Density-Based Topology-Optimized 3D-Printed Fixtures for Cyclic Mechanical Testing of Lattice Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Protocol Under Cyclic Loads
2.2. Design of Testing Support
2.3. Topology Optimization Procedure
3. Results and Discussion
3.1. Topology-Optimized PLA Fixtures for Cyclic Testing
3.2. Validation of Stiffness and Load Transfer
3.3. Cyclic Loading Tests on Kelvin Lattice Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Huang, J.; Zheng, Y.; Hou, S.; Xu, S.; Ma, Y.; Huang, C.; Zou, B.; Li, L. Challenges in topology optimization for hybrid additive–subtractive manufacturing: A review. Comput.-Aided Des. 2023, 161, 103531. [Google Scholar] [CrossRef]
- Arunkumar, P.; Balaji, D.; Radhika, N.; Rajeshkumar, L.; Rangappa, S.M.; Siengchin, S. Effect of infill pattern on mechanical properties of 3D printed PLA-Zn composites for drone frame structures: A topology optimization integrated application study. Results Eng. 2025, 25, 104107. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, L.; Li, H. Graded infill design within free-form surfaces by conformal mapping. Int. J. Mech. Sci. 2022, 224, 107307. [Google Scholar] [CrossRef]
- Mobarak, M.H.; Islam, A.; Hossain, N.; Al Mahmud, Z.; Rayhan, T.; Nishi, N.J.; Chowdhury, M.A. Recent advances of additive manufacturing in implant fabrication—A review. Appl. Surf. Sci. Adv. 2023, 18, 100462. [Google Scholar] [CrossRef]
- Mazeeva, A.; Masaylo, D.; Razumov, N.; Konov, G.; Popovich, A. 3D Printing Technologies for Fabrication of Magnetic Materials Based on Metal–Polymer Composites: A Review. Materials 2023, 16, 6928. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, T.; Zhang, Z.; Li, L.; Fu, K.; Li, Y. Topology optimization of three-dimensional shell structures made of continuous fiber reinforced composites considering manufacturing constraints. Compos. Part. A Appl. Sci. Manuf. 2025, 198, 109069. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, G.; Wang, C.; Li, H.; Zhou, S. A review of structural topology optimization for fiber-reinforced composites. Compos. Part B Eng. 2025, 299, 112393. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.; Guo, D. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 2003, 192, 227–246. [Google Scholar] [CrossRef]
- Lim, J.; You, C.; Dayyani, I. Multi-objective topology optimization and structural analysis of periodic spaceframe structures. Mater. Des. 2020, 190, 108552. [Google Scholar] [CrossRef]
- Dong, P.; Hu, J.; Lin, C.; Ding, W.; Liu, J.; Liu, Y. Topology-optimized lattice enhanced cementitious composites. Mater. Des. 2024, 244, 113155. [Google Scholar] [CrossRef]
- Han, Z.; Zhou, Y.; Xu, Z.; Wei, K.; Zhao, J.; He, Z.; He, G. High stable auxetic metamaterials developed through feature-control topology optimization and additive manufacturing. Thin-Walled Struct. 2025, 213, 113305. [Google Scholar] [CrossRef]
- Guan, W.; Xu, G.; Kou, L.; Li, W.; Liu, H.; Xu, L.; Wang, X. A hybrid cellular automata-based topology optimization method for incompressible fluid flow channels. Flow Meas. Instrum. 2025, 104, 102867. [Google Scholar] [CrossRef]
- Sucuoglu, H.S. Development of Topologically Optimized Mobile Robotic System with Machine Learning-Based Energy-Efficient Path Planning Structure. Machines 2025, 13, 638. [Google Scholar] [CrossRef]
- Voulgaris, S.; Kousiatza, C.; Kazakis, G.; Ypsilantis, K.-I.; Galanis, D.; Mitropoulou, C.C.; Gkara, M.; Georgantzinos, S.K.; Soultanis, K.; Lagaros, N.D. Upper Limb Orthoses: Integrating Topology Optimization and 3D Printing for Custom Fit and Function. Appl. Sci. 2025, 15, 827. [Google Scholar] [CrossRef]
