Performance Enhancement of Lightweight PLA Parts Printed by FFF Using Taguchi–GRA Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Design and 3D Printing Setup
2.3. Experimental Design
2.4. Mechanical Testing
2.5. Statistical and Multi-Objective Optimization Methods
2.5.1. Signal-to-Noise Ratio (S/N)
2.5.2. Grey Relational Analysis (GRA)
2.5.3. Analysis of Variance (ANOVA)
3. Results and Discussions
3.1. Tensile Strength Analysis
3.2. Flexural Strength Analysis
3.3. Material Consumption Analysis
3.4. GRA Analysis
3.5. Comparison with Conventional PLA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | Additive manufacturing |
ANOVA | Analysis of variance |
DoE | Design of experiment |
FFF | Fused filament fabrication |
Fs | Flexural strength |
GRA | Grey relational analysis |
GRC | Grey relational coefficient |
GRG | Grey relational grade |
Id | Infill density |
Ip | Infill pattern |
Lh | Layer height |
Mc | Material consumption |
Mf | Material flow |
PLA | Polylactic acid |
SLA | Stereolithography |
SLS | Selective laser sintering |
S/N | Signal-to-noise |
Ts | Tensile strength |
UAV | Unmanned aerial vehicle |
Wlc | Wall line count |
References
- Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R.B. Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review. Addit. Manuf. 2018, 21, 1–16. [Google Scholar] [CrossRef]
- Tunçel, O.; Kahya, Ç.; Tüfekci, K. Optimization of Flexural Performance of PETG Samples Produced by Fused Filament Fabrication with Response Surface Method. Polymers 2024, 16, 2020. [Google Scholar] [CrossRef]
- Patel, A.; Taufik, M. Advances in Nanocomposite Material for Fused Filament Fabrication. Polym. Technol. Mater. 2022, 61, 1617–1661. [Google Scholar] [CrossRef]
- Gao, X.; Qi, S.; Kuang, X.; Su, Y.; Li, J.; Wang, D. Fused Filament Fabrication of Polymer Materials: A Review of Interlayer Bond. Addit. Manuf. 2021, 37, 101658. [Google Scholar] [CrossRef]
- Tunçel, O.; Tüfekci, K.; Kahya, Ç. Multi-Objective Optimization of 3D Printing Process Parameters Using Gray-Based Taguchi for Composite PLA Parts. Polym. Compos. 2024, 45, 12870–12884. [Google Scholar] [CrossRef]
- Bhagia, S.; Bornani, K.; Agarwal, R.; Satlewal, A.; Ďurkovič, J.; Lagaňa, R.; Bhagia, M.; Yoo, C.G.; Zhao, X.; Kunc, V.; et al. Critical Review of FDM 3D Printing of PLA Biocomposites Filled with Biomass Resources, Characterization, Biodegradability, Upcycling and Opportunities for Biorefineries. Appl. Mater. Today 2021, 24, 101078. [Google Scholar] [CrossRef]
- Butt, J.; Bhaskar, R.; Mohaghegh, V. Investigating the Effects of Extrusion Temperatures and Material Extrusion Rates on FFF-Printed Thermoplastics. Int. J. Adv. Manuf. Technol. 2021, 117, 2679–2699. [Google Scholar] [CrossRef]
- Dave, H.K.; Patadiya, N.H.; Prajapati, A.R.; Rajpurohit, S.R. Effect of Infill Pattern and Infill Density at Varying Part Orientation on Tensile Properties of Fused Deposition Modeling-Printed Poly-Lactic Acid Part. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 1811–1827. [Google Scholar] [CrossRef]
