Development and Characterization of PVA/KGM-Based Bioactive Films Incorporating Natural Extracts and Thyme Oil
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction of Bioactive Compounds from Aronia Melanocarpa and Dragon Fruit
2.2.2. Characterization of Bioactive Components of Aronia Melanocarpa and Dragon Fruit
Color Changes in Extracts at Different pHs
Total Phenolic Content (TPC) of Extracts
Determination of Antioxidant Activity of Extracts
2.2.3. Obtainment of Thyme Essential Oil
2.2.4. Determination of the Components of Thyme Essential Oil
2.2.5. Determination of Optimum Ratio of PVA/KGM Films
2.2.6. Characterization of Different Ratio PVA/KGM Films
Mechanical Testing
2.2.7. Production of PVA/KGM-Based Biodegradable Films
2.2.8. Characterization of PVA/KGM-Based Biodegradable Films
Fourier Transform Infrared (FT-IR) Spectroscopy
Surface Morphology and Microstructural Features
Thickness Measurement and Mechanical Properties
Color Measurements and Opacity
Surface Wettability and Hydrophilic Character
Thermal Stability and Degradation Behavior
Thermal Transition Properties
Crystalline–Amorphous Structure Analysis
Antioxidant Activities
Moisture Barrier: Water Vapor Permeability and Moisture Content
Biodegradation Performance in Soil Environment
Statistical Analysis
3. Results and Discussions
3.1. Characterization of Bioactive Compounds of Aronia Melanocarpa and Dragon Fruit Extracts
3.1.1. pH Sensitivity of Extracts
3.1.2. Total Phenolic Content of Extracts
3.1.3. Antioxidant Activities of Extracts
3.2. Composition of Thyme Essential Oil
3.3. Mechanical Performance-Based Determination of the Optimum PVA/KGM Ratio
3.4. Characterization and Property Evaluation of PVA/KGM-Based Biodegradable Films
3.4.1. Molecular Interactions and Structural Confirmation by FTIR
3.4.2. Morphological Observations and Microstructural Interpretation
3.4.3. Film Thickness and Mechanical Performance Analysis
3.4.4. Colorimetric Response and Optical Behavior of Films
3.4.5. Wettability and Surface Hydrophilicity Assessment of Films
3.4.6. Thermal Degradation Profile of Films
3.4.7. Thermal Transition Behavior of Films
3.4.8. Moisture Barrier Properties: WVP and Moisture Content
3.4.9. Degradability of Films
3.4.10. Antioxidant Activities of Films
3.4.11. Crystalline–Amorphous Phase Evolution
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Türk Plastik Sanayicileri Araştırma, Geliştirme ve Eğitim Vakfı (PAGEV). Türkiye Plastik Sektör İzleme Raporu; PAGEV: Istanbul, Türkiye, 2021. [Google Scholar]
- Subhalakshmi, S.U.; Subha Lakshmi, T.B.A.; Kiruthigha, V. The Role of Packaging in Food Systems and Supply Chain for Sustainable Agriculture and Food Security. In Research for Sustainable Development; Balakrishnan, M.H.S.A., Karthik, S.M., Gunasekaran, M., Eds.; Authorspress: New Delhi, India, 2024; pp. 189–205. [Google Scholar]
- Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Oun, A.A.; Shin, G.H.; Kim, J.T. Antimicrobial, antioxidant, and pH-sensitive polyvinyl alcohol/chitosan-based composite films with aronia extract, cellulose nanocrystals, and grapefruit seed extract. Int. J. Biol. Macromol. 2022, 213, 381–393. [Google Scholar] [CrossRef]
- Da Costa Filho, P.A.; Andrey, D.; Eriksen, B.; Peixoto, R.P.; Carreres, B.M.; Ambuhl, M.E.; Descarrega, J.B.; Dubascoux, S.; Zbinden, P.; Panchaud, A.; et al. Detection and characterization of small-sized microplastics (≥5 microm) in milk products. Sci. Rep. 2021, 11, 24046. [Google Scholar] [CrossRef]
- Deng, H.; Su, J.; Zhang, W.; Khan, A.; Sani, M.A.; Goksen, G.; Kashyap, P.; Ezati, P.; Rhim, J.W. A review of starch/polyvinyl alcohol (PVA) blend film: A potential replacement for traditional plastic-based food packaging film. Int. J. Biol. Macromol. 2024, 273, 132926. [Google Scholar] [CrossRef]