- Dezianian, S.; Azadi, M. Multi-Material Metamaterial Topology Optimization to Minimize the Compliance and the Constraint of Weight: Application of Non-Pneumatic Tire Additive-Manufactured with PLA/TPU Polymers. Polymers 2023, 15, 1927. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.; Hu, J.; Chen, W.; Zhang, Y.; Luo, Y.; Wang, Q. A Survey of Topology Optimization Methods Considering Manufacturable Structural Feature Constraints for Additive Manufacturing Structures. Addit. Manuf. Front. 2024, 3, 200143. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, Z. A velocity field level set method for shape and topology optimization. Int. J. Numer. Methods Eng. 2018, 115, 1315–1336. [Google Scholar] [CrossRef]
- Deng, S.; Duan, S.; Wang, P.; Wen, W. A novel numerical manifold method and its application in parameterized LSM-based structural topology optimization. Comput. Methods Appl. Mech. Eng. 2024, 418, 116457. [Google Scholar] [CrossRef]
- Wang, F.; Lazarov, B.S.; Sigmund, O. On projection methods. convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 2011, 43, 767–784. [Google Scholar] [CrossRef]
- Li, B.; Nanthakumar, S.S.; Pennec, Y.; Djafari-Rouhani, B.; Zhuang, X. Topology optimization of phoxonic crystals for maximizing dual bandgaps using GA-SIMP method. Int. J. Mech. Sci. 2025, 300, 110359. [Google Scholar] [CrossRef]
- Nguyen, M.N.; Nguyen-Thanh, N.; Chen, S.; Bui, T.Q. Multi-material topology optimization of thermoelastic structures by an ordered SIMP-based phase field model. Comput. Math. Appl. 2025, 186, 84–100. [Google Scholar] [CrossRef]
- Yang, X.Y.; Xie, Y.M.; Steven, G.P.; Querin, O.M. Bidirectional evolutionary method for stiffness optimization. AIAA J. 1999, 37, 1483–1488. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, Y.-F.; Ghabraie, K. Systematic Benchmarking of Topology Optimization Methods Using Both Binary and Relaxed Forms of the Zhou-Rozvany Problem. CMES-Comput. Model. Eng. Sci. 2025, 143, 3233–3251. [Google Scholar] [CrossRef]
- Liu, H.; An, R.; Zuo, S.; Song, C.; Jing, H.; Li, B.; Zhuo, H. An EFEM-based topology optimization for curved structures with high-frequency vibration. Thin-Walled Struct. 2025, 215, 113515. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, H.; Du, F.; Chen, X.; Li, B.; Hong, J. MMC-based heat sink topology optimization design for natural convection problems. Int. J. Therm. Sci. 2023, 192, 108376. [Google Scholar] [CrossRef]
- Zhang, W.; Lai, Q.; Zhang, J. Explicit topology optimization for piezoelectric energy harvester with ensured connectivity of polarization profile. Comput. Struct. 2025, 316, 107836. [Google Scholar] [CrossRef]
- Fang, L.; Wang, X.; Zhou, H. Topology optimization of thermoelastic structures using MMV method. Appl. Math. Model. 2022, 103, 604–618. [Google Scholar] [CrossRef]
- Zhang, W.; Tian, H.; Sun, Z.; Feng, W. Topology optimization for pressure loading using the boundary element-based moving morphable void approach. Adv. Eng. Softw. 2024, 195, 103689. [Google Scholar] [CrossRef]
- Wang, C.; Fang, L.; Wang, X.; Zhou, H.; Guo, X. Topology optimization of steady Navier-Stokes flow using moving morphable void method. Comput. Math. Appl. 2024, 161, 212–224. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Zhu, J. A comprehensive study of feature definitions with solids and voids for topology optimization. Comput. Methods Appl. Mech. Eng. 2017, 325, 289–313. [Google Scholar] [CrossRef]
- Rade, J.; Jignasu, A.; Herron, E.; Corpuz, A.; Ganapathysubramanian, B.; Sarkar, S.; Balu, A.; Krishnamurthy, A. Deep learning-based 3D multigrid topology optimization of manufacturable designs. Eng. Appl. Artif. Intell. 2023, 126, 107033. [Google Scholar] [CrossRef]
