholar] [CrossRef]
- Bochmann, M. Cationic Group 4 Metallocene Complexes and Their Role in Polymerisation Catalysis: The Chemistry of Well Defined Ziegler Catalysts. J. Chem. Soc. Dalton Trans. 1996, 255–270. [Google Scholar] [CrossRef]
- Baier, M.C.; Zuideveld, M.A.; Mecking, S. Post-Metallocenes in the Industrial Production of Polyolefins. Angew. Chem. Int. Ed. 2014, 53, 9722–9744. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; Gibson, V.C.; Wass, D.F. The Search for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. Angew. Chem. Int. Ed. 1999, 38, 428–447. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R.; Monaco, G.; Talarico, G.; Vacatello, M.; Chadwick, J.C.; Segre, A.L.; Sudmeijer, O. High-Resolution 13C NMR Configurational Analysis of Polypropylene Made with MgCl2-Supported Ziegler−Natta Catalysts. 1. The “Model” System MgCl2/TiCl4−2,6-Dimethylpyridine/Al(C2H5)3. Macromolecules 1999, 32, 4173–4182. [Google Scholar] [CrossRef]
- Busico, V.; Cipullo, R. Microstructure of Polypropylene. Prog. Polym. Sci. 2001, 26, 443–533. [Google Scholar] [CrossRef]
- Vittoria, A.; Meppelder, A.; Friederichs, N.; Busico, V.; Cipullo, R. Demystifying Ziegler–Natta Catalysts: The Origin of Stereoselectivity. ACS Catal. 2017, 7, 4509–4518. [Google Scholar] [CrossRef]
- Patil, H.R.; Karthikeyan, S.; Kote, V.; Sengupta, P.; Samanta, P.; Kadam, P.; Venkateswaran, N.; Gupta, V.K. An Insight into Ziegler–Natta Catalyst Active Site Distribution for Polyolefins: Application of Jitter Differential Evolution. Polym. Bull. 2023, 80, 1425–1445. [Google Scholar] [CrossRef]
- Ehm, C.; Vittoria, A.; Goryunov, G.P.; Izmer, V.V.; Kononovich, D.S.; Samsonov, O.V.; Di Girolamo, R.; Budzelaar, P.H.M.; Voskoboynikov, A.Z.; Busico, V.; et al. An Integrated High Throughput Experimentation/Predictive QSAR Modeling Approach to ansa-Zirconocene Catalysts for Isotactic Polypropylene. Polymers 2020, 12, 1005. [Google Scholar] [CrossRef]
- Ehm, C.; Vittoria, A.; Goryunov, G.P.; Izmer, V.V.; Kononovich, D.S.; Samsonov, O.V.; Budzelaar, P.H.M.; Voskoboynikov, A.Z.; Busico, V.; Uborsky, D.V.; et al. On the Limits of Tuning Comonomer Affinity of ‘Spaleck-Type’ ansa-Zirconocenes in Ethene/1-Hexene Copolymerization: A High-Throughput Experimentation/QSAR Approach. Dalton Trans. 2020, 49, 10162–10172. [Google Scholar] [CrossRef] [PubMed]
- Ratanasak, M.; Hasegawa, J.Y.; Parasuk, V. Design and Prediction of High Potent ansa-Zirconocene Catalyst for Olefin Polymerizations: Combined DFT Calculations and QSPR Approach. New J. Chem. 2021, 45, 8248–8257. [Google Scholar] [CrossRef]