- Gupta, A.; Sachdeva, A.; Kumar, N. Evaluating the Mechanical Characteristics of Graphene Nanoparticle-Infused Polyurethane Coating on Low-Density Polylactic Acid Part. J. Mater. Eng. Perform. 2025, 34, 17093–17105. [Google Scholar] [CrossRef]
- Kechagias, J.; Zaoutsos, S. Effects of 3D-Printing Processing Parameters on FFF Parts’ Porosity: Outlook and Trends. Mater. Manuf. Process. 2024, 39, 804–814. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Vidakis, N.; Petousis, M.; Mountakis, N. A Multi-Parametric Process Evaluation of the Mechanical Response of PLA in FFF 3D Printing. Mater. Manuf. Process. 2023, 38, 941–953. [Google Scholar] [CrossRef]
- Chahdoura, S.; Bahloul, R.; Tlija, M.; Tahan, A. Multi-Objective Optimization of PLA-FDM Parameters for Enhancement of Industrial Product Mechanical Performance Based on GRA-RSM and BBD. Prog. Addit. Manuf. 2024, 10, 1355–1383. [Google Scholar] [CrossRef]
- Atakok, G.; Kam, M.; Koc, H.B. Tensile, Three-Point Bending and Impact Strength of 3D Printed Parts Using PLA and Recycled PLA Filaments: A Statistical Investigation. J. Mater. Res. Technol. 2022, 18, 1542–1554. [Google Scholar] [CrossRef]
- Lubombo, C.; Huneault, M.A. Effect of Infill Patterns on the Mechanical Performance of Lightweight 3D-Printed Cellular PLA Parts. Mater. Today Commun. 2018, 17, 214–228. [Google Scholar] [CrossRef]
- Griffiths, C.A.; Rees, A.; Morgan, A.; Korkees, F. Optimisation of 3D Printing for Microcellular Polymers. Polymers 2023, 15, 3910. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, V.E.; Solonin, A.N.; Tavitov, A.; Urzhumtsev, O.; Vakulik, A. Increasing Strength of FFF Three-Dimensional Printed Parts by Influencing on Temperature-Related Parameters of the Process. Rapid Prototyp. J. 2020, 26, 107–121. [Google Scholar] [CrossRef]
- Ghorbani, J.; Koirala, P.; Shen, Y.L.; Tehrani, M. Eliminating Voids and Reducing Mechanical Anisotropy in Fused Filament Fabrication Parts by Adjusting the Filament Extrusion Rate. J. Manuf. Process. 2022, 80, 651–658. [Google Scholar] [CrossRef]
- Rabinowitz, A.; DeSantis, P.M.; Basgul, C.; Spece, H.; Kurtz, S.M. Taguchi Optimization of 3D Printed Short Carbon Fiber Polyetherketoneketone (CFR PEKK). J. Mech. Behav. Biomed. Mater. 2023, 145, 105981. [Google Scholar] [CrossRef]
- Tunçel, O. Optimization of Charpy Impact Strength of Tough PLA Samples Produced by 3D Printing Using the Taguchi Method. Polymers 2024, 16, 459. [Google Scholar] [CrossRef]
- Kahya, Ç.; Tunçel, O.; Çavuşoğlu, O.; Tüfekci, K. Thermal Annealing Optimization for Improved Mechanical Performance of PLA Parts Produced via 3D Printing. Polym. Test. 2025, 144, 108735. [Google Scholar] [CrossRef]
- Madhavi, S.; Sreeramulu, D.; Venkatesh, M. Optimization of Turning Process Parameters by Using Grey-Taguchi. Int. J. Eng. Sci. Technol. 2016, 7, 1. [Google Scholar] [CrossRef]