- Gairola, S.; Jayaganthan, R. Lattice infill strategies for topology optimisation towards achieving lightweight designs for additive manufacturing: Structural integrity. and manufacturing consideration. J. Manuf. Process 2025, 139, 224–238. [Google Scholar] [CrossRef]
- Yan, K.; Liu, D.; Yan, J. Topology optimization method for transient heat conduction using the Lyapunov equation. Int. J. Heat Mass Transf. 2024, 231, 125815. [Google Scholar] [CrossRef]
- Hayes, A.C.; Träff, E.A.; Sørensen, C.V.; Willems, S.V.; Aage, N.; Sigmund, O.; Whiting, G.L. Topology optimization for structural mass reduction of direct drive electric machines. Sustain. Energy Technol. Assess. 2023, 57, 103254. [Google Scholar] [CrossRef]
- Jankovics, D.; Barari, A. Customization of Automotive Structural Components using Additive Manufacturing and Topology Optimization. IFAC-PapersOnLine 2019, 52, 212–217. [Google Scholar] [CrossRef]
- Lv, T.; Wang, D.; Du, X. Dual-scale parametric modeling and optimal design method of CFRP automotive roof beam. Compos. Struct. 2023, 308, 116695. [Google Scholar] [CrossRef]
- Bohara, R.P.; Linforth, S.; Nguyen, T.; Ghazlan, A.; Ngo, T. Novel lightweight high-energy absorbing auxetic structures guided by topology optimisation. Int. J. Mech. Sci. 2021, 211, 106793. [Google Scholar] [CrossRef]
- Dao, T.-P.; Le, H.G.; Ho, N.L. Topology-shape-size optimization design synthesis of compliant grippers for robotics: A comprehensive review and prospective advances. Rob. Auton. Syst. 2025, 193, 105106. [Google Scholar] [CrossRef]
- Yap, Y.L.; Toh, W.; Giam, A.; Yong, F.R.; Chan, K.I.; Tay, J.W.S.; Teong, S.S.; Lin, R.; Ng, T.Y. Topology optimization and 3D printing of micro-drone: Numerical design with experimental testing. Int. J. Mech. Sci. 2023, 237, 107771. [Google Scholar] [CrossRef]
- Dbouk, T. A review about the engineering design of optimal heat transfer systems using topology optimization. Appl. Therm. Eng. 2017, 112, 841–854. [Google Scholar] [CrossRef]
- Suhas, P.; Quadros, J.D.; Mogul, Y.I.; Mohin, M.; Aabid, A.; Baig, M.; Ahmed, O.S. A review on mechanical metamaterials and additive manufacturing techniques for biomedical applications. Mater. Adv. 2025, 6, 887–908. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Liang, S.-X.; Liu, Y.; Zhang, L.-C. Additive manufacturing of metallic lattice structures: Unconstrained design. accurate fabrication fascinated performances, and challenges. Mater. Sci. Eng. R Rep. 2021, 146, 100648. [Google Scholar] [CrossRef]
- Tuninetti, V.; Fuentes, G.; Oñate, A.; Narayan, S.; Celentano, D.; García-Herrera, C.; Menacer, B.; Pincheira, G.; Garrido, C.; Valle, R. Computational Shape Design Optimization of Femoral Implants: Towards Efficient Forging Manufacturing. Appl. Sci. 2024, 14, 8289. [Google Scholar] [CrossRef]
- Zhai, H.; Li, X.; Yu, S.; Wang, J.; Chang, Y.; Li, J.; Cheng, X.; Zhou, L.; Fang, Y.; Liu, T.; et al. Review on the 3D printing technology and application of magnetic materials: Material-process-structure-application. Compos. B Eng. 2025, 298, 112387. [Google Scholar] [CrossRef]
- Kök, H.I.; Kick, M.; Akbas, O.; Stammkötter, S.; Greuling, A.; Stiesch, M.; Walther, F.; Junker, P. Reduction of stress-shielding and fatigue-resistant dental implant design through topology optimization and TPMS lattices. J. Mech. Behav. Biomed. Mater. 2025, 165, 106923. [Google Scholar] [CrossRef]
- Yu, D.; Wu, Y.; Zhao, Z.; Zhu, Q. Topology optimization method of truss structures considering length constraints. Structures 2025, 77, 109079. [Google Scholar] [CrossRef]
