Advancing the Capability of Additively Manufactured Continuous Fibre-Reinforced Polymers for Structural Applications: The Effect of Nitrogen-Purging and Post-Annealing on the Tensile Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Printer and Materials
2.2. N2-Purging
2.3. Post-Annealing
2.4. Mechanical Characterisation
2.4.1. Feedstock Fibre Filaments
2.4.2. Printed Onyx and CFRP Specimens
2.5. Microstructural Analysis
2.6. Thermal Characterisation
2.7. X-Ray Diffraction
3. Results and Discussion
3.1. Tensile Testing
3.1.1. Tensile Properties of Feedstock Fibre Filaments
3.1.2. Tensile Properties of Neat Onyx Specimens
3.1.3. Tensile Properties of CFRP Specimens
N2-Purged CFRP Specimens
Post-Annealed CFRP Specimens
Combination of N2-Purging and Post-Annealing
3.1.4. Deformation Mechanisms of CFRP Specimens
3.1.5. Ashby Diagram of the Tensile Properties of CFRPs
3.2. SEM Analysis
3.2.1. Fracture Behaviours of Neat Onyx and CFF/Onyx Under AP and FO150 Conditions
3.2.2. Post-Annealing Effects on Carbon Fibres, CFF/Onyx_FO180, and KFF/Onyx_FO180
Materials | ) | ||
---|---|---|---|
Longitudinal | Transverse | Through-Thickness | |
Printed Onyx parts [59] | [36, 46] | 95 | 248 |
Carbon fibres [52,60,61,62] | [−1, 1] | [2.4, 36] | [5.9, 7.7] |
Glass fibres [63] | [5, 12] | - | - |
Kevlar fibres [64,65,66,67] | [−5.7, −2.7] | [66.3, 75] | - |
3.3. DSC Analysis
3.4. XRD Analysis
4. Conclusions
- N2-purging, post-annealing, and their combination (N2+FO150) improved the Young’s modulus and UTS of KFF/Onyx specimens;
- For GFF/Onyx, N2-purging, post-annealing, and their combination (N2+FO150) had a very minor effect (no more than 6%) on the Young’s modulus, while positive effects were observed for the UTS. Remarkably, the UTS of GFF/Onyx reached an average value of 399 MPa following the application of the combined treatment, surpassing the highest average UTS of (as printed) CFF/Onyx by over 6%. Moreover, the UTS of GFF/Onyx was comparable to that of 2000 series aluminium alloys. This finding highlighted the efficacy of the combined treatment in significantly improving the mechanical performance of GFF/Onyx, offering valuable implications for additive manufacturing. Specifically, GFF/Onyx, after combined treatment, presented potential for substituting traditional metal materials, contributing to weight reduction in relevant industrial applications such as aerospace manufacturing;
- For CFF/Onyx specimens, N2-purging had a substantial positive effect on the Young’s modulus. On the other hand, post-annealing at 90 °C and 150 °C had negligible effects on the Young’s modulus, while post-annealing at 180 °C reduced the Young’s modulus. The combined treatment (N2+FO150) resulted in similar effects on the Young’s modulus. For UTS of CFF/Onyx, all treatments, including N2-purging, post-annealing, and their combination, reduced the UTS of CFF/Onyx. Scanning electron microscopy (SEM) analysis revealed large interlayer gaps and fibre detachment after annealing at 150 °C. At 180 °C, post-annealing induced thermal expansion, embrittlement of carbon fibres, and crack propagation, all contributing to decreased UTS in CFF/Onyx specimens;
- The different effects of N2-purging, post-annealing, and their combination (N2+FO150) on the Young’s modulus and UTS of CFF/Onyx, GFF/Onyx, and KFF/Onyx suggested that the response of CFRPs to N2-purging and post-annealing was material-dependent, emphasising the need for a targeted approach in optimising the mechanical properties of additively manufactured composite materials;
- DSC analysis of as-printed (AP) and post-annealed (FO150) Onyx, CFF/Onyx, GFF/Onyx, and KFF/Onyx specimens revealed structural relaxation, increased crystallinity, double endothermic peaks, and reduced moisture content after annealing at 150 °C. These observations indicate enhanced molecular stability and load-bearing capability. XRD analysis confirmed the polyamide component as PA6 and attributed the double endothermic peaks observed in DSC curves to the melting of distinct PA6 crystalline phases. Both DSC and XRD analyses consistently demonstrated increased crystallinity in the specimens annealed at 150 °C.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Chamber Temperature (CT) and Relative Humidity (RH) Recordings