- Yuce, B.E.; Oral, F. Multi Objective Optimization of Emission and Performance Characteristics in a Spark Ignition Engine with a Novel Hydrogen Generator. Energy 2024, 289, 129957. [Google Scholar] [CrossRef]
- Aslani, K.E.; Kitsakis, K.; Kechagias, J.D.; Vaxevanidis, N.M.; Manolakos, D.E. On the Application of Grey Taguchi Method for Benchmarking the Dimensional Accuracy of the PLA Fused Filament Fabrication Process. SN Appl. Sci. 2020, 2, 1016. [Google Scholar] [CrossRef]
- Mishra, V.; Negi, S.; Bharat, N.; Veeman, D.; Kumar, V. Effect of FFF Parameters on PLA/WD Composite Properties: Comparative Analysis Using Taguchi and GRA Approach. J. Reinf. Plast. Compos. 2025. [Google Scholar] [CrossRef]
- Park, Y.E.; Lee, S. Characterization of PLA/LW-PLA Composite Materials Manufactured by Dual-Nozzle FDM 3D-Printing Processes. Polymers 2024, 16, 2852. [Google Scholar] [CrossRef]
- Yousefi Kanani, A.; Rennie, A.E.W.; Abd Rahim, S.Z. Bin Additively Manufactured Foamed Polylactic Acid for Lightweight Structures. Rapid Prototyp. J. 2023, 29, 50–66. [Google Scholar] [CrossRef]
- Damanpack, A.R.; Sousa, A.; Bodaghi, M. Porous Plas with Controllable Density by Fdm 3d Printing and Chemical Foaming Agent. Micromachines 2021, 12, 866. [Google Scholar] [CrossRef]
- Nofar, M.; Utz, J.; Geis, N.; Altstädt, V.; Ruckdäschel, H. Foam 3D Printing of Thermoplastics: A Symbiosis of Additive Manufacturing and Foaming Technology. Adv. Sci. 2022, 9, 2105701. [Google Scholar] [CrossRef]
- Tao, Y.; Li, P.; Zhang, H.; Shi, S.Q.; Zhang, J.; Yin, Q. Compression and Flexural Properties of Rigid Polyurethane Foam Composites Reinforced with 3D-Printed Polylactic Acid Lattice Structures. Compos. Struct. 2022, 279, 114866. [Google Scholar] [CrossRef]
- Prajapati, M.J.; Kumar, A.; Lin, S.C.; Jeng, J.Y. Multi-Material Additive Manufacturing with Lightweight Closed-Cell Foam-Filled Lattice Structures for Enhanced Mechanical and Functional Properties. Addit. Manuf. 2022, 54, 102766. [Google Scholar] [CrossRef]
- Kumar, K.; Singh, H. Parametric Optimization of the 3D Printing Process for Dimensional Accuracy of Biopolymer Parts Using the Grey–Taguchi Method. Iran. J. Sci. Technol.-Trans. Mech. Eng. 2024, 48, 1101–1116. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- TS EN ISO 178; Plastics—Determination of Flexural Properties. International Organization for Standardization: Geneva, Switzerland, 2011.
- Tüfekci, K.; Çakan, B.G.; Küçükakarsu, V.M. Stress Relaxation of 3D Printed PLA of Various Infill Orientations under Tensile and Bending Loadings. J. Appl. Polym. Sci. 2023, 140, e54463. [Google Scholar] [CrossRef]
- Canbolat, A.S.; Bademlioglu, A.H.; Kaynakli, O. Thermohydraulic Performance Optimization of Automobile Radiators Using Statistical Approaches. J. Therm. Sci. Eng. Appl. 2022, 14, 051014. [Google Scholar] [CrossRef]
- Zirak, N.; Benfriha, K.; Shakeri, Z.; Shirinbayan, M.; Fitoussi, J.; Tcharkhtchi, A. Interlayer Bonding Improvement and Optimization of Printing Parameters of FFF Polyphenylene Sulfide Parts Using GRA Method. Prog. Addit. Manuf. 2024, 9, 505–516. [Google Scholar] [CrossRef]