- Burger, P.; Hortmann, K.; Brintzinger, H.-H. Structure-Activity and Structure-Selectivity Correlations in Metallocene-Based Catalysts for α-Olefin Polymerization. Makromol. Chem. Macromol. Symp. 1993, 66, 127–140. [Google Scholar] [CrossRef]
- Du, X.; Cheng, X.; Chen, Y.; Hong, X.; Zhou, S.; Yang, Y.; Li, W.; Liao, Z.; Wang, J.; Yang, Y. Quantitative Structure-Property Relationship Study of Constrained Geometry Catalysts for Olefin Polymerization. New J. Chem. 2024, 48, 6221. [Google Scholar] [CrossRef]
- Cuthbert, E.N.T.; Vittoria, A.; Cipullo, R.; Busico, V.; Budzelaar, P.H.M. Structure-Activity Relationships for Bis(Phenolate-ether) Zr/Hf Propene Polymerization Catalysts. Eur. J. Inorg. Chem. 2020, 2020, 541–550. [Google Scholar] [CrossRef]
- Vittoria, A.; Goryunov, G.P.; Izmer, V.V.; Kononovich, D.S.; Samsonov, O.V.; Zaccaria, F.; Urciuoli, G.; Budzelaar, P.H.M.; Busico, V.; Voskoboynikov, A.Z.; et al. Hafnium vs. Zirconium, the Perpetual Battle for Supremacy in Catalytic Olefin Polymerization: A Simple Matter of Electrophilicity? Polymers 2021, 13, 2621. [Google Scholar] [CrossRef] [PubMed]
- Uborsky, D.V.; Sharikov, M.I.; Goryunov, G.P.; Li, K.M.; Dall’Anese, A.; Zuccaccia, C.; Vittoria, A.; Iovine, T.; Galasso, G.; Ehm, C.; et al. Manipulating Pre-Equilibria in Olefin Polymerization Catalysis: Backbone-Stiffening Converts Living into a Highly Active Salan-Type Catalyst. Inorg. Chem. Front. 2023, 10, 6401–6406. [Google Scholar] [CrossRef]
- Wannaborworn, M.; Praserthdam, P.; Jongsomjit, B. Observation of Different Catalytic Activity of Various 1-Olefins during Ethylene/1-Olefin Copolymerization with Homogeneous Metallocene Catalysts. Molecules 2011, 16, 373–383. [Google Scholar] [CrossRef]
- Quijada, R.; Galland, G.B.; Mauler, R.S. The Influence of the Comonomer in the Copolymerization of Ethylene with α-olefins Using C2H4[Ind]2ZrCl2/Methylaluminoxane as Catalyst System. Macromol. Chem. Phys. 1996, 197, 3091–3098. [Google Scholar] [CrossRef]
- Yoon, J.S.; Lee, D.H.; Park, E.S.; Lee, I.M.; Park, D.K.; Jung, S.O. Copolymerization of Ethylene/α-Olefins over (2-MeInd)2ZrCl2/MAO and (2-BzInd)2ZrCl2/MAO Systems. J. Appl. Polym. Sci. 2000, 75, 928–937. [Google Scholar] [CrossRef]
- Galland, G.B.; Quijada, P.; Mauler, R.S.; De Menezes, S.C. Determination of Reactivity Ratios for Ethylene/α-Olefin Copolymerization Catalysed by the C2H4[Ind]2ZrCl2/Methylaluminoxane System. Macromol. Rapid Commun. 1996, 17, 607–613. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L.; Hou, Z.; Guo, F. Polymerization of α-Olefins and Their Copolymerization with Ethylene by Half-Sandwich Scandium Catalysts with an N-Heterocyclic Carbene Ligand. Polym. Chem. 2023, 14, 828–838. [Google Scholar] [CrossRef]