Specimen | AP | N2 | FO90 | FO150 | FO180 | N2+FO150 |
---|---|---|---|---|---|---|
CT (°C) | 35.72 | 36.87 | 35.21 | 36.98 | 35.21 | 36.10 |
RH (%) | 27.08 | 3.10 | 32.46 | 28.67 | 32.46 | 7.52 |
Specimen | AP | N2 | FO90 | FO150 | FO180 | N2+FO150 |
---|---|---|---|---|---|---|
CT (°C) | 34.62 | 34.89 | 32.31 | 31.79 | 35.13 | 35.68 |
RH (%) | 29.68 | 4.49 | 28.41 | 37.20 | 29.66 | 7.19 |
Specimen | AP | N2 | FO90 | FO150 | FO180 | N2+FO150 |
---|---|---|---|---|---|---|
CT (°C) | 36.18 | 36.40 | 37.17 | 36.18 | 34.28 | 34.66 |
RH (%) | 24.05 | 11.04 | 23.21 | 24.05 | 24.04 | 5.24 |
Appendix B. Evaluation of Post-Annealing Duration
Indicator | 2-h Annealing | 6-h Annealing | 18-h Annealing | Best Value | Worst Value |
---|---|---|---|---|---|
Young’s modulus (GPa) | 10.4 | 11.1 | 11.9 | 14.3 | 0 |
UTS (MPa) | 386 | 400 | 339 | 480 | 0 |
Failure strain [-] | 0.039 | 0.039 | 0.053 | 0.064 | 0 |
Strain energy (J) | 41.84 | 51.95 | 75.81 | 90.97 | 0 |
Annealing duration (hours) | 2 | 6 | 18 | 0 | 18 |
Energy consumption (kWh) | 1.6 | 4.8 | 14.4 | 0 | 14.4 |
Parameter | 2-h Annealing | 6-h Annealing | 18-h Annealing |
---|---|---|---|
Young’s modulus | 0.73 | 0.78 | 0.83 |
UTS | 0.80 | 0.83 | 0.70 |
Failure strain | 0.60 | 0.61 | 0.83 |
Strain energy | 0.46 | 0.57 | 0.83 |
Annealing duration/energy consumption | 0.89 | 0.67 | 0.00 |
Weighted score | 0.70 | 0.69 | 0.64 |
Appendix C. Diffractograms of Onyx_AP and GFF/Onyx_AP Specimens
References
- Barış Vatandaş, B.; Uşun, A.; Yıldız, N.; Şimşek, C.; Necati Cora, Ö.; Aslan, M.; Gümrük, R. Additive manufacturing of PEEK-based continuous fiber reinforced thermoplastic composites with high mechanical properties. Compos. Part A Appl. Sci. Manuf. 2023, 167, 107434. [Google Scholar] [CrossRef]
- Subramaniyan, M.; Karuppan, S.; Appusamy, A.; Pitchandi, N. Sandwich printing of PLA and carbon fiber reinforced-PLA for enhancing tensile and impact strength of additive manufactured parts. J. Manuf. Process. 2025, 137, 425–436. [Google Scholar] [CrossRef]
- Wohlers, T.T.; Campbell, R.I.; Diegel, O.; Huff, R.; Kowen, J. Wohlers Report 2023: Analysis. Trends. Forecasts. 3D Printing and Additive Manufacturing State of the Industry; Wohlers Associates: Washington, DC, USA, 2023. [Google Scholar]
- Bezzina, C.M.; Refalo, P. Fused Filament Fabrication and Injection Moulding of Plastic Packaging: An Environmental and Financial Comparative Assessment. Machines 2023, 11, 634. [Google Scholar] [CrossRef]
- Liu, X.; Shan, Z.; Liu, J.; Liu, F.; Wu, X.; Zou, A.; Du, W.; Wu, S.; Jiang, X. Mechanical and dielectric properties of continuous glass fiber reinforced poly-ether-ether-ketone composite components prepared by additive manufacturing. Addit. Manuf. 2024, 81, 103978. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, M.; Jiang, J.; Huang, H.; Chen, B.; Li, Y.; Zhai, W. Fabrication of PEI/CF composite parts with multi-angle reinforced mechanical properties by a micro-extrusion foaming FDM process. Compos. Part A Appl. Sci. Manuf. 2024, 187, 108503. [Google Scholar] [CrossRef]
- Cheng, H.; Tang, M.; Zhang, J.; Wang, H.; Zhou, J.; Wang, Q.; Qian, Z. Effects of rCF attributes and FDM-3D printing parameters on the mechanical properties of rCFRP. Compos. Part B Eng. 2024, 270, 111122. [Google Scholar] [CrossRef]
- Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 198–205. [Google Scholar] [CrossRef]
- Marsavina, L.; Valean, C.; Marghitas, M.; Linul, E.; Razavi, N.; Berto, F. Effect of the manufacturing parameters on the tensile and fracture properties of FDM 3D-printed PLA specimens. Eng. Fract. Mech. 2022, 274, 108766. [Google Scholar] [CrossRef]
- Li, J.; Durandet, Y.; Huang, X.; Sun, G.; Ruan, D. Additively manufactured fiber-reinforced composites: A review of mechanical behavior and opportunities. J. Mater. Sci. Technol. 2022, 119, 219–244. [Google Scholar] [CrossRef]
- Giani, N.; Mazzocchetti, L.; Benelli, T.; Picchioni, F.; Giorgini, L. Towards sustainability in 3D printing of thermoplastic composites: Evaluation of recycled carbon fibers as reinforcing agent for FDM filament production and 3D printing. Compos. Part A Appl. Sci. Manuf. 2022, 159, 107002. [Google Scholar] [CrossRef]