- Kaseke, T.; Lujic, T.; Cirkovic Velickovic, T. Nano- and Microplastics Migration from Plastic Food Packaging into Dairy Products: Impact on Nutrient Digestion, Absorption, and Metabolism. Foods 2023, 12, 3043. [Google Scholar] [CrossRef]
- Mendes, D.S.; Silva, D.N.N.; Silva, M.G.; Beasley, C.R.; Fernandes, M.E.B. Microplastic distribution and risk assessment in estuarine systems influenced by traditional villages and artisanal fishery activities. Sci. Rep. 2024, 14, 29044. [Google Scholar] [CrossRef]
- Ivar do Sul, J.A.; Costa, M.F. Plastic pollution risks in an estuarine conservation unit. J. Coast. Res. 2013, 65, 48–53. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.E.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Env. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, D.; Goldbeck, C.; Humpf, H.U.; Furst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Zheng, J.; Saleh, A.S.M.; Zhao, W.; Liu, X.; Su, C.; Yan, M.; Ge, X.; Shen, H.; Ospankulova, G.; et al. Fabrication of biodegradable blend plastic from konjac glucomannan/zein/PVA and understanding its multi-scale structure and physicochemical properties. Int. J. Biol. Macromol. 2023, 225, 172–184. [Google Scholar] [CrossRef] [PubMed]
- MO Syafiq, R.; Syafiq, R.; Sapuan, S.M.; Zuhri, M.R.M. Effect of cinnamon essential oil on morphological, flammability and thermal properties of nanocellulose fibre–reinforced starch biopolymer composites. Nanotechnol. Rev. 2020, 9, 1147–1159. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, Q.; Jiang, R.; Li, W.; Sun, X.; Lin, H.; Jiang, S.; Huang, H. Microplastic pollution and ecological risk assessment in an estuarine environment: The Dongshan Bay of China. Chemosphere 2021, 262, 127876. [Google Scholar] [CrossRef]
- Saedi, S.; Shokri, M.; Kim, J.T.; Shin, G.H. Semi-transparent regenerated cellulose/ZnONP nanocomposite film as a potential antimicrobial food packaging material. J. Food Eng. 2021, 307, 110665. [Google Scholar] [CrossRef]
- Guo, S.; Liang, D.; Liu, Q.; Luo, H.; Liang, W.; Li, W. Cinnamaldehyde emulsions for a composite film based on polyvinyl alcohol/hydrophobically modified konjac glucomannan matrix: Degradability and bacteriostatic properties. Food Packag. Shelf Life 2024, 44, 101318. [Google Scholar] [CrossRef]
- Cano, A.; Fortunati, E.; Cháfer, M.; Kenny, J.M.; Chiralt, A.; González-Martínez, C. Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocoll. 2015, 48, 84–93. [Google Scholar] [CrossRef]
- Al-Mekhlafi, N.A.; Mediani, A.; Ismail, N.H.; Abas, F.; Dymerski, T.; Lubinska-Szczygeł, M.; Vearasilp, S.; Gorinstein, S. Metabolomic and antioxidant properties of different varieties and origins of Dragon fruit. Microchem. J. 2021, 160, 105687. [Google Scholar] [CrossRef]
- You, P.; Wang, L.; Zhou, N.; Yang, Y.; Pang, J. A pH-intelligent response fish packaging film: Konjac glucomannan/carboxymethyl cellulose/blackcurrant anthocyanin antibacterial composite film. Int. J. Biol. Macromol. 2022, 204, 386–396. [Google Scholar] [CrossRef]
- Haghighi, H.; Gullo, M.; La China, S.; Pfeifer, F.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll. 2021, 113, 106454. [Google Scholar] [CrossRef]
- Vattanagijyingyong, Y.; Yonemochi, E.; Chatchawalsaisin, J. Miscibility characterization of zein/methacrylic acid copolymer composite films and plasticization effects. Int. J. Pharm. 2021, 601, 120498. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, G.; Peng, Y.-B.; Wu, W.; Li, X.; Wang, J.; Qiao, Y.; Liao, L.; Ding, A. The Cryoprotective Effect of Different Konjac Glucomannan (KGM) Hydrolysates on the Glass Carp (Ctenopharyngodon idella) Myofibrillar During Frozen Storage. Food Bioprocess Technol. 2014, 7, 3398–3406. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Guo, Y.; Liu, Y.; Zhao, G.; Qiao, D.; Jiang, F.; Zhang, B. Mechanism for the synergistic gelation of konjac glucomannan and kappa-carrageenan. Int. J. Biol. Macromol. 2024, 277, 134423. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Song, R.; Xu, W.; Wang, Y.; Li, J.; Shah, B.R.; Li, Y.; Li, B. Analysis of deacetylated konjac glucomannan and xanthan gum phase separation by film forming. Food Hydrocoll. 2015, 48, 320–326. [Google Scholar] [CrossRef]