- Onodera, S.; Yamada, T. Design of compliant thermal actuators using topology optimization involving design-dependent thermal convection and pressure load. Comput. Struct. 2025, 307, 107600. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, X.; Hu, T.; Li, J.; Wang, Y. Stress-constrained topology optimization using the velocity field level set method. Comput. Struct. 2024, 305, 107577. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Chen, B.; Kang, S.; Cheng, S. Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation. J. Sound Vib. 2019, 439, 398–412. [Google Scholar] [CrossRef]
- Liu, T.; Bi, S.; Yao, Y.; Dong, Z.; Yang, Q.; Liu, L. Research on zero-stiffness flexure hinge (ZSFH) based on spring four-bar linkage(4BSL). Mech. Mach. Theory 2020, 143, 103633. [Google Scholar] [CrossRef]
- Kumar, S.; Soni, A.; Katiyar, J.K.; Kumar, S.; Roy, B.S. Influence of tool pin profiles on waviness and natural frequency during friction stir welding of Al-Li alloys plates. Surf. Topogr. Metrol. Prop. 2023, 11, 025015. [Google Scholar] [CrossRef]
- Garmabi, M.M.; Shahi, P.; Tjong, J.; Sain, M. 3D printing of polyphenylene sulfide for functional lightweight automotive component manufacturing through enhancing interlayer bonding. Addit. Manuf. 2022, 56, 102780. [Google Scholar] [CrossRef]
- Dai, S.; Zhu, K.; Wang, S.; Deng, Z. Additively manufactured materials: A critical review on their anisotropic mechanical properties and modeling methods. J. Manuf. Process 2025, 141, 789–814. [Google Scholar] [CrossRef]
- Alkentar, R.; Kladovasilakis, N.; Tzetzis, D.; Mankovits, T. Effects of Pore Size Parameters of Titanium Additively Manufactured Lattice Structures on the Osseointegration Process in Orthopedic Applications: A Comprehensive Review. Crystals 2023, 13, 113. [Google Scholar] [CrossRef]
- Hu, Z. Biomimetic Design and Topology Optimization of Discontinuous Carbon Fiber-Reinforced Composite Lattice Structures. Biomimetics 2023, 8, 148. [Google Scholar] [CrossRef]
- Santos, J.; Sohouli, A.; Suleman, A. Micro- and Macro-Scale Topology Optimization of Multi-Material Functionally Graded Lattice Structures. J. Compos. Sci. 2024, 8, 124. [Google Scholar] [CrossRef]
- Xu, Y.; Han, G.; Huang, G.; Li, T.; Xia, J.; Guo, D. Properties Evaluations of Topology Optimized Functionally Graded Lattice Structures Fabricated by Selective Laser Melting. Materials 2023, 16, 1700. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Liu, P.; Liu, J. Geometric Complexity Control in Topology Optimization of 3D-Printed Fiber Composites for Performance Enhancement. Materials 2024, 17, 2005. [Google Scholar] [CrossRef]
- Bustos, F.; Hinojosa, J.; Tuninetti, V. Computational Comparison of Performance of Different Steel Plate Shear Yielding Dampers. Buildings 2023, 13, 793. [Google Scholar] [CrossRef]
- Rilling, S.; Ríos, I.; Gómez, Á.; Valenzuela, M.; Oñate, A.; Tuninetti, V. Optimized infill density through topological optimization increases strength of additively manufactured porous polylactic acid. Int. J. Adv. Manuf. Technol. 2023, 129, 3739–3750. [Google Scholar] [CrossRef]
- Slavković, V.; Hanželič, B.; Plesec, V.; Milenković, S.; Harih, G. Thermo-Mechanical Behavior and Strain Rate Sensitivity of 3D-Printed Polylactic Acid (PLA) below Glass Transition Temperature (Tg). Polymers 2024, 16, 1526. [Google Scholar] [CrossRef]
- Valenzuela, M.; Tuninetti, V.; Ciudad, G.; Miranda, A.; Oñate, A. Designing sustainable cement free compositions with rice husk ash to improve mechanical performance in next generation ecoblocks. Sci. Rep. 2025, 15, 14920. [Google Scholar] [CrossRef]