- Yang, F.; Wang, X.; Ma, Z.; Wang, B.; Pan, L.; Li, Y. Copolymerization of Propylene with Higher α-Olefins by a Pyridylamidohafnium Catalyst: An Effective Approach to Polypropylene-Based Elastomer. Polymers 2020, 12, 89. [Google Scholar] [CrossRef] [PubMed]
- Ehm, C.; Vittoria, A.; Goryunov, G.P.; Kulyabin, P.S.; Budzelaar, P.H.M.; Voskoboynikov, A.Z.; Busico, V.; Uborsky, D.V.; Cipullo, R. Connection of Stereoselectivity, Regioselectivity, and Molecular Weight Capability in rac-R′2Si(2-Me-4-R-Indenyl)2ZrCl2 Type Catalysts. Macromolecules 2018, 51, 8073–8083. [Google Scholar] [CrossRef]
- Ye, X.; Atienza, C.C.H.; Holtcamp, M.W.; Sanders, D.F.; Day, G.S.; Titone, M.E.; Cano, D.A.; Beyoda, M.S. Supported Salan Catalysts. International Patent Application No. WO2017058388A1, 6 April 2017. [Google Scholar]
- Busico, V.; Pellecchia, R.; Cutillo, F.; Cipullo, R. High-Throughput Screening in Olefin-Polymerization Catalysis: From Serendipitous Discovery Towards Rational Understanding. Macromol. Rapid Commun. 2009, 30, 1697–1708. [Google Scholar] [CrossRef]
- Ehm, C.; Mingione, A.; Vittoria, A.; Zaccaria, F.; Cipullo, R.; Busico, V. High-Throughput Experimentation in Olefin Polymerization Catalysis: Facing the Challenges of Miniaturization. Ind. Eng. Chem. Res. 2020, 59, 13940–13947. [Google Scholar] [CrossRef]
- Taniike, T.; Cannavacciuolo, F.D.; Khoshsefat, M.; De Canditiis, D.; Antinucci, G.; Chammingkwan, P.; Cipullo, R.; Busico, V. End-to-End High-Throughput Approach for Data-Driven Internal Donor Development in Heterogeneous Ziegler-Natta Propylene Polymerization. ACS Catal. 2024, 14, 7589–7599. [Google Scholar] [CrossRef]
- Cannavacciuolo, F.D.; Yadav, R.; Esper, A.; Vittoria, A.; Antinucci, G.; Zaccaria, F.; Cipullo, R.; Budzelaar, P.H.M.; Busico, V.; Goryunov, G.P.; et al. A High-Throughput Approach to Repurposing Olefin Polymerization Catalysts for Polymer Upcycling. Angew. Chem. Int. Ed. 2022, 61, e20220225. [Google Scholar] [CrossRef] [PubMed]
- Vittoria, A.; Urciuoli, G.; Costanzo, S.; Tammaro, D.; Cannavacciuolo, F.D.; Pasquino, R.; Cipullo, R.; Auriemma, F.; Grizzuti, N.; Maffettone, P.L.; et al. Extending the High-Throughput Experimentation (HTE) Approach to Catalytic Olefin Polymerizations: From Catalysts to Materials. Macromolecules 2022, 55, 5017–5026. [Google Scholar] [CrossRef]
- Monrabal, B.; Romero, L.; Mayo, N.; Sancho-Tello, J. Advances in Crystallization Elution Fractionation. Macromol. Symp. 2009, 282, 14–24. [Google Scholar] [CrossRef]
- Randall, J.C. A review of high resolution liquid 13carbon nuclear magnetic resonance characterizations of ethylene-based polymers. J. Macromol. Sci. C Polym. Rev. 1989, 29, 201–317. [Google Scholar] [CrossRef]