- Dickson, A.N.; Barry, J.N.; McDonnell, K.A.; Dowling, D.P. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit. Manuf. 2017, 16, 146–152. [Google Scholar] [CrossRef]
- Nguyen-Van, V.; Peng, C.; Tran, P.; Wickramasinghe, S.; Do, T.; Ruan, D. Mechanical and dynamic performance of 3D-printed continuous carbon fibre Onyx composites. Thin-Walled Struct. 2024, 201, 111979. [Google Scholar] [CrossRef]
- Zaldivar, R.J.; Mclouth, T.D.; Ferrelli, G.L.; Patel, D.N.; Hopkins, A.R.; Witkin, D. Effect of initial filament moisture content on the microstructure and mechanical performance of ULTEM® 9085 3D printed parts. Addit. Manuf. 2018, 24, 457–466. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Qin, R.; Shi, S.; Lu, Y.; Zhang, X.; Xu, J.; Chen, B. Defect analysis and quality evaluation system for additive manufactured continuous fiber-reinforced polymer composites. J. Manuf. Process. 2025, 141, 595–612. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Li, S.; Wang, K.; Correia, J.P.M.; Ahzi, S. Printing path induced temperature history and interfacial properties of 3D printed continuous nature fiber reinforced polypropylene composites. J. Manuf. Process. 2025, 141, 121–131. [Google Scholar] [CrossRef]
- Valvez, S.; Reis, P.N.B.; Ferreira, J.A.M. Effect of annealing treatment on mechanical properties of 3D-Printed composites. J. Mater. Res. Technol. 2023, 23, 2101–2115. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529. [Google Scholar] [CrossRef] [PubMed]
- Vatandaş, B.B.; Uşun, A.; Gümrük, R. Mechanical performances of continuous carbon fiber reinforced PEEK (polyether ether ketone) composites printed in a vacuum environment. J. Manuf. Process. 2024, 120, 579–594. [Google Scholar] [CrossRef]
- Shaik, Y.P.; Schuster, J.; Naidu, N.K. High-Pressure FDM 3D Printing in Nitrogen [Inert Gas] and Improved Mechanical Performance of Printed Components. J. Compos. Sci. 2023, 7, 153. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Q.; Yu, X.; Luo, X.; Jiang, H. Effect of annealing and heat-moisture pretreatment on the quality of 3D-printed wheat starch gels. Innov. Food Sci. Emerg. 2023, 84, 103274. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, J.; Wu, J.; Gao, X. Exploring the impact of cellulose nanocrystals and annealing treatment on the interlayer bond strength of polylactic acid 3D printed composites. J. Appl. Polym. Sci. 2024, 141, 54956. [Google Scholar] [CrossRef]
- Yu, W.; Wang, X.; Yin, X.; Ferraris, E.; Zhang, J. The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts. Mater. Des. 2023, 226, 111687. [Google Scholar] [CrossRef]
- Liesenfeld, J.; Jablonski, J.J.; da Silva, J.R.F.; Buenos, A.A.; Scheuer, C.J. Impact of annealing on the characteristics of 3D-printed graphene-reinforced PLA composite. J. Manuf. Process. 2024, 128, 133–157. [Google Scholar] [CrossRef]
- Chueca de Bruijn, A.; Gómez-Gras, G.; Fernández-Ruano, L.; Farràs-Tasias, L.; Pérez, M.A. Optimization of a combined thermal annealing and isostatic pressing process for mechanical and surface enhancement of Ultem FDM parts using Doehlert experimental designs. J. Manuf. Process. 2023, 85, 1096–1115. [Google Scholar] [CrossRef]
- Ahmad, W.; Khan, H.A.; Salik, S.; Ali, H.Q.; Khushbash, S.; Qureshi, Z.A. Extrusion-based additive manufacturing of CFRP/steel/CFRP multi-material structure: Process development and influence of heat treatment on the mechanical performance. J. Manuf. Process. 2024, 124, 891–908. [Google Scholar] [CrossRef]
- Handwerker, M.; Wellnitz, J.; Marzbani, H.; Tetzlaff, U. Annealing of chopped and continuous fibre reinforced polyamide 6 produced by fused filament fabrication. Compos. Part B Eng. 2021, 223, 109119. [Google Scholar] [CrossRef]
- Wang, P.; Zou, B. Improvement of Heat Treatment Process on Mechanical Properties of FDM 3D-Printed Short- and Continuous-Fiber-Reinforced PEEK Composites. Coatings 2022, 12, 827. [Google Scholar] [CrossRef]
- Muna, I.I.; Mieloszyk, M.; Rimasauskiene, R.; Maqsood, N.; Rimasauskas, M. Thermal Effects on Mechanical Strength of Additive Manufactured CFRP Composites at Stable and Cyclic Temperature. Polymers 2022, 14, 4680. [Google Scholar] [CrossRef] [PubMed]
- Markforged. Markforged Mark Two Printer. 2023. Available online: https://markforged.com/3d-printers/mark-two (accessed on 15 May 2023).