- Kapoor, D.U.; Sharma, H.; Maheshwari, R.; Pareek, A.; Gaur, M.; Prajapati, B.G.; Castro, G.R.; Thanawuth, K.; Suttiruengwong, S.; Sriamornsak, P. Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications. Carbohydr. Polym. 2024, 339, 122266. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, Q.; Qian, H.; Xiao, M.; Corke, H.; Nishinari, K.; Jiang, F. Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films. Food Hydrocoll. 2018, 79, 301–309. [Google Scholar] [CrossRef]
- Li, B.; Chen, M.; Wu, Y.; Liu, B.; Huang, G. Effects of glycerol and PVA on gelatin/Gum Arabic aerogels: Microstructure, mechanical properties, and applications for food monitoring. Food Hydrocoll. 2024, 149, 109515. [Google Scholar] [CrossRef]
- Puebla-Duarte, A.L.; Santos-Sauceda, I.; Rodriguez-Felix, F.; Iturralde-Garcia, R.D.; Fernandez-Quiroz, D.; Perez-Cabral, I.D.; Del-Toro-Sanchez, C.L. Active and Intelligent Packaging: A Review of the Possible Application of Cyclodextrins in Food Storage and Safety Indicators. Polymers 2023, 15, 4317. [Google Scholar] [CrossRef]
- Gomez-Bachar, L.; Vilcovsky, M.; Gonzalez-Seligra, P.; Fama, L. Effects of PVA and yerba mate extract on extruded films of carboxymethyl cassava starch/PVA blends for antioxidant and mechanically resistant food packaging. Int. J. Biol. Macromol. 2024, 268, 131464. [Google Scholar] [CrossRef]
- Huang, K.; Wang, Y.; Xu, Z.; Zou, Z.; Tang, Q.; Li, H.; Peng, D. Novel intelligent packaging films based on starch/PVA with Cu-ICA nanocrystal as functional compatibilizer for monitoring food freshness. Int. J. Biol. Macromol. 2024, 271, 132373. [Google Scholar] [CrossRef]
- Sheibani, S.; Jafarzadeh, S.; Qazanfarzadeh, Z.; Osadee Wijekoon, M.M.J.; Mohd Rozalli, N.H.; Mohammadi Nafchi, A. Sustainable strategies for using natural extracts in smart food packaging. Int. J. Biol. Macromol. 2024, 267, 131537. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Yong, H.; Qin, Y.; Liu, J.; Liu, J. Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll. 2019, 94, 80–92. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, X.; Xie, F.; Fan, Y.; Xu, X.; Qi, J.; Xiong, G.; Gao, X.; Zhang, F. pH-responsive double-layer indicator films based on konjac glucomannan/camellia oil and carrageenan/anthocyanin/curcumin for monitoring meat freshness. Food Hydrocoll. 2021, 118, 106695. [Google Scholar] [CrossRef]
- Ke, F.; Yang, M.; Ji, W.; Liu, D. Functional pH-sensitive film based on pectin and whey protein for grape preservation and shrimp freshness monitoring. Food Chem. 2025, 463, 141092. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Ge, X.; Lin, Q.; Niu, L.; Zhao, W.; Liu, X.; Guo, S.; Muratkhan, M.; Li, W. pH-responsive PVA/konjac glucomannan/functional liposome terpolymer composites: Spotlight on its structure-performance, functionality, barrier properties, controlled-release behavior, biodegradability, and its intelligent preservation role for food. Food Packag. Shelf Life 2024, 42, 101250. [Google Scholar] [CrossRef]
- Castro, J.C.; Endo, E.H.; de Souza, M.R.; Zanqueta, E.B.; Polonio, J.C.; Pamphile, J.A.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P.; Abreu Filho, B.A.d. Bioactivity of essential oils in the control of Alternaria alternata in dragon fruit (Hylocereus undatus Haw.). Ind. Crops Prod. 2017, 97, 101–109. [Google Scholar] [CrossRef]
- Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydr. Polym. 2014, 112, 622–626. [Google Scholar] [CrossRef]
- Jang, Y.; Koh, E. Characterisation and storage stability of aronia anthocyanins encapsulated with combinations of maltodextrin with carboxymethyl cellulose, gum Arabic, and xanthan gum. Food Chem. 2023, 405, 135002. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Koh, E. Sustainable water extraction of anthocyanins in aronia (Aronia melanocarpa L.) using conventional and ultrasonic-assisted method. Korean J. Food Sci. Technol. 2021, 53, 527–534. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Jimenez, A.R.; Paredes-Lopez, O. Natural pigments: Carotenoids, anthocyanins, and betalains--characteristics, biosynthesis, processing, and stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef]
- Meng, L.; Zhu, J.; Ma, Y.; Sun, X.; Li, D.; Li, L.; Bai, H.; Xin, G.; Meng, X. Composition and antioxidant activity of anthocyanins from Aronia melanocarpa cultivated in Haicheng, Liaoning, China. Food Biosci. 2019, 30, 100413. [Google Scholar] [CrossRef]
- Long, W.; Lin, Y.; Lv, C.; Dong, J.; Lv, M.; Lou, X. High-compatibility properties of Aronia melanocarpa extracts cross-linked chitosan/polyvinyl alcohol composite film for intelligent food packaging. Int. J. Biol. Macromol. 2024, 270, 132305. [Google Scholar] [CrossRef]
- Wathon, M.H.; Beaumont, N.; Benohoud, M.; Blackburn, R.S.; Rayner, C.M. Extraction of anthocyanins from Aronia melanocarpa skin waste as a sustainable source of natural colorants. Color. Technol. 2019, 135, 5–16. [Google Scholar] [CrossRef]
- Bijak, M.; Bobrowski, M.; Borowiecka, M.; Podsedek, A.; Golanski, J.; Nowak, P. Anticoagulant effect of polyphenols-rich extracts from black chokeberry and grape seeds. Fitoterapia 2011, 82, 811–817. [Google Scholar] [CrossRef]
- Tang, R.; He, Y.; Fan, K. Recent advances in stability improvement of anthocyanins by efficient methods and its application in food intelligent packaging: A review. Food Biosci. 2023, 56, 103164. [Google Scholar] [CrossRef]
- Flint, H.V.; Rivera Tito, H.A.; James, R.D.; Cucinotta, F.; Gibson, E.; Quintana Caceda, M.E. Betanin dye extracted from ayrampo (Opuntia soehrensii) seeds to develop dye-sensitized solar cells. RSC Adv. 2024, 14, 9913–9919. [Google Scholar] [CrossRef]
- Olas, B.; Wachowicz, B.; Nowak, P.; Kedzierska, M.; Tomczak, A.; Stochma, A.; Oleszek, W.; Jeziorski, A.; Piekarski, J. Studies on antioxidant properties of polyphenol-rich extract from berries of aronia melanocarpa in blood platelets. J. Physiol. Pharmacol. 2008, 59, 823–835. [Google Scholar]
- Halász, K.; Csóka, L. Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag. Shelf Life 2018, 16, 185–193. [Google Scholar] [CrossRef]
- Andrade, R.C.; Ferreira Ribeiro, C.D.; Caetano, V.C.d.S.; Fernandes, S.S.; Otero, D.M. Trends in dragon fruit peel compound extraction and technological applications. Trends Food Sci. Technol. 2024, 153, 104721. [Google Scholar] [CrossRef]
- Jaiswal, V.; Butola, B.S.; Majumdar, A. Production of PVA-chitosan films using green synthesized ZnO NPs enriched with dragon fruit extract envisaging food packaging applications. Int. J. Biol. Macromol. 2023, 252, 126457. [Google Scholar] [CrossRef]
- Nur, M.A.; Uddin, M.R.; Meghla, N.S.; Uddin, M.J.; Amin, M.Z. In vitro anti-oxidant, anti-inflammatory, anti-bacterial, and cytotoxic effects of extracted colorants from two species of dragon fruit (Hylocereus spp.). Food Chem. Adv. 2023, 2, 100318. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Wang, L. Structure characteristics of a water-soluble polysaccharide purified from dragon fruit (Hylocereus undatus) pulp. Carbohydr. Polym. 2016, 146, 224–230. [Google Scholar] [CrossRef]