- Peña, B.; Delgado, J.A.; Pérez, E.; Bello, A. Monomer Sequence Distributions in the Copolymerization of Ethylene and 1-Decene. Macromol. Chem. Phys. 1994, 195, 2457–2467. [Google Scholar] [CrossRef]
- Wang, B. Ansa-Metallocene Polymerization Catalysts: Effects of the Bridges on the Catalytic Activities. Coord. Chem. Rev. 2006, 250, 242–258. [Google Scholar] [CrossRef]
- Tshuva, E.Y.; Goldberg, I.; Kol, M. Isospecific Living Polymerization of 1-Hexene by a Readily Available Nonmetallocene C2-Symmetrical Zirconium Catalyst. J. Am. Chem. Soc. 2000, 122, 10706–10707. [Google Scholar] [CrossRef]
- Segal, S.; Goldberg, I.; Kol, M. Zirconium and Titanium Diamine Bis(Phenolate) Catalysts for α-Olefin Polymerization: From Atactic Oligo(1-Hexene) to Ultrahigh-Molecular-Weight Isotactic Poly(1-Hexene). Organometallics 2005, 24, 200–202. [Google Scholar] [CrossRef]
- Kaur, G.; Agboluaje, M.; Hutchinson, R.A. Measurement and Modeling of Semi-Batch Solution Radical Copolymerization of N-tert-Butyl Acrylamide with Methyl Acrylate in Ethanol/Water. Polymers 2022, 15, 215. [Google Scholar] [CrossRef]
- Van Grieken, R.; Calleja, G.; Suarez, I.; Arranz-Andrés, J. Influence of the Feeding Control on the Final Properties of Ethylene/Propylene Copolymers Obtained in Laboratory Semi-Batch Reactor. Macromol. Res. 2013, 21, 137–145. [Google Scholar] [CrossRef]
- Wang, J.-S.; Matyjaszewski, K. Controlled/“living” Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615. [Google Scholar] [CrossRef]
- Flory, P.J. Molecular Size Distribution in Linear Condensation Polymers1. J. Am. Chem. Soc. 1936, 58, 1877–1885. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef] [PubMed]
- Odian, G. Ionic Chain Polymerization. In Principles of Polymerization; Wiley: Hoboken, NJ, USA, 2004; pp. 372–463. [Google Scholar]
- Jordan, R.F.; Bajgur, C.S.; Willett, R.; Scott, B. Ethylene Polymerization by a Cationic Dicyclopentadienyl Zirconium(IV) Alkyl Complex. J. Am. Chem. Soc. 1986, 108, 7410–7411. [Google Scholar] [CrossRef]
- Bochmann, M.; Lancaster, S.J. Base-Free Cationic Zirconium Benzyl Complexes as Highly Active Polymerization Catalysts. Organometallics 1993, 12, 633–640. [Google Scholar] [CrossRef]
- Intaragamjon, N.; Shiono, T.; Jongsomjit, B.; Praserthdam, P. Elucidation of Solvent Effects on the Catalytic Behaviors for [t-BuNSiMe2Flu]TiMe2 Complex during Ethylene/1-Hexene Copolymerization. Catal. Commun. 2006, 7, 721–727. [Google Scholar] [CrossRef]
- Forlini, F.; Tritto, I.; Locatelli, P.; Sacchi, M.C.; Piemontesi, F. 13C NMR Studies of Zirconocene-Catalyzed Propylene/1-Hexene Copolymers: In-Depth Investigation of the Effect of Solvent Polarity. Macromol. Chem. Phys. 2000, 201, 401–408. [Google Scholar] [CrossRef]