- Le Duigou, A.; Barbé, A.; Guillou, E.; Castro, M. 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater. Des. 2019, 180, 107884. [Google Scholar] [CrossRef]
- Terekhina, S.; Egorov, S.; Tarasova, T.; Skornyakov, I.; Guillaumat, L.; Hattali, M.L. In-nozzle impregnation of continuous textile flax fiber/polyamide 6 composite during FFF process. Compos. Part A Appl. Sci. Manuf. 2022, 153, 106725. [Google Scholar] [CrossRef]
- Tian, X.; Todoroki, A.; Liu, T.; Wu, L.; Hou, Z.; Ueda, M.; Hirano, Y.; Matsuzaki, R.; Mizukami, K.; Iizuka, K.; et al. 3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective. Chin. J. Mech. Eng. 2022, 1, 100016. [Google Scholar] [CrossRef]
- Markforged. Micro Carbon Fiber Filled Nylon that Forms the Foundation of Markforged Composite Parts. 2023. Available online: https://markforged.com/materials/plastics/onyx?__geom=%E2%9C%AA (accessed on 17 May 2023).
- Markforged. Markforged Material Datasheet—Composites. Available online: https://www-objects.markforged.com/craft/materials/CompositesV5.2.pdf (accessed on 18 November 2022).
- Spina, R. Performance Analysis of Colored PLA Products with a Fused Filament Fabrication Process. Polymers 2019, 11, 1984. [Google Scholar] [CrossRef] [PubMed]
- Standard Test Method for Tensile Properties of Plastics, International, A. 2022. Available online: https://compass.astm.org/document/?contentCode=ASTM%7CD0638-22%7Cen-US (accessed on 18 December 2022).
- Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, International, A. 2022. Available online: https://compass.astm.org/document/?contentCode=ASTM%7CD3039_D3039M-08%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true (accessed on 18 December 2022).
- Li, J.; Xu, S.; Durandet, Y.; Gao, W.; Huang, X.; Ruan, D. Strain rate dependence of 3D printed continuous fiber reinforced composites. Compos. Part B Eng. 2024, 277, 111415. [Google Scholar] [CrossRef]
- Klift, F.V.D.; Koga, Y.; Todoroki, A.; Ueda, M.; Hirano, Y.; Matsuzaki, R. 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens. Open J. Compos. Mater. 2016, 6, 18–27. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, J.G.; Pertúz-Comas, A.D.; González-Estrada, O.A. Mechanical properties for long fibre reinforced fused deposition manufactured composites. Compos. Part B Eng. 2021, 211, 108657. [Google Scholar] [CrossRef]
- Melenka, G.W.; Cheung, B.K.O.; Schofield, J.S.; Dawson, M.R.; Carey, J.P. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos. Struct. 2016, 153, 866–875. [Google Scholar] [CrossRef]
- Owolabi, G.M.; Thom, M.; Ajide, O.O.; Kumar, N.; Odeshi, A.G.; Warner, G. Tensile Properties and Fractography of Three AA 2000 Series Aluminum Alloys Used for Aerospace Applications. Trans. Indian Inst. Met. 2019, 72, 2623–2630. [Google Scholar] [CrossRef]
- Sandoval, J.H.; Mohamed, A.M.A.; Valtierra, S.; Samuel, F.H. Mechanical Performance of a Cast A354 Aluminium Alloy. Mater. Sci. Forum 2014, 794–796, 489–494. [Google Scholar] [CrossRef]
- Merayo, D.; Rodríguez-Prieto, A.; Camacho, A.M. Prediction of the Bilinear Stress-Strain Curve of Aluminum Alloys Using Artificial Intelligence and Big Data. Metals 2020, 10, 904. [Google Scholar] [CrossRef]
- Jin, J.; Geng, S.; Shu, L.; Jiang, P.; Shao, X.; Han, C.; Ren, L.; Li, Y.; Yang, L.; Wang, X. High-strength and crack-free welding of 2024 aluminium alloy via Zr-core-Al-shell wire. Nat. Commun. 2024, 15, 1748. [Google Scholar] [CrossRef]