- Daza, L.D.; Montealegre, M.A.; Sandoval Aldana, A.; Obando, M.; Vaquiro, H.A.; Eim, V.S.; Simal, S. Effect of Essential Oils from Lemongrass and Tahiti Lime Residues on the Physicochemical Properties of Chitosan-Based Biodegradable Films. Foods 2023, 12, 1824. [Google Scholar] [CrossRef]
- Ebrahimzadeh, S.; Biswas, D.; Roy, S.; McClements, D.J. Incorporation of essential oils in edible seaweed-based films: A comprehensive review. Trends Food Sci. Technol. 2023, 135, 43–56. [Google Scholar] [CrossRef]
- Atlar, G.C.; Kutlu, G.; Tornuk, F. Design and characterization of chitosan-based films incorporated with summer savory (Satureja hortensis L.) essential oil for active packaging. Int. J. Biol. Macromol. 2023, 254, 127732. [Google Scholar] [CrossRef] [PubMed]
- Meerasri, J.; Sukatta, U.; Rugthaworn, P.; Klinsukhon, K.; Khacharat, L.; Sakayaroj, S.; Chollakup, R.; Sothornvit, R. Synergistic effects of thyme and oregano essential oil combinations for enhanced functional properties of sericin/pectin film. Int. J. Biol. Macromol. 2024, 263, 130288. [Google Scholar] [CrossRef]
- Hernández, M.S.; Ludueña, L.N.; Flores, S.K. Combined effect of oregano essential oil and glycerol on physicochemical properties of antimicrobial films based on chitosan and acetylated cassava starch. Food Hydrocoll. 2024, 156, 110259. [Google Scholar] [CrossRef]
- Sun, H.; Li, S.; Chen, S.; Wang, C.; Liu, D.; Li, X. Antibacterial and antioxidant activities of sodium starch octenylsuccinate-based Pickering emulsion films incorporated with cinnamon essential oil. Int. J. Biol. Macromol. 2020, 159, 696–703. [Google Scholar] [CrossRef]
- Parın, F.N. A green approach to the development of novel antibacterial cinnamon oil loaded-PVA/egg white foams via Pickering emulsions. J. Porous Mater. 2023, 30, 1233–1243. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Cai, Z.; Sun, Y.; Jiang, H.; Guan, X.; Ngai, T. One-Step Formation of Pickering Double Emulsion Costabilized by Hydrophobic Silica Nanoparticles and Sodium Alginate. Langmuir 2024, 40, 13903–13911. [Google Scholar] [CrossRef] [PubMed]
- Parin, F.N.; El-Ghazali, S.; Yesilyurt, A.; Parin, U.; Ullah, A.; Khatri, M.; Kim, I.S. PVA/Inulin-Based Sustainable Films Reinforced with Pickering Emulsion of Niaouli Essential Oil for Potential Wound Healing Applications. Polymers 2023, 15, 1002. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Zhang, J.; Jiang, Y.; Li, D. Pectin extracted from dragon fruit Peel: An exploration as a natural emulsifier. Int. J. Biol. Macromol. 2022, 221, 976–985. [Google Scholar] [CrossRef]
- Wang, X.; Yong, H.; Gao, L.; Li, L.; Jin, M.; Liu, J. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll. 2019, 89, 56–66. [Google Scholar] [CrossRef]
- Lu, X.; Wang, J.; Al-Qadiri, H.M.; Ross, C.F.; Powers, J.R.; Tang, J.; Rasco, B.A. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 2011, 129, 637–644. [Google Scholar] [CrossRef]
- Savekar, P.L.; Nadaf, S.J.; Killedar, S.G.; Kumbar, V.M.; Hoskeri, J.H.; Bhagwat, D.A.; Gurav, S.S. Citric acid cross-linked pomegranate peel extract-loaded pH-responsive beta-cyclodextrin/carboxymethyl tapioca starch hydrogel film for diabetic wound healing. Int. J. Biol. Macromol. 2024, 274, 133366. [Google Scholar] [CrossRef]
- Ghorpade, V.S.; Yadav, A.V.; Dias, R.J. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery. Int. J. Biol. Macromol. 2016, 93, 75–86. [Google Scholar] [CrossRef]
- Li, Q.; Lai, X.; Duan, Y.; Jiang, F.; Li, Y.; Huang, Z.; Liu, S.; Wang, Y.; Jiang, C.; Zhang, C.; et al. 3D nanofiber sponge based on natural insect quaternized chitosan/pullulan/citric acid for accelerating wound healing. Carbohydr. Polym. 2025, 348, 122827. [Google Scholar] [CrossRef] [PubMed]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- ASTM D618-21; Standard Practice for Conditioning Plastics for Testing. ASTM International: West Conshohocken, PA, USA, 2021.