- Kumawat, J.; Gupta, V.K. Fundamental Aspects of Heterogeneous Ziegler–Natta Olefin Polymerization Catalysis: An Experimental and Computational Overview. Polym. Chem. 2020, 11, 6107–6128. [Google Scholar] [CrossRef]
- Blaakmeer, E.S.; Wensink, F.J.; van Eck, E.R.H.; de Wijs, G.A.; Kentgens, A.P.M. Preactive Site in Ziegler–Natta Catalysts. J. Phys. Chem. C 2019, 123, 14490–14500. [Google Scholar] [CrossRef]
- Podvorica, L.; Salvadori, E.; Piemontesi, F.; Vitale, G.; Morini, G.; Chiesa, M. Isolated Ti(III) Species on the Surface of a Pre-Active Ziegler Natta Catalyst. Appl. Magn. Reson. 2020, 51, 1515–1528. [Google Scholar] [CrossRef]
- Piovano, A.; Signorile, M.; Braglia, L.; Torelli, P.; Martini, A.; Wada, T.; Takasao, G.; Taniike, T.; Groppo, E. Electronic Properties of Ti Sites in Ziegler–Natta Catalysts. ACS Catal. 2021, 11, 9949–9961. [Google Scholar] [CrossRef]
- Kissin, Y.V. Isospecific Polymerization of Olefins; Springer: New York, NY, USA, 1985; ISBN 978-1-4612-9556-3. [Google Scholar]
Catalyst | Comonomer | VC μL | [C] mol/L | RP kgpolmmolCat−1h−1 | xC mol% | rE | rC | Mn kDa | Mw/Mn |
---|---|---|---|---|---|---|---|---|---|
M1 | 1-hexene # | 3400 | 4.5 | 26 | 34.1 | 19.5 | 0.011 | 32 | 2.2 |
1-decene | 5100 | 4.5 | 46 | 46.2 | 10.5 | 0.028 | 26 | 2.1 | |
M2 | 1-hexene # | 4250 | 5.7 | 11 | 8.4 | 190 | 0.002 | 105 | 2.2 |
1-decene | 5100 | 4.5 | 20 | 11.4 | 109 | 0.004 | 90 | 2.2 | |
M3 | 1-hexene # | 850 | 1.1 | 9.1 | 38.4 | 6.7 | 0.22 | 52 | 2.1 |
1-decene | 1300 | 1.1 | 6.6 | 35.7 | 7.3 | 0.20 | 53 | 2.1 | |
M4 | 1-hexene # | 850 | 1.1 | 13 | 40.7 | 5.1 | 0.19 | 85 | 2.1 |
1-decene | 1300 | 1.1 | 9.4 | 40.5 | 5.2 | 0.18 | 88 | 2.3 | |
M5 | 1-hexene # | 850 | 1.1 | 0.42 | 48.0 | 3.2 | 0.20 | 18 | 2.3 |
1-decene | 1300 | 1.1 | 0.73 | 50.8 | 3.7 | 0.19 | 25 | 2.2 | |
M6 | 1-hexene # | 850 | 1.1 | 5.3 | 45.9 | 5.3 | 0.29 | 76 | 2.2 |
1-decene | 1300 | 1.1 | 5.6 | 41.3 | 6.0 | 0.25 | 100 | 2.3 | |
S1 | 1-hexene | 2125 | 2.8 | 28 | 23.0 | 62 | 0.14 | 35 | 2.1 |
1-decene | 5100 | 4.5 | 25 | 49.6 | 48 | 0.18 | 25 | 2.1 | |
S2 | 1-hexene | 2125 | 2.8 | 30 | 40.6 | 25 | 0.16 | 31 | 2.2 |
1-decene | 3200 | 2.8 | 35 | 47.9 | 19.0 | 0.18 | 35 | 2.0 |
Catalyst | Solvent | VH μL | RP kgpolmmolCat−1h−1 | xH mol% | rE | rH | Mn kDa | Mw/Mn |
---|---|---|---|---|---|---|---|---|
M1 | DFB | 3400 | 36 | 30.6 | 18.2 | 0.035 | 49 | 2.1 |
heptane | 50 | 41.3 | 12.3 | 0.025 | 26 | 2.2 | ||
decane | 46 | 43.7 | 11.8 | 0.024 | 27 | 2.1 | ||
M3 | DFB | 850 | 9.3 | 38.9 | 6.2 | 0.23 | 45 | 2.1 |