- Bertran, X.; Labrugère, C.; Dourges, M.A.; Rebillat, F. Oxidation Behavior of PAN-based Carbon Fibers and the Effect on Mechanical Properties. Oxid. Met. 2013, 80, 299–309. [Google Scholar] [CrossRef]
- Hahn, H.T. Residual Stresses in Polymer Matrix Composite Laminates. J. Compos. Mater. 1976, 10, 266–278. [Google Scholar] [CrossRef]
- Hahn, H.T.; Pagano, N.J. Curing Stresses in Composite Laminates. J. Compos. Mater. 1975, 9, 91–106. [Google Scholar] [CrossRef]
- Fletcher, A.J.; Oakeshott, J.L. Thermal residual microstress generation during the processing of unidirectional carbon fibre/epoxy resin composites: Regular fibre arrays. Composites 1994, 25, 797–805. [Google Scholar] [CrossRef]
- Villeneuve, J.F.; Naslain, R.; Fourmeaux, R.; Sevely, J. Longitudinal/radial thermal expansion and poisson ratio of some ceramic fibres as measured by transmission electron microscopy. Compos. Sci. Technol. 1993, 49, 89–103. [Google Scholar] [CrossRef]
- Ahmed, A.; Tavakol, B.; Das, R.; Joven, R.; Roozbehjavan, P.; Minaie, B. Study of Thermal Expansion in Carbon Fiber Reinforced Polymer Composites. In Proceedings of the SAMPE International Symposium Proceedings, Charleston, SC, USA, 22–24 May 2012; p. 13. [Google Scholar]
- Wang, Z.L.; Tang, D.W.; Zhang, W.G. Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fibre. J. Phys. D Appl. Phys. 2007, 40, 4686. [Google Scholar] [CrossRef]
- Mulholland, T.; Felber, R.; Rudolph, N. Design and Additive Manufacturing of a Composite Crossflow Heat Exchanger. In Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 7–9 August 2017. [Google Scholar]
- Hsueh, C.H. Thermal stresses in elastic multilayer systems. Thin Solid Film. 2002, 418, 182–188. [Google Scholar] [CrossRef]
- Lupone, F.; Padovano, E.; Venezia, C.; Badini, C. Experimental Characterization and Modeling of 3D Printed Continuous Carbon Fibers Composites with Different Fiber Orientation Produced by FFF Process. Polymers 2022, 14, 426. [Google Scholar] [CrossRef]
- Ju, J.; Yang, N.; Yu, L.; Zhang, Z.; Jiang, H.; Wu, W.; Ma, G. Experiment and Simulation Study on the Crashworthiness of Markforged 3D-Printed Carbon/Kevlar Hybrid Continuous Fiber Composite Honeycomb Structures. Materials 2025, 18, 192. [Google Scholar] [CrossRef]
- Saidane, E.H.; Arnold, G.; Louis, P.; Pac, M.-J. 3D printed continuous glass fibre-reinforced polyamide composites: Fabrication and mechanical characterisation. J. Reinf. Plast. Compos. 2022, 41, 284–295. [Google Scholar] [CrossRef]
- Faust, J.L.; Kelly, P.G.; Jones, B.D.; Roy-Mayhew, J.D. Effects of Coefficient of Thermal Expansion and Moisture Absorption on the Dimensional Accuracy of Carbon-Reinforced 3D Printed Parts. Polymers 2021, 13, 3637. [Google Scholar] [CrossRef]
- Chung, D.D.L. 7-Carbon-Matrix Composites. In Carbon Composites, 2nd ed.; Chung, D.D.L., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 387–466. [Google Scholar]
- Christine. Carbon Fiber Characteristics. 2023. Available online: https://www.christinedemerchant.com/carboncharacteristics.html (accessed on 20 March 2023).
- Wong, T.G. Low Thermal Expansion. 2023. Available online: https://www.ngfworld.com/en/fiber/low_thermal_expansion.html (accessed on 20 October 2023).