- Gan, L.; Jiang, G.; Yang, Y.; Zheng, B.; Zhang, S.; Li, X.; Tian, Y.; Peng, B. Development and characterization of levan/pullulan/chitosan edible films enriched with epsilon-polylysine for active food packaging. Food Chem. 2022, 388, 132989. [Google Scholar] [CrossRef]
- Cazon, P.; Antoniewska, A.; Rutkowska, J.; Vazquez, M. Evaluation of easy-removing antioxidant films of chitosan with Melaleuca alternifolia essential oil. Int. J. Biol. Macromol. 2021, 186, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Yesilyurt, A.; Mayakrishnan, G.; Parin, U.; Kim, I.S.; Parin, F.N.; Ullah, A. Design and Characterization of Polyvinyl Alcohol/Kappa-Carrageenan Pickering Emulsion Biocomposite Films for Potential Wound Care Applications. J. Biomed. Mater. Res. A 2025, 113, e37850. [Google Scholar] [CrossRef] [PubMed]
- ASTM E96-24; Standard Test Methods for Gravimetric Determination of Water Vapor Transmission Rate of Materials. ASTM International: West Conshohocken, PA, USA, 2024.
- Oun, A.A.; Roy, S.; Hong, S.J.; Shin, G.H.; Yoo, S.; Kim, J.T. Development of smart colorimetric indicators for tracking kimchi freshness by loading aronia extract in agar, kappa-carrageenan, and cellulose nanofiber films. Int. J. Biol. Macromol. 2024, 270, 132343. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, Y.; Zhang, X.; Liu, J. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocoll. 2020, 100, 105410. [Google Scholar] [CrossRef]
- Galvan d’Alessandro, L.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound assisted extraction of polyphenols from black chokeberry. Sep. Purif. Technol. 2012, 93, 42–47. [Google Scholar] [CrossRef]
- Khoo, H.E.; He, X.; Tang, Y.; Li, Z.; Li, C.; Zeng, Y.; Tang, J.; Sun, J. Betacyanins and Anthocyanins in Pulp and Peel of Red Pitaya (Hylocereus polyrhizus cv. Jindu), Inhibition of Oxidative Stress, Lipid Reducing, and Cytotoxic Effects. Front. Nutr. 2022, 9, 894438. [Google Scholar] [CrossRef]
- Ramli, N.S.; Ismail, P.; Rahmat, A. Influence of conventional and ultrasonic-assisted extraction on phenolic contents, betacyanin contents, and antioxidant capacity of red dragon fruit (Hylocereus polyrhizus). Sci. World J. 2014, 2014, 964731. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Zhang, X.; Wang, Y.; Qiang, Y.; Wang, B.; Zou, J.; Niu, J.; Wang, Z. Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides. Carbohydr. Polym. 2022, 291, 119524. [Google Scholar] [CrossRef]
- Li, K.; Li, Y.; Jin, H.; Feng, B.; Jiang, G. Konjac glucomannan/polyvinyl alcohol/citric acid–based active food-packaging films containing Polygonatum sibiricum polysaccharide. Food Chem. Adv. 2024, 4, 100660. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, D.; Li, N.; Yang, X. Characterization of konjac glucomannan-based active films loaded with thyme essential oil: Effects of loading approaches. Food Hydrocoll. 2022, 124, 107330. [Google Scholar] [CrossRef]
- Souza, A.C.; Goto, G.E.O.; Mainardi, J.A.; Coelho, A.C.V.; Tadini, C.C. Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT—Food Sci. Technol. 2013, 54, 346–352. [Google Scholar] [CrossRef]
