Additive Manufacturing of Regorafenib Tablets: Formulation Strategies and Characterization for Colorectal Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tablet Design
2.3. Formulation of the REG Tablet
2.3.1. Core Hydrogel
2.3.2. 3D-Printed Shell
2.4. Printing Process
2.5. Characterization
2.5.1. Tablet Morphology
2.5.2. Fourier-Transform Infrared (FTIR) Spectroscopy
2.5.3. Thermogravimetric Analysis (TGA)
2.5.4. Assay and Dissolution Tests
2.5.5. Weight Variation
2.5.6. Mechanical Test
3. Results and Discussion
3.1. Tablet Fabrication
3.2. Results of Characterization
3.2.1. Dimensions and Morphology
3.2.2. FTIR Analysis
3.2.3. TGA Thermal Analysis
3.2.4. Weight Variation Results
3.2.5. Assay and Dissolution Profile
3.2.6. Drug Release Kinetic Models
3.2.7. Mechanical Test Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Colorectal Cancer. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (accessed on 18 August 2025).
- Institute, N.C. Genetics of Colorectal Cancer. 2025. Available online: https://www.cancer.gov/types/colorectal/hp/colorectal-genetics-pdq (accessed on 18 August 2025).
- Khan, S.Z.; Lengyel, C.G. Challenges in the management of colorectal cancer in low- and middle-income countries. Cancer Treat. Res. Commun. 2023, 35, 100705. [Google Scholar] [CrossRef]
- Society, A.C. Treatment for Colorectal Cancer. 2023. Available online: https://www.cancer.org/cancer/colon-rectal-cancer/treating.html (accessed on 18 August 2025).
- UK, C.R. Gerson Therapy. 2025. Available online: https://www.cancerresearchuk.org/about-cancer/treatment/complementary-alternative-therapies/individual-therapies/gerson (accessed on 18 August 2025).
- Sastre, J.; Argilés, G.; Benavides, M.; Feliú, J.; García-Alfonso, P.; García-Carbonero, R.; Grávalos, C.; Guillén-Ponce, C.; Martínez-Villacampa, M.; Pericay, C. Clinical management of regorafenib in the treatment of patients with advanced colorectal cancer. Clin. Transl. Oncol. 2014, 16, 942–953. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.; Zopf, D. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef]
- Hsieh, M.-C.; Rau, K.-M.; Lin, S.-E.; Liu, K.-W.; Chiu, C.-C.; Chen, C.-I.; Song, L.-C.; Chen, H.-P. An observational study of trifluridine/tipiracil-containing regimen versus regorafenib-containing regimen in patients with metastatic colorectal cancer. Front. Oncol. 2022, 12, 867546. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wang, J.; Phan, C.U.; Chen, Q.; Hu, X.; Shao, G.; Zhou, J.; Lai, L.; Tang, G. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat. Commun. 2021, 12, 759. [Google Scholar] [CrossRef]
- Sheikhi, A.; Hamedi, S.; Sodeifian, G.; Razmimanesh, F. Improvement of the dissolution of the antineoplastic drug regorafenib through impregnation into pullulan polysaccharide using supercritical fluid technology: Optimization of the process. J. CO2 Util. 2025, 93, 103040. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.S.; Ou, F.-S.; Ahn, D.H.; Boland, P.M.; Ciombor, K.K.; Heying, E.N.; Dockter, T.J.; Jacobs, N.L.; Pasche, B.C.; Cleary, J.M.; et al. Regorafenib dose-optimisation in patients with refractory metastatic colorectal cancer (ReDOS): A randomised, multicentre, open-label, phase 2 study. Lancet Oncol. 2019, 20, 1070–1082. [Google Scholar] [CrossRef]