- Chu, X.; Wu, Z.; Huang, R.; Zhou, Y.; Li, L. Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics 2010, 50, 84–88. [Google Scholar] [CrossRef]
- Rojstaczer, S.; Cohn, D.; Marom, G. Thermal-Expansion of Kevlar Fibers and Composites. J. Mater. Sci. Lett. 1985, 4, 1233–1236. [Google Scholar] [CrossRef]
- CST Aramid (Kevlar®) Yarn Data. 2023. Available online: https://www.cstsales.com/kevlar_yarn_data.html (accessed on 22 October 2023).
- DuPont. Kevlar® Aramid Fiber Technical Guide. 2017. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/Kevlar_Technical_Guide_0319.pdf (accessed on 22 October 2023).
- MatWeb. Arlon Electronic Materials 45NK Woven Kevlar® Reinforced Laminate and Prepreg. Available online: https://www.matweb.com/search/DataSheet.aspx?MatGUID=accc6aafb7cf435a8a50ebfeb7a29c88&ckck=1 (accessed on 22 October 2023).
- Fakirov, S.K. Reorganization processes proceeding in a microcalorimeter (How reliable is the DSC method?). Polym. Sci. U.S.S.R. 1990, 32, 818–822. [Google Scholar] [CrossRef]
- Murthy, N.S.; Curran, S.A.; Aharoni, S.M.; Minor, H. Premelting Crystalline Relaxations and Phase-Transitions in Nylon-6 and 6,6. Macromolecules 1991, 24, 3215–3220. [Google Scholar] [CrossRef]
- Ramesh, C.; Gowd, E.B. High-temperature X-ray diffraction studies on the crystalline transitions in the α- and γ-forms of nylon-6. Macromolecules 2001, 34, 3308–3313. [Google Scholar] [CrossRef]
- Pascual-González, C.; Iragi, M.; Fernández, A.; Fernández-Blázquez, J.P.; Aretxabaleta, L.; Lopes, C.S. An approach to analyse the factors behind the micromechanical response of 3D-printed composites. Compos. Part B Eng. 2020, 186, 107820. [Google Scholar] [CrossRef]
- Yang, C.C.; Tian, X.Y.; Li, D.C.; Cao, Y.; Zhao, F.; Shi, C.Q. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J. Mater. Process. Technol. 2017, 248, 1–7. [Google Scholar] [CrossRef]
- Millot, C.; Fillot, L.; Lame, O.; Sotta, P. Assessment of polyamide-6 crystallinity by DSC: Temperature dependence of the melting enthalpy. J. Therm. Anal. Calorim. 2015, 122, 307–314. [Google Scholar] [CrossRef]
- Awaja, F. Autohesion of polymers. Polymer 2016, 97, 387–407. [Google Scholar] [CrossRef]
- Yebra-Rodríguez, A.; Alvarez-Lloret, P.; Cardell, C.; Rodríguez-Navarro, A.B. Crystalline properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Appl. Clay Sci. 2009, 43, 91–97. [Google Scholar] [CrossRef]
- Ito, M.; Mizuochi, K.; Kanamoto, T. Effects of crystalline forms on the deformation behaviour of nylon-6. Polymer 1998, 39, 4593–4598. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, L.; Guan, F.; Gao, Y.; Hedin, N.E.; Zhu, L.; Fong, H. Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon 6 Nanofibers. Macromolecules 2007, 40, 6283–6290. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ren, X.; Yang, T.; Jiang, X.; Chang, W.; Yang, S.; Stroeks, A.; Chen, E. Revisiting the Thermal Transition of β-Form Polyamide-6: Evolution of Structure and Morphology in Uniaxially Stretched Films. Macromolecules 2018, 51, 137–150. [Google Scholar] [CrossRef]
- Salvi, A.; Marzullo, F.; Ostrowska, M.; Dotelli, G. Thermal Degradation of Glass Fibre-Reinforced Polyamide 6,6 Composites: Investigation by Accelerated Thermal Ageing. Polymers 2025, 17, 509. [Google Scholar] [CrossRef]