- Mishra, V.; Bharat, N.; Kumar, V.; Vellaisamy, M.; Veeman, D. Multi-Objective Optimization of 3D Printed PLA/Carbon Fibre Composite Using a Combined Approach of Gray Relational Analysis and ANOVA. J. Thermoplast. Compos. Mater. 2025, 1–20. [Google Scholar] [CrossRef]
- Tripathy, C.R.; Sharma, R.K.; Rattan, V.K. An Investigation on Mechanical Strength of Fused Filament Fabricated and Injection Molded ASA Parts. J. Micromanuf. 2025, 8, 44–59. [Google Scholar] [CrossRef]
- Gawali, S.K.; Jain, P.K. Optimization of FFF Parameters for Mechanical Performance Enhancement of ASA Polymer in Outdoor Applications. Int. J. Interact. Des. Manuf. 2025. [Google Scholar] [CrossRef]
- Zandi, M.D.; Jerez-Mesa, R.; Lluma-Fuentes, J.; Roa, J.J.; Travieso-Rodriguez, J.A. Experimental Analysis of Manufacturing Parameters’ Effect on the Flexural Properties of Wood-PLA Composite Parts Built through FFF. Int. J. Adv. Manuf. Technol. 2020, 106, 3985–3998. [Google Scholar] [CrossRef]
- Zaoutsos, S.P.; Kechagias, J.D. Optimizing Bonding Conditions between Multilayer FFF Material Extrusion. Mater. Manuf. Process. 2025, 40, 499–506. [Google Scholar] [CrossRef]
- Agrawal, A.P.; Kumar, V.; Kumar, J.; Paramasivam, P.; Dhanasekaran, S.; Prasad, L. An Investigation of Combined Effect of Infill Pattern, Density, and Layer Thickness on Mechanical Properties of 3D Printed ABS by Fused Filament Fabrication. Heliyon 2023, 9, e16531. [Google Scholar] [CrossRef]
- Vidakis, N.; Kechagias, J.D.; Petousis, M.; Vakouftsi, F.; Mountakis, N. The Effects of FFF 3D Printing Parameters on Energy Consumption. Mater. Manuf. Process. 2023, 38, 915–932. [Google Scholar] [CrossRef]
- Bademlioglu, A.H.; Canbolat, A.S.; Kaynakli, O. Multi-Objective Optimization of Parameters Affecting Organic Rankine Cycle Performance Characteristics with Taguchi-Grey Relational Analysis. Renew. Sustain. Energy Rev. 2020, 117, 109483. [Google Scholar] [CrossRef]
Value | |
---|---|
Filament diameter | 1.75 mm |
Material type | LW-PLA |
Density (unfoamed) | 1.20 g/cm3 |
Tolerance | ±0.03 mm |
Recommended print temperature | 195–260 °C |
Bed temperature (optional) | 45–65 °C |
Foaming activation temperature | ~230 °C |
Tensile strength | 30–32 MPa |
Elongation at break | 6–8% |
MFI (210 °C/2.16 kg) | 6 |
Heat resistance | 55 °C |
Manufacturer | Filameon (Türkiye) |
Symbol | Parameters | Unit | Levels | |||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
Id | Infill density | % | 30 | 40 | 50 | 60 |
Mf | Material flow | % | 55 | 60 | 65 | 70 |
Wlc | Wall line count | - | 1 | 2 | 3 | 4 |
Ip | Infill pattern | - | Line (L) | Grid (Gr) | Gyroid (Gy) | ZigZag (Z) |
Parameter | Unit | Value |
---|---|---|
Nozzle diameter | mm | 0.4 |
Layer height | mm | 0.2 |
Top and bottom layers | - | 2 |
Print speed | mm/s | 40 |
Nozzle temperature | °C | 230 |
Table temperature | °C | 60 |
Raster angle | ° | 45/−45 |
Fan speed | % | 50 |
Retraction | - | Disable |
Exp. No. | Parameters | Results | |||||