- Karami, T.; Ghobadi, E.; Akrami, M.; Haririan, I. Fabrication of a controlled-release core-shell floating tablet of ketamine hydrochloride using a 3d printing technique for management of refractory depressions and chronic pain. Polymers 2024, 16, 746. [Google Scholar] [CrossRef]
- Abdollahi, A.; Ansari, Z.; Akrami, M.; Haririan, I.; Dashti-Khavidaki, S.; Irani, M.; Kamankesh, M.; Ghobadi, E. Additive manufacturing of an extended-release tablet of tacrolimus. Materials 2023, 16, 4927. [Google Scholar] [CrossRef] [PubMed]
- Rastpeiman, S.; Panahi, Z.; Akrami, M.; Haririan, I.; Asadi, M. Facile fabrication of an extended-release tablet of ticagrelor using three dimensional printing technology. J. Biomed. Mater. Res. Part A 2024, 112, 20–30. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Do, T.; Tran, P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers 2020, 12, 1529. [Google Scholar] [CrossRef]
- Bandari, S.; Nyavanandi, D.; Dumpa, N.; Repka, M.A. Coupling hot melt extrusion and fused deposition modeling: Critical properties for successful performance. Adv. Drug Deliv. Rev. 2021, 172, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Guembe-Michel, N.; Nguewa, P.; González-Gaitano, G. Soluplus®-based pharmaceutical formulations: Recent advances in drug delivery and biomedical applications. Int. J. Mol. Sci. 2025, 26, 1499. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.; da Silva, G.S.; Velho, M.C.; Beck, R.C.R. Eudragit®: A versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics 2021, 13, 1424. [Google Scholar] [CrossRef] [PubMed]
- Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020, 12, 1188. [Google Scholar] [CrossRef]
- Omari, S.; Ashour, E.A.; Elkanayati, R.; Alyahya, M.; Almutairi, M.; Repka, M.A. Formulation development of loratadine immediate- release tablets using hot-melt extrusion and 3D printing technology. J. Drug Deliv. Sci. Technol. 2022, 74, 103505. [Google Scholar] [CrossRef]
- Lei, L.; Bai, Y.; Qin, X.; Liu, J.; Huang, W.; Lv, Q. Current understanding of hydrogel for drug release and tissue engineering. Gels 2022, 8, 301. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.S.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Bajpai, M.; Dengre, R. Chemically treated hard gelatin capsules for colon-targeted drug delivery: A novel approach. J. Appl. Polym. Sci. 2003, 89, 2277–2282. [Google Scholar] [CrossRef]
- Buzhor, M.G.; Abdi, F.; Luo, Z.; Leroux, J. Colonic delivery of aqueous suspensions using 3D printed capsules. Adv. Mater. Technol. 2024, 9, 2301975. [Google Scholar] [CrossRef]
- Khaliq, N.U.; Lee, J.; Kim, S.; Sung, D.; Kim, H. Pluronic F-68 and F-127 based nanomedicines for advancing combination cancer therapy. Pharmaceutics 2023, 15, 2102. [Google Scholar] [CrossRef]
- Coeshott, C.M.; Smithson, S.; Verderber, E.; Samaniego, A.; Blonder, J.M.; Rosenthal, G.J.; Westerink, M. Pluronic® F127-based systemic vaccine delivery systems. Vaccine 2004, 22, 2396–2405. [Google Scholar] [CrossRef]
- Iaconisi, G.N.; Lunetti, P.; Gallo, N.; Cappello, A.R.; Fiermonte, G.; Dolce, V.; Capobianco, L. Hyaluronic acid: A powerful biomolecule with wide-ranging applications. Int. J. Mol. Sci. 2023, 24, 10296. [Google Scholar] [CrossRef] [PubMed]