- Liao, D.; Gu, T.; Yan, J.; Yu, Z.; Dou, J.; Liu, J.; Zhao, F.; Wang, J. Effect of thermal aging on the microscale mechanical response behavior of glass fiber/epoxy composites. J. Mater. Sci. 2024, 59, 15298–15314. [Google Scholar] [CrossRef]
- Guo, M.; Liu, G.; Liao, S. Normalized techno-economic index for renewable energy system assessment. Int. J. Electr. Power Energy Syst. 2021, 133, 107262. [Google Scholar] [CrossRef]
Material | Onyx | CFF | GFF | KFF |
---|---|---|---|---|
Tensile strength (MPa) | 40 | 800 | 590 | 610 |
Young’s modulus (GPa) | 2.4 | 60 | 21 | 27 |
Failure strain (mm/mm) 1 | 0.250 | 0.015 | 0.038 | 0.027 |
Heat deflection temperature (°C) | 145 | 105 | 105 | 105 |
Density (g/cm3) | 1.2 | 1.4 | 1.5 | 1.2 |
Specimen | Onyx Layers | Fibre-Reinforced Layers | Layer Thickness 1 (mm) | Onyx Volume 2 (cm3) | Fibre Filament Volume 2 (cm3) | Fibre Filament Vf |
---|---|---|---|---|---|---|
CFF/Onyx | 1–5, 10–11, 16–20 | 6–9, 12–15 | 0.125 | 10.30 | 5.24 | 33.72% |
GFF/Onyx | 1–5, 11–15, 21–25 | 6–10, 16–20 | 0.1 | 10.32 | 5.35 | 34.14% |
KFF/Onyx | 1–5, 11–15, 21–25 | 6–10, 16–20 | 0.1 | 10.32 | 5.45 | 34.56% |
Fibre Filament | Average Diameter (mm) | Young’s Modulus (GPa) | UTS (MPa) | Failure Strain (mm/mm) |
---|---|---|---|---|
CFFas-received | 0.363 | 48 ± 3 | 1494 ± 44 | 0.04 ± 0.00 |
CFFannealed | 0.379 | 49 ± 3 | 978 ± 233 | 0.02 ± 0.01 |
GFFas-received | 0.332 | 16 ± 1 | 516 ± 46 | 0.03 ± 0.00 |
GFFannealed | 0.293 | 25 ± 2 | 1196 ± 134 | 0.05 ± 0.01 |
KFFas-received | 0.315 | 27 ± 1 | 625 ± 72 | 0.02 ± 0.00 |
KFFannealed | 0.305 | 35 ± 3 | 1070 ± 76 | 0.03 ± 0.00 |
Specimen | Young’s Modulus (GPa) | UTS (MPa) | Failure Strain (mm/mm) |
---|---|---|---|
AP | 0.94 ± 0.05 | 34 ± 1 | 0.26 ± 0.03 |
N2 | 1.34 ± 0.14 | 37 ± 1 | 0.20 ± 0.02 |
FO150 | 1.49 ± 0.00 | 50 ± 1 | 0.16 ± 0.01 |
N2+FO150 | 2.58 ± 0.01 | 49 ± 1 | 0.10 ± 0.01 |
Material | Scenario | Young’s Modulus (GPa) | UTS (MPa) | Failure Strain (mm/mm) |
---|---|---|---|---|
CFF/Onyx | AP | 25.89 ± 0.32 | 376.27 ± 15.98 | 0.015 ± 0.001 |
N2 | 30.50 ± 1.47 | 360.27 ± 5.39 | 0.012 ± 0.000 | |
FO90 | 24.63 ± 0.56 | 338.59 ± 24.46 | 0.014 ± 0.001 | |
FO150 | 27.16 ± 0.56 | 325.54 ± 17.18 | 0.012 ± 0.001 | |
FO180 | 22.83 ± 2.96 | 307.22 ± 40.97 | 0.017 ± 0.003 | |
N2+FO150 | 30.61 ± 0.82 | 328.89 ± 8.63 | 0.011 ± 0.000 | |
GFF/Onyx | AP | 9.93 ± 0.24 | 316.20 ± 0.02 | 0.034 ± 0.000 |
N2 | 9.38 ± 0.05 | 373.49 ± 3.33 | 0.042 ± 0.000 | |
FO90 | 9.84 ± 0.09 | 337.01 ± 6.33 | 0.034 ± 0.001 | |
FO150 | 10.35 ± 0.18 | 385.75 ± 15.43 | 0.038 ± 0.002 | |
FO180 | 9.78 ± 0.29 | 374.24 ± 3.27 | 0.039 ± 0.001 | |
N2+FO150 | 9.63 ± 0.03 | 399.00 ± 17.19 | 0.044 ± 0.002 | |
KFF/Onyx | AP | 12.50 ± 0.08 | 236.33 ± 4.09 | 0.020 ± 0.000 |
N2 | 14.87 ± 0.76 | 274.07 ± 10.76 | 0.019 ± 0.000 | |
FO90 | 13.88 ± 0.04 | 247.06 ± 9.94 | 0.018 ± 0.000 | |
FO150 | 14.50 ± 0.15 | 260.09 ± 6.34 | 0.018 ± 0.000 | |
FO180 | 14.09 ± 0.65 | 254.00 ± 40.09 | 0.018 ± 0.002 | |
N2+FO150 | 15.43 ± 0.75 | 294.33 ± 10.76 | 0.020 ± 0.000 |
Material | Scenario | Failure Mode | Description |
---|---|---|---|
CFF/Onyx | AP | LGT | L-lateral failure, G-gauge area, T-top location |