---|---|---|---|---|---|---|---|
Id (%) | Mf (%) | Wlc | Ip | Ts (MPa) ± sd | Fs (MPa) ± sd | Mc (g) ± sd | |
1 | 30 | 55 | 1 | L | 5.13 ± 0.11 | 10.10 ± 0.06 | 2.80 ± 0.08 |
2 | 30 | 60 | 2 | Gr | 7.67 ± 0.09 | 12.94 ± 0.16 | 3.35 ± 0.09 |
3 | 30 | 65 | 3 | Gy | 10.53 ± 0.18 | 16.07 ± 0.18 | 3.98 ± 0.11 |
4 | 30 | 70 | 4 | Z | 12.98 ± 0.17 | 19.84 ± 0.22 | 4.73 ± 0.11 |
5 | 40 | 55 | 2 | Gy | 7.36 ± 0.21 | 12.44 ± 0.14 | 3.47 ± 0.05 |
6 | 40 | 60 | 1 | Z | 6.20 ± 0.17 | 13.83 ± 0.14 | 3.67 ± 0.06 |
7 | 40 | 65 | 4 | L | 12.90 ± 0.18 | 18.98 ± 0.17 | 4.65 ± 0.07 |
8 | 40 | 70 | 3 | Gr | 11.46 ± 0.13 | 19.54 ± 0.02 | 4.72 ± 0.08 |
9 | 50 | 55 | 3 | Z | 10.51 ± 0.20 | 15.24 ± 0.10 | 4.13 ± 0.08 |
10 | 50 | 60 | 4 | Gy | 11.40 ± 0.12 | 17.63 ± 0.19 | 4.63 ± 0.10 |
11 | 50 | 65 | 1 | Gr | 7.27 ± 0.13 | 15.36 ± 0.12 | 4.36 ± 0.08 |
12 | 50 | 70 | 2 | L | 11.39 ± 0.13 | 20.23 ± 0.12 | 4.95 ± 0.10 |
13 | 60 | 55 | 4 | Gr | 11.55 ± 0.05 | 16.18 ± 0.18 | 4.57 ± 0.09 |
14 | 60 | 60 | 3 | L | 11.85 ± 0.11 | 17.80 ± 0.20 | 4.81 ± 0.09 |
15 | 60 | 65 | 2 | Z | 12.28 ± 0.05 | 19.61 ± 0.17 | 5.17 ± 0.09 |
16 | 60 | 70 | 1 | Gy | 11.01 ± 0.12 | 20.24 ± 0.16 | 5.51 ± 0.10 |
Min. | - | - | - | - | 5.13 | 10.10 | 2.80 |
Max. | - | - | - | - | 12.98 | 20.24 | 5.51 |
Median | - | - | - | - | 7.85 | 10.13 | 2.71 |
Average | - | - | - | - | 10.09 | 16.63 | 4.34 |
Level | Id | Mf | Wlc | Ip |
---|---|---|---|---|
1 | 18.65 | 18.31 | 17.03 | 19.75 |
2 | 19.15 | 19.04 | 19.49 | 19.34 |
3 | 19.98 | 20.42 | 20.88 | 19.94 |
4 | 21.34 | 21.35 | 21.72 | 20.08 |
Delta | 2.68 | 3.05 | 4.69 | 0.74 |
11.16 | ||||
Weight | 42.02% | |||
Rank | 3 | 2 | 1 | 4 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | Contribution (%) |
---|---|---|---|---|---|---|
Id | 3 | 16.616 | 5.205 | 14.479 | 0.027 | 16.66 |
Mf | 3 | 23.263 | 7.754 | 21.570 | 0.016 | 24.82 |
Wlc | 3 | 51.473 | 17.158 | 47.727 | 0.005 | 54.92 |
Ip | 3 | 2.294 | 0.765 | 2.127 | 0.276 | 2.45 |
Error | 3 | 1.078 | 0.359 | 1.15 | ||
Total | 15 | 100 | ||||
R2 = 98.85% |
Level | Id | Mf | Wlc | Ip |
---|---|---|---|---|
1 | 23.10 | 22.46 | 23.19 | 24.20 |
2 | 24.02 | 23.75 | 24.03 | 23.99 |
3 | 24.61 | 24.82 | 24.65 | 24.27 |
4 | 25.29 | 26.00 | 25.16 | 24.57 |
Delta | 2.19 | 3.55 | 1.97 | 0.58 |
8.29 | ||||
Weight | 31.21% | |||
Rank | 2 | 1 | 3 | 4 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | Contribution (%) |
---|---|---|---|---|---|---|
Id | 3 | 29.389 | 9.796 | 54.840 | 0.004 | 19.96 |
Mf | 3 | 91.573 | 30.524 | 170.876 | 0.001 | 62.19 |
Wlc | 3 | 23.110 | 7.703 | 43.124 | 0.006 | 15.69 |
Ip | 3 | 2.641 | 0.880 | 4.929 | 0.111 | 1.79 |
Error | 3 | 0.536 | 0.179 | 0.36 | ||
Total | 15 | 100 | ||||
R2 = 99.64% |
Level | Id | Mf | Wlc | Ip |
---|---|---|---|---|
1 | −11.24 | −11.32 | −11.96 | −12.46 |
2 | −12.24 | −12.18 | −12.36 | −12.49 |
3 | −13.07 | −13.10 | −12.86 | −12.73 |
4 | −13.98 | −13.92 | −13.34 | −12.84 |
Delta | 2.74 | 2.60 | 1.38 | 0.39 |
7.11 | ||||
Weight | 26.77% | |||