- Kotla, N.G.; Isa, I.L.M.; Rasala, S.; Demir, S.; Singh, R.; Baby, B.V.; Swamy, S.K.; Dockery, P.; Jala, V.R.; Rochev, Y.; et al. Modulation of gut barrier functions in ulcerative colitis by hyaluronic acid system. Adv. Sci. 2021, 9, 2103189. [Google Scholar] [CrossRef] [PubMed]
- Baira, S.M.; Srinivasulu, G.; Nimbalkar, R.; Garg, P.; Srinivas, R.; Talluri, M.V.N.K. Characterization of degradation products of regorafenib by LC-QTOF-MS and NMR spectroscopy: Investigation of rearrangement and odd-electron ion formation during collision-induced dissociations under ESI-MS/MS. New J. Chem. 2017, 41, 12091–12103. [Google Scholar] [CrossRef]
- Ding, Y.; Chang, S.; Xie, Z.; Yu, D.-G.; Liu, Y.; Shao, J. Core–shell Eudragit S100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers 2020, 12, 2034. [Google Scholar] [CrossRef]
- Pignatello, R.; Corsaro, R.; Bonaccorso, A.; Zingale, E.; Carbone, C.; Musumeci, T. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv. Transl. Res. 2022, 12, 1991–2006. [Google Scholar] [CrossRef]
- Sawicki, E.; Schellens, J.H.M.; Beijnen, J.H.; Nuijen, B. Inventory of oral anticancer agents: Pharmaceutical formulation aspects with focus on the solid dispersion technique. Cancer Treat. Rev. 2016, 50, 247–263. [Google Scholar] [CrossRef]
- Panigrahi, D.; Swain, S.; Sahu, P.K.; Ghose, D.; Jena, B.R. Quality by design enabled formulation development of regorafenib monohydrate loaded PEGylated PLGA polymeric nanoparticles: Enhanced oral bioavailability and biopharmaceutical attributes. Nanomed. J. 2024, 11, 401–416. [Google Scholar]
- Shnaikat, S.G.; Shakya, A.K.; Bardaweel, S.K. Formulation, development and evaluation of hyaluronic acid-conjugated liposomal nanoparticles loaded with regorafenib and curcumin and their in vitro evaluation on colorectal cancer cell lines. Saudi Pharm. J. 2024, 32, 102099. [Google Scholar] [CrossRef]
- Li, X.; He, G.; Su, F.; Chu, Z.; Xu, L.; Zhang, Y.; Zhou, J.; Ding, Y. Regorafenib-loaded poly (lactide-co-glycolide) microspheres designed to improve transarterial chemoembolization therapy for hepatocellular carcinoma. Asian J. Pharm. Sci. 2020, 15, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Pan, Y.; Chen, D.; Xu, X.; Yan, G.; Fan, T. Design, preparation, and in vitro evaluation of core–shell fused deposition modelling 3D-printed verapamil hydrochloride pulsatile tablets. Pharmaceutics 2022, 14, 437. [Google Scholar] [CrossRef]
- Alshammari, N.D.; Almotairy, A.; Almutairi, M.; Zhang, P.; Al Shawakri, E.; Vemula, S.K.; Repka, M.A. Colon-targeted 3D-printed mesalamine tablets: Core-shell design and in vitro/ex-vivo evaluation. J. Drug Deliv. Sci. Technol. 2024, 95, 105580. [Google Scholar] [CrossRef]
- Wang, H.; Vemula, S.K.; Bandari, S.; Repka, M.A. Preparation of core-shell controlled release tablets using direct powder extrusion 3D printing techniques. J. Drug Deliv. Sci. Technol. 2023, 88, 104896. [Google Scholar] [CrossRef]
- Davies, P.N.; Worthington, H.E.; Podczeck, F.; Newton, J.M. The determination of the mechanical strength of tablets of different shapes. Eur. J. Pharm. Biopharm. 2007, 67, 268–276. [Google Scholar] [CrossRef]