FO150 | M(xyz)GT | M(xyz)-multi-modes, G-gauge area, T-top location | |
N2 | M(xyz)GT | M(xyz)-multi-modes, G-gauge area, T-top location | |
N2+FO150 | M(xyz)GT | M(xyz)-multi-modes, G-gauge area, T-top location | |
GFF/Onyx | AP | AGB | A-angled failure, G-gauge area, B-bottom location |
FO150 | XGM | X-explosive failure, G-gauge area, M-middle location | |
N2 | XGV | X-explosive failure, G-gauge area, V-various locations | |
N2+FO150 | XGV | X-explosive failure, G-gauge area, V-various locations | |
KFF/Onyx | AP | LGT | L-lateral failure, G-gauge area, T-top location |
FO150 | AGB | A-angled failure, G-gauge area, B-bottom location | |
N2 | XGV | X-explosive failure, G-gauge area, V-various locations | |
N2+FO150 | M(xyz)GB | M(xyz)-multi-modes, G-gauge area, B-bottom location |
Material | Scenario | Melting Point (°C) | Melting Peak (J/g) | ||
---|---|---|---|---|---|
1st Heating Run | 2nd Heating Run | 1st Heating Run | 2nd Heating Run | ||
Onyx | AP | 203 | 198 | 18.6 | 14.3 |
FO150 | 201 | 200 | 26.8 | 18.5 | |
CFF/Onyx | AP | 199 | 198 | 8.0 | 7.1 |
FO150 | 201 | 199 | 13.1 | 8.5 | |
GFF/Onyx | AP | 200 | 199 | 13.2 | 11.8 |
FO150 | 201 | 200 | 14.1 | 10.2 | |
KFF/Onyx | AP | 198 | 198 | 12.0 | 12.0 |
FO150 | 200 | 200 | 20.8 | 15.0 |
Specimen | 2θ at Peak (°) | d Spacing (nm) | 1 (%) |
---|---|---|---|
Onyx_AP | 24.77 | 0.417 | 22.0 |
Onyx_FO150 (1st peak) | 23.76 | 0.435 | 24.4 |
Onyx_FO150 (2nd peak) | 24.98 | 0.414 | |
Onyx_FO150 (3rd peak) | 26.34 | 0.393 | |
Onyx_FO180 (1st peak) | 23.44 | 0.441 | 21.4 |
Onyx_FO180 (2nd peak) | 24.63 | 0.420 | |
Onyx_FO180 (3rd peak) | 27.17 | 0.381 | |
Onyx_FO220 (1st peak) | 23.67 | 0.436 | 16.0 |
Onyx_FO220 (2nd peak) | 26.81 | 0.386 | |
GFF/Onyx_AP | 24.97 | 0.414 | 20.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Li, J.; Durandet, Y.; Sola, A.; Trinchi, A.; Tran, P.; Gao, W.; Liu, X.; Ruan, D. Advancing the Capability of Additively Manufactured Continuous Fibre-Reinforced Polymers for Structural Applications: The Effect of Nitrogen-Purging and Post-Annealing on the Tensile Performance. Polymers 2025, 17, 2314. https://doi.org/10.3390/polym17172314
Peng Z, Li J, Durandet Y, Sola A, Trinchi A, Tran P, Gao W, Liu X, Ruan D. Advancing the Capability of Additively Manufactured Continuous Fibre-Reinforced Polymers for Structural Applications: The Effect of Nitrogen-Purging and Post-Annealing on the Tensile Performance. Polymers. 2025; 17(17):2314. https://doi.org/10.3390/polym17172314
Chicago/Turabian StylePeng, Zizhao, Jiahui Li, Yvonne Durandet, Antonella Sola, Adrian Trinchi, Phuong Tran, Wei Gao, Xuemei Liu, and Dong Ruan. 2025. "Advancing the Capability of Additively Manufactured Continuous Fibre-Reinforced Polymers for Structural Applications: The Effect of Nitrogen-Purging and Post-Annealing on the Tensile Performance" Polymers 17, no. 17: 2314. https://doi.org/10.3390/polym17172314
APA StylePeng, Z., Li, J., Durandet, Y., Sola, A., Trinchi, A., Tran, P., Gao, W., Liu, X., & Ruan, D. (2025). Advancing the Capability of Additively Manufactured Continuous Fibre-Reinforced Polymers for Structural Applications: The Effect of Nitrogen-Purging and Post-Annealing on the Tensile Performance. Polymers, 17(17), 2314. https://doi.org/10.3390/polym17172314