- Pandita, G.; de Souza, C.K.; Goncalves, M.J.; Jasinska, J.M.; Jamroz, E.; Roy, S. Recent progress on Pickering emulsion stabilized essential oil added biopolymer-based film for food packaging applications: A review. Int. J. Biol. Macromol. 2024, 269, 132067. [Google Scholar] [CrossRef]
- Bangar, S.P.; Whiteside, W.S.; Dunno, K.D.; Cavender, G.A.; Dawson, P. Fabrication and characterization of active nanocomposite films loaded with cellulose nanocrystals stabilized Pickering emulsion of clove bud oil. Int. J. Biol. Macromol. 2023, 224, 1576–1587. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F.; Kashaninejad, M.; Akbari, E.; Sobhani, S.M.; Asadi, F. Potential of Sponge Cake Making using Infrared–Hot Air Dried Carrot. J. Texture Stud. 2015, 47, 34–39. [Google Scholar] [CrossRef]
- Zuniga, R.N.; Skurtys, O.; Osorio, F.; Aguilera, J.M.; Pedreschi, F. Physical properties of emulsion-based hydroxypropyl methylcellulose films: Effect of their microstructure. Carbohydr. Polym. 2012, 90, 1147–1158. [Google Scholar] [CrossRef]
- Roy, S.; Kim, H.J.; Rhim, J.W. Effect of blended colorants of anthocyanin and shikonin on carboxymethyl cellulose/agar-based smart packaging film. Int. J. Biol. Macromol. 2021, 183, 305–315. [Google Scholar] [CrossRef]
- Vogler, E.A. Structure and reactivity of water at biomaterial. Adv. Colloid. Interface Sci. 1998, 74, 69–117. [Google Scholar] [CrossRef]
- Amanah Zulkefli, N.; Mohd Mokhtar, M.A.; Jing Jie, C.; Mohamed Radzi, A.M.; Ahmad Tarmizi, Z.I.; Rasit Ali, R.; Mohd Taib, S.H. Intelligent pH indicator film based on PVA/Glycerol/Anthocyanin. derived Ipomoea Batatas (L.) Lam for smart food packaging. Ingeniare. Rev. Chil. Ing. 2024, 32. [Google Scholar] [CrossRef]
- Castro, J.I.; Valencia-Llano, C.H.; Valencia Zapata, M.E.; Restrepo, Y.J.; Mina Hernandez, J.H.; Navia-Porras, D.P.; Valencia, Y.; Valencia, C.; Grande-Tovar, C.D. Chitosan/Polyvinyl Alcohol/Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers 2021, 13, 3753. [Google Scholar] [CrossRef]
- Guo, X.; Wang, X.; Wei, Y.; Liu, P.; Deng, X.; Lei, Y.; Zhang, J. Preparation and properties of films loaded with cellulose nanocrystals stabilized Thymus vulgaris essential oil Pickering emulsion based on modified tapioca starch/polyvinyl alcohol. Food Chem. 2024, 435, 137597. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, E.; Brebu, M. Stabilization Techniques of Essential Oils by Incorporation into Biodegradable Polymeric Materials for Food Packaging. Molecules 2021, 26, 6307. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Antioxidant and antimicrobial poly(vinyl alcohol)-based films incorporated with grapefruit seed extract and curcumin. J. Environ. Chem. Eng. 2021, 9, 104694. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.; Sun, J.; Lu, Y.; Tong, C.; Wang, L.; Yan, Z.; Pang, J. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocoll. 2020, 98, 105245. [Google Scholar] [CrossRef]
- Huang, L.; Liao, R.; Bu, N.; Zhang, D.; Pang, J.; Mu, R. Electrospun Konjac Glucomannan/Polyvinyl Alcohol Long Polymeric Filaments Incorporated with Tea Polyphenols for Food Preservations. Foods 2024, 13, 284. [Google Scholar] [CrossRef]