- Castrati, L.; Mazel, V.; Diarra, H.; Busignies, V.; Tchoreloff, P. Effect of the Curvature of the Punches on the Shape of the Interface and the Delamination Tendency of Bilayer Tablets. J. Pharm. Sci. 2017, 106, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.; Haririan, I.; Podczeck, F. The influence of punch curvature on the mechanical properties of compacted powders. Powder Technol. 2000, 107, 79–83. [Google Scholar] [CrossRef]
- Karalia, D.S.A.; Karalis, V.; Vlachou, M. 3D-Printed Oral Dosage Forms: Mechanical Properties, Computational Approaches and Applications. Pharmaceutics 2021, 13, 1401. [Google Scholar] [CrossRef] [PubMed]
Formulation * | F1 | F2 | F3 | F4 | F5 |
---|---|---|---|---|---|
REG (mg) | 80 | 80 | 80 | 80 | 80 |
Glycerin (mg) | 60 | 120 | 120 | 120 | 120 |
CMC (mg) | 0 | 0 | 0 | 20 | 40 |
Hyaluronic acid (mg) | 20 | 20 | 20 | 20 | 20 |
Pluronic F-127 (mg) | 50 | 50 | 100 | 100 | 100 |
SLS (mg) | 0 | 10 | 20 | 20 | 20 |
No drug sedimentation | × | × | ✔ | ✔ | ✔ |
Syringeability | Soupy (×) | Soupy (×) | Soupy (×) | ✔ | Blockage |
Formulation | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
Eudragit® RS-100 | 45 | 35 | 30 | 20 | 20 |
Soluplus® | 35 | 45 | 40 | 40 | 40 |
PEG 4000 | 20 | 20 | 20 | 20 | 20 |
Corn starch-1500 | 0 | 0 | 10 | 10 | 5 |
Talc | 0 | 0 | 0 | 10 | 15 |
Temperature (°C) | 150 | 150 | 145 | 140 | 135 |
Printability | × | ✔ | ✔✔ | ✔✔✔ | ✔✔✔ |
Extrudability | × | ✔ | ✔ | ✔ | ✔ |
Non-Floating | × | × | × | ✔ | ✔✔ |
Standard | Sample | Concentration (µg/mL) | Assay (%) | |
---|---|---|---|---|
Abs1 | 0.455 | 0.45 | 52.7 | 98.8 |
Abs2 | 0.455 | 0.452 | 52.9 | 99.3 |
Abs3 | 0.455 | 0.448 | 52.5 | 98.4 |
Mean | 0.455 | 0.45 | 52.7 | 98.8 |
STD | 0.000 | 0.002 | 0.234 | 0.439 |
RSD | 0.000 | 0.444 | 0.444 | 0.450 |
Model | R2 | k | n | t1/2 (h) | SD (±) |
---|---|---|---|---|---|
Zero-order | 0.7799 | 12.2927 | - | 4.07 | 0.4810 |
First-order | 0.9622 | 0.2449 | - | 2.83 | 0.0212 |
Higuchi | 0.8886 | 47.2306 | - | 1.12 | 1.5285 |
Korsmeyer–Peppas | 0.8788 | 11.5450 | 1.2469 | 0.08 | 0.0132 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safari, F.; Goudarzi, A.; Abolghasemi, H.; Mohammad, H.A.; Akrami, M.; Mohammadi, S.; Haririan, I. Additive Manufacturing of Regorafenib Tablets: Formulation Strategies and Characterization for Colorectal Cancer. Polymers 2025, 17, 2302. https://doi.org/10.3390/polym17172302
Safari F, Goudarzi A, Abolghasemi H, Mohammad HA, Akrami M, Mohammadi S, Haririan I. Additive Manufacturing of Regorafenib Tablets: Formulation Strategies and Characterization for Colorectal Cancer. Polymers. 2025; 17(17):2302. https://doi.org/10.3390/polym17172302
Chicago/Turabian StyleSafari, Fatemeh, Azin Goudarzi, Hossein Abolghasemi, Hussein Abdelamir Mohammad, Mohammad Akrami, Saeid Mohammadi, and Ismaeil Haririan. 2025. "Additive Manufacturing of Regorafenib Tablets: Formulation Strategies and Characterization for Colorectal Cancer" Polymers 17, no. 17: 2302. https://doi.org/10.3390/polym17172302
APA StyleSafari, F., Goudarzi, A., Abolghasemi, H., Mohammad, H. A., Akrami, M., Mohammadi, S., & Haririan, I. (2025). Additive Manufacturing of Regorafenib Tablets: Formulation Strategies and Characterization for Colorectal Cancer. Polymers, 17(17), 2302. https://doi.org/10.3390/polym17172302