heptane | 18 | 47.8 | 4.1 | 0.34 | 43 | 2.1 | ||
decane | 18 | 52.5 | 4.0 | 0.34 | 39 | 2.2 | ||
M4 | DFB | 850 | 3.6 | 41.2 | 4.4 | 0.18 | 90 | 2.4 |
heptane | 26 | 53.3 | 2.6 | 0.36 | 89 | 2.1 | ||
decane | 33 | 55.8 | 2.7 | 0.33 | 77 | 2.1 | ||
S1 | DFB | 2125 | 5.1 | 35.4 | 34 | 0.17 | 26 | 2.0 |
heptane | 8.8 | 29.7 | 43 | 0.16 | 27 | 2.1 | ||
decane | 7.6 | 33.1 | 46 | 0.16 | 29 | 2.0 | ||
S2 | DFB | 2125 | 4.0 | 57.7 | 9.8 | 0.22 | 28 | 2.0 |
heptane | 2.0 | 47.2 | 18.3 | 0.22 | 27 | 2.1 | ||
decane | 1.4 | 52.4 | 17.5 | 0.21 | 25 | 2.0 |
Catalyst | Comonomer | VC μL | RP kgpolmmolCat−1h−1 | xC mol% | Mn kDa | Mw/Mn | rE # |
---|---|---|---|---|---|---|---|
M1 | 1-hexene | 150 | 108 | 1.3 | 57 | 2.0 | 25 |
1-decene | 225 | 69 | 1.4 | 55 | 2.1 | 23 | |
M2 | 1-hexene | 150 | 63 | 0.35 | 129 | 2.3 | 94 |
1-decene | 225 | 149 | 0.35 | 136 | 2.2 | 93 | |
M3 | 1-hexene | 150 | 16 | 4.3 | 62 | 2.0 | 7.2 |
1-decene | 225 | 13 | 3.8 | 59 | 2.2 | 8.2 | |
M4 | 1-hexene | 150 | 30 | 4.5 | 73 | 2.5 | 6.9 |
1-decene | 225 | 45 | 4.7 | 79 | 2.4 | 6.5 | |
M5 | 1-hexene | 150 | 190 | 7.9 | 190 | 2.6 | 3.7 |
1-decene | 225 | 176 | 8.3 | 176 | 2.6 | 3.4 | |
M6 | 1-hexene | 150 | 4.1 | 4.2 | 112 | 2.1 | 7.5 |
1-decene | 225 | 12 | 4.0 | 111 | 2.2 | 7.0 | |
S1 | 1-hexene | 150 | 325 | 0.51 | 105 | 2.4 | 64 |
1-decene | 225 | 74 | 0.56 | 104 | 2.4 | 58 | |
S2 | 1-hexene | 150 | 166 | 1.5 | 166 | 3.2 | 21 |
1-decene | 225 | 191 | 1.8 | 191 | 3.8 | 18 |
Catalyst | Comonomer | VC μL | xC mol% | Mn kDa | Mw/Mn | rE # |
---|---|---|---|---|---|---|
ZN-1 | 1-hexene | 3370 | 6.7 | 55 | 8.5 | 2.1 × 102 |
1-decene | 5100 | 1.0 | 119 | 6.1 | 1.5 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galasso, G.; Cipullo, R.; Busico, V.; Vittoria, A. Comonomer Reactivity Trends in Catalytic Ethene/1-Alkene Copolymerizations to Linear Low-Density Polyethylene. Polymers 2025, 17, 2290. https://doi.org/10.3390/polym17172290
Galasso G, Cipullo R, Busico V, Vittoria A. Comonomer Reactivity Trends in Catalytic Ethene/1-Alkene Copolymerizations to Linear Low-Density Polyethylene. Polymers. 2025; 17(17):2290. https://doi.org/10.3390/polym17172290
Chicago/Turabian StyleGalasso, Gianluigi, Roberta Cipullo, Vincenzo Busico, and Antonio Vittoria. 2025. "Comonomer Reactivity Trends in Catalytic Ethene/1-Alkene Copolymerizations to Linear Low-Density Polyethylene" Polymers 17, no. 17: 2290. https://doi.org/10.3390/polym17172290
APA StyleGalasso, G., Cipullo, R., Busico, V., & Vittoria, A. (2025). Comonomer Reactivity Trends in Catalytic Ethene/1-Alkene Copolymerizations to Linear Low-Density Polyethylene. Polymers, 17(17), 2290. https://doi.org/10.3390/polym17172290