ID | PVA (% v/v) | KGM (% v/v) | Glycerol (% v/v) | Citric Acid (% v/v) | AME (% w/v) | DFE (% w/v) | β-CD (% w/v) | Thyme Oil (% v/v) |
---|---|---|---|---|---|---|---|---|
PK | 90 | 10 | 4 | 5 | - | - | - | - |
PK-A | 90 | 10 | 4 | 5 | 5 | - | - | - |
PK-D | 90 | 10 | 4 | 5 | - | 5 | - | - |
PK-AD | 90 | 10 | 4 | 5 | 2.5 | 2.5 | - | - |
PK-ADO | 90 | 10 | 4 | 5 | 2.5 | 2.5 | 1 | 1 |
PVA/ KGM (v/v) |
Elongation at Break * (%) |
Young’s Modulus * (MPa) | Tensile Strength * (MPa) |
---|---|---|---|
90/10 | 538.69 ± 48.75 a | 9.02 ± 0.24 a | 13.97 ± 1.52 a |
75/25 | 714.01 ± 30.29 b | 6.96 ± 0.77 b | 9.64 ± 0.70 b |
50/50 | 380.00 ± 28.28 c | 0.86 ± 0.18 c | 1.89 ± 0.39 c |
10/90 | 455.67 ± 7.38 a,c | 0.77 ± 0.12 d | 1.23 ± 0.25 d |
Sample ID | L | a | b | ΔE | Opacity |
Film Thickness * (mm) |
Elongation at Break * (%) |
Young’s Modulus * (MPa) | Tensile Strength * (MPa) |
---|---|---|---|---|---|---|---|---|---|
PK |
96.64 ± 0.74 a* |
−0.22 ± 0.03 a |
0.86 ± 0.29 a | 3.16 | 3.67 |
0.43 ± 0.01 a |
538.69 ± 48.75 a,b |
9.02 ± 0.24 a |
13.97 ± 1.52 a |
PK-A |
74.63 ± 5.34 b |
35.78 ± 6.65 b |
−5.54 ± 0.30 b | 43.95 | 4.83 |
0.42 ± 0.01 a,b |
382.71 ± 36.26 a |
15.87 ± 1.30 b |
17.56 ± 1.10 b |
PK-D |
96.43 ± 0.20 a |
−0.65 ± 0.04 a |
4.92 ± 0.49 c | 6.13 | 4.04 |
0.50 ± 0.01 c |
619.49 ± 10.63 b |
11.72 ± 0.65 c |
14.92 ± 0.34 a |
PK-AD |
81.81 ± 4.14 c |
24.77 ± 6.05 c |
−1.60 ± 0.31 d | 30.53 | 4.45 |
0.40 ± 0.01 b |
462.14 ± 36.22 a,b |
10.15 ± 0.95 a,c |
12.26 ± 0.94 a |
PK-ADO |
74.09 ± 0.39 b |
28.30 ± 0.46 b,c |
2.29 ± 0.48 e | 38.19 | 5.02 |
0.44 ± 0.01 a |
600.37 ± 113.42 a,b |
11.55 ± 0.19 c |
14.72 ± 1.98 a,b |
Sample ID | T50 (°C) | Tmax (°C) | Tg (°C) | Tm (°C) | WVP * × 10−9 (gm/m2sPa) | MC * (%) |
SD (%) |
---|---|---|---|---|---|---|---|
PK | 342 | 512 | 73 | 159 | 2.10 ± 0.27 c* |
10.98 ± 0.42 a | 35 |
PK-A | 360 | 527 | 43 | 158 | 1.38 ± 0.09 d |
11.19 ± 1.25 a,b | 40 |
PK-D | 344 | 532 | 39 | 158 | 2.78 ± 0.13 a |
15.28 ± 1.72 c | 52 |
PK-AD | 347 | 552 | 37 | 159 | 2.15 ± 0.02 c |
13.62 ± 0.85 b,c | 48 |
PK-ADO | 347 | 538 | 53 | 159 | 1.67 ± 0.21 b |
11.75 ± 0.79 a,b | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeşilyurt, A. Development and Characterization of PVA/KGM-Based Bioactive Films Incorporating Natural Extracts and Thyme Oil. Polymers 2025, 17, 2425. https://doi.org/10.3390/polym17172425
Yeşilyurt A. Development and Characterization of PVA/KGM-Based Bioactive Films Incorporating Natural Extracts and Thyme Oil. Polymers. 2025; 17(17):2425. https://doi.org/10.3390/polym17172425
Chicago/Turabian StyleYeşilyurt, Ayşenur. 2025. "Development and Characterization of PVA/KGM-Based Bioactive Films Incorporating Natural Extracts and Thyme Oil" Polymers 17, no. 17: 2425. https://doi.org/10.3390/polym17172425
APA StyleYeşilyurt, A. (2025). Development and Characterization of PVA/KGM-Based Bioactive Films Incorporating Natural Extracts and Thyme Oil. Polymers, 17(17), 2425. https://doi.org/10.3390/polym17172425