Rank | 1 | 2 | 3 | 4 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | Contribution (%) |
---|---|---|---|---|---|---|
Id | 3 | 3.673 | 1.224 | 127.008 | 0.001 | 46.51 |
Mf | 3 | 3.416 | 1.139 | 118.136 | 0.001 | 43.26 |
Wlc | 3 | 0.698 | 0.233 | 24.145 | 0.013 | 8.84 |
Ip | 3 | 0.080 | 0.027 | 2.764 | 0.213 | 1.01 |
Error | 3 | 0.029 | 0.010 | 0.37 | ||
Total | 15 | 100 | ||||
R2 = 99.63% |
Exp. No. | Grey Relational Coefficient GRC | Grey Relational Grade GRG | Rank | ||
---|---|---|---|---|---|
Ts | Fs | Mc | |||
1 | 0.333 | 0.333 | 1.000 | 0.512 | 12 |
2 | 0.425 | 0.410 | 0.711 | 0.497 | 13 |
3 | 0.616 | 0.549 | 0.535 | 0.573 | 10 |
4 | 1.000 | 0.927 | 0.412 | 0.820 | 1 |
5 | 0.411 | 0.394 | 0.669 | 0.475 | 14 |
6 | 0.367 | 0.442 | 0.609 | 0.455 | 15 |
7 | 0.980 | 0.801 | 0.423 | 0.775 | 2 |
8 | 0.721 | 0.879 | 0.414 | 0.688 | 5 |
9 | 0.614 | 0.503 | 0.505 | 0.550 | 11 |
10 | 0.713 | 0.660 | 0.425 | 0.620 | 8 |
11 | 0.407 | 0.510 | 0.465 | 0.455 | 16 |
12 | 0.712 | 0.998 | 0.387 | 0.714 | 4 |
13 | 0.733 | 0.555 | 0.434 | 0.597 | 9 |
14 | 0.776 | 0.675 | 0.403 | 0.645 | 7 |
15 | 0.849 | 0.889 | 0.364 | 0.732 | 3 |
16 | 0.666 | 1.000 | 0.333 | 0.681 | 6 |
Level | Id | Mf | Wlc | Ip |
---|---|---|---|---|
1 | −4.61 | −5.49 | −5.71 | −3.69 |
2 | −4.69 | −5.22 | −4.54 | −5.16 |
3 | −4.78 | −4.15 | −4.27 | −4.70 |
4 | −3.58 | −2.81 | −3.14 | −4.12 |
Delta | 1.19 | 2.68 | 2.57 | 1.47 |
7.91 | ||||
Rank | 4 | 1 | 2 | 3 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value | Contribution (%) |
---|---|---|---|---|---|---|
Id | 3 | 0 015 | 0.005 | 2.099 | 0.279 | 7.37 |
Mf | 3 | 0 092 | 0.031 | 12.848 | 0.032 | 45.10 |
Wlc | 3 | 0.063 | 0.021 | 8.850 | 0.053 | 31.06 |
Ip | 3 | 0.026 | 0.009 | 3.695 | 0.156 | 12.97 |
Error | 3 | 0.007 | 0.002 | 3.51 | ||
Total | 15 | 100 | ||||
R2 = 99.49 |
Initial Parameter Setting | Optimal Parameter | ||
---|---|---|---|
Prediction | Experimental | ||
Setting level | Id1Mf4Wlc4Ip4 | Id4Mf4Wlc4Ip1 | Id4Mf4Wlc4Ip1 |
Ts (MPa) | 12.98 | 13.58 | |
Fs (MPa) | 19.84 | 20.51 | |
Mc (g) | 4.73 | 5.46 | |
GRG | 0.820 | 0.919 | 0.894 |
Improvement in GRG = 0.074 | |||
Percentage of improvement in GRG = 9.02% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunçel, O.; Kahya, Ç. Performance Enhancement of Lightweight PLA Parts Printed by FFF Using Taguchi–GRA Method. Polymers 2025, 17, 2413. https://doi.org/10.3390/polym17172413
Tunçel O, Kahya Ç. Performance Enhancement of Lightweight PLA Parts Printed by FFF Using Taguchi–GRA Method. Polymers. 2025; 17(17):2413. https://doi.org/10.3390/polym17172413
Chicago/Turabian StyleTunçel, Oğuz, and Çağlar Kahya. 2025. "Performance Enhancement of Lightweight PLA Parts Printed by FFF Using Taguchi–GRA Method" Polymers 17, no. 17: 2413. https://doi.org/10.3390/polym17172413
APA StyleTunçel, O., & Kahya, Ç. (2025). Performance Enhancement of Lightweight PLA Parts Printed by FFF Using Taguchi–GRA Method. Polymers, 17(17), 2413. https://doi.org/10.3390/polym17172413