- Tuninetti, V.; Flores, P.; Valenzuela, M.; Pincheira, G.; Medina, C.; Duchêne, L.; Habraken, A.-M. Experimental characterization of the compressive mechanical behaviour of Ti6Al4V alloy at constant strain rates over the full elastoplastic range. Int. J. Mater. Form. 2020, 13, 709–724. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- Narayan, S.; Menacer, B.; Kaisan, M.U.; Samuel, J.; Al-Lehaibi, M.; Mahroogi, F.O.; Tuninetti, V. Global Research Trends in Biomimetic Lattice Structures for Energy Absorption and Deformation: A Bibliometric Analysis (2020–2025). Biomimetics 2025, 10, 477. [Google Scholar] [CrossRef]
- Tuninetti, V.; Narayan, S.; Ríos, I.; Menacer, B.; Valle, R.; Al-Lehaibi, M.; Kaisan, M.U.; Samuel, J.; Oñate, A.; Pincheira, G.; et al. Biomimetic Lattice Structures Design and Manufacturing for High Stress. Deformation and Energy Absorption Performance. Biomimetics 2025, 10, 458. [Google Scholar] [CrossRef]
- Benkraled, L.; Zennaki, A.; Zair, L.; Arabeche, K.; Berrayah, A.; Barrera, A.; Bouberka, Z.; Maschke, U. Effect of Plasticization/Annealing on Thermal. Dynamic Mechanical and Rheological Properties of Poly(Lactic Acid). Polymers 2024, 16, 974. [Google Scholar] [CrossRef] [PubMed]
- Vidakis, N.; Petousis, M.; Velidakis, E.; Liebscher, M.; Mechtcherine, V.; Tzounis, L. On the Strain Rate Sensitivity of Fused Filament Fabrication (FFF) Processed PLA. ABS PETG, PA6, and PP Thermoplastic Polymers. Polymers 2020, 12, 2924. [Google Scholar] [CrossRef] [PubMed]
- Bertocco, A.; Bruno, M.; Armentani, E.; Esposito, L.; Perrella, M. Stress Relaxation Behavior of Additively Manufactured Polylactic Acid (PLA). Materials 2022, 15, 3509. [Google Scholar] [CrossRef]
Element Size [mm] | Nodes | Elements | Equivalent Stress von Mises [MPa] | Maximum Deformation [mm] | Safety Factor [SF] | Mass [kg] |
---|---|---|---|---|---|---|
5 * | 133,830 | 90,695 | 14.09 | 0.395 | 4.25 | 1.809 |
4 | 64,933 | 13,927 | 16.43 | 0.505 | 3.65 | 1.06 |
2 | 480,166 | 110,949 | 17.25 | 0.49 | 3.48 | 1.06 |
1.5 | 3,743,812 | 897,988 | 16.33 | 0.47 | 3.67 | 1.06 |
Step | Machine Jaws Displacement [mm] | Sample Deformation [mm] | Deformation of Optimized Supports [mm] |
---|---|---|---|
1 | 8.22 | 8.44 | 0.22 |
2 | 1.48 | 1.57 | 0.09 |
3 | 2.98 | 3.29 | 0.31 |
4 | 11.65 | 9.50 | 2.15 |
5 | 5.27 | 3.92 | 1.35 |
6 | 6.05 | 5.78 | 0.27 |
7 | 4.24 | 4.02 | 0.22 |
8 | 8.70 | 6.81 | 1.89 |
9 | 2.21 | 2.30 | 0.09 |
Average | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, J.; Valle, R.; Leiva, J.; Oñate, A.; Saggionetto, E.; Mertens, A.; Tuninetti, V. Density-Based Topology-Optimized 3D-Printed Fixtures for Cyclic Mechanical Testing of Lattice Structures. Polymers 2025, 17, 2468. https://doi.org/10.3390/polym17182468
Castro J, Valle R, Leiva J, Oñate A, Saggionetto E, Mertens A, Tuninetti V. Density-Based Topology-Optimized 3D-Printed Fixtures for Cyclic Mechanical Testing of Lattice Structures. Polymers. 2025; 17(18):2468. https://doi.org/10.3390/polym17182468
Chicago/Turabian StyleCastro, Josué, Rodrigo Valle, Jorge Leiva, Angelo Oñate, Enrico Saggionetto, Anne Mertens, and Víctor Tuninetti. 2025. "Density-Based Topology-Optimized 3D-Printed Fixtures for Cyclic Mechanical Testing of Lattice Structures" Polymers 17, no. 18: 2468. https://doi.org/10.3390/polym17182468
APA StyleCastro, J., Valle, R., Leiva, J., Oñate, A., Saggionetto, E., Mertens, A., & Tuninetti, V. (2025). Density-Based Topology-Optimized 3D-Printed Fixtures for Cyclic Mechanical Testing of Lattice Structures. Polymers, 17(18), 2468. https://doi.org/10.3390/polym17182468