Multi-Performance Evolution and Elasto-Plastic Damage Modeling of Basalt Fiber-Reinforced EPS Geopolymer Lightweight Concrete
Abstract
1. Introduction
2. Materials and Experimental Program
2.1. Raw Materials and Mix Design
2.2. Preparation and Curing of Specimens
2.3. Experimental Program and Testing Methods
2.3.1. Physical Properties Testing
2.3.2. Mechanical Properties Evaluation
2.3.3. Microstructural Characterization
3. Macroscopic Crack Evolution and Micromechanical Damage Mechanisms of LEGC
3.1. Digital Image Correlation (DIC) Analysis
3.2. Scanning Electron Microscopy (SEM) Analysis
3.3. X-Ray Computed Tomography (CT) Analysis
4. Effect of Combined EPS and Basalt Fiber Contents on the Physical Properties of LEGC
Density and Flowability
5. Development and Analysis of Predictive Models for Splitting and Flexural Strengths Based on Compressive Strength
5.1. Comparative Analysis of Predictive Models for Splitting Tensile Strength
5.2. Unified Predictive Model for Flexural and Compressive Strengths with Accuracy Verification
6. Development and Validation of a Dual-Factor Predictive Model for the Mechanical Properties of LEGC Based on EPS and Basalt Fiber Dosages
6.1. Analysis of Influencing Factors on the Splitting Tensile Performance of LEGC
6.2. Model Development for Flexural Performance Response
6.2.1. Model Selection and Variable Definition
6.2.2. Interaction Effect Analysis and Physical Interpretation of Variables
6.2.3. Regression Coefficient Estimation and Model Validation
6.3. Nonlinear Regression Modeling of Compressive Strength and Evaluation of Coupled Effects of EPS and BF Content
7. Development of a Novel Coupled Damage Constitutive Model for Splitting Tensile Behavior
7.1. Elasto-Plastic Damage Model for Splitting Tensile Behavior of LEGC Based on Energy Dissipation
7.1.1. Helmholtz Free Energy and Effective Stress
7.1.2. Coupled Damage Evolution Law
7.1.3. Evolution of Plastic Strain
7.1.4. Final Constitutive Relationship
7.2. Validation of the Damage Constitutive Model
7.3. Comparative Analysis of Stress–Strain Characteristics
8. Conclusions
- Co-regulation of Density and Workability by EPS and Basalt Fibers
- 2.
- LEGC Exhibits Favorable Load-Bearing Capacity, Meeting Engineering Criteria
- 3.
- Combined Dosage of EPS and Fibers Significantly Affects Failure Modes and Strength Evolution
- 4.
- Consistency Between Macroscale Mechanical Tests and Microscale Structural Characterization
- 5.
- Proposed Constitutive Model and Empirical Formulas Exhibit High Applicability and Engineering Relevance
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wangler, T.; Roussel, N.; Bos, F.P.; Salet, T.A.; Flatt, R.J. Digital concrete: A review. Cem. Concr. Res. 2019, 123, 105780. [Google Scholar] [CrossRef]
- Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P.; Singh, L. A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. J. CO2 Util. 2023, 67, 102292. [Google Scholar] [CrossRef]
- Wei, J.; Yang, Q.; Yu, Y.; Jiang, Q.; Li, X.; Liu, S.; Li, K.; Wang, Q. Experimental study of multiscale hybrid fiber-reinforced ambient-cured LEGC under uniaxial compression. Constr. Build. Mater. 2024, 411, 134386. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. Int. J. Sustain. Built Environ. 2016, 5, 277–287. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Review of mechanical properties of short fibre reinforced geopolymer composites. Constr. Build. Mater. 2013, 43, 37–49. [Google Scholar] [CrossRef]
- Liu, R.; Yang, Y.; Zhao, X.; Pang, B. Quantitative phase analysis and microstructural characterization of Portland cement blends with diatomite waste using the Rietveld method. J. Mater. Sci. 2021, 56, 1242–1254. [Google Scholar] [CrossRef]
- Li, Z.; Chen, W.; Hao, H.; Ha, N.S.; Pham, T.M. Static and dynamic properties of novel ambient-cured lightweight geopolymer composites with fibre reinforced epoxy coated EPS aggregates. Compos. Part B Eng. 2023, 250, 110439. [Google Scholar] [CrossRef]
- Pelisser, F.; Barcelos, A.; Santos, D.; Peterson, M.; Bernardin, A.M. Lightweight concrete production with low Portland cement consumption. J. Clean. Prod. 2012, 23, 68–74. [Google Scholar] [CrossRef]
- Chen, B.; Liu, J. Properties of lightweight expanded polystyrene concrete reinforced with steel fiber. Cem. Concr. Res. 2004, 34, 1259–1263. [Google Scholar] [CrossRef]
- Tang, N.; Lei, D.; Huang, D.; Xiao, R. Mechanical performance of polystyrene foam (EPS): Experimental and numerical analysis. Polym. Test. 2019, 73, 359–365. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Termkhajornkit, P.; Kim, Y.H. Review of concrete with expanded polystyrene (EPS): Performance and environmental aspects. J. Clean. Prod. 2022, 366, 132919. [Google Scholar] [CrossRef]
- Maghfouri, M.; Alimohammadi, V.; Gupta, R.; Saberian, M.; Azarsa, P.; Hashemi, M.; Asadi, I.; Roychand, R. Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Stud. Constr. Mater. 2022, 16, e00919. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, L.; Xu, J.; Li, Y. Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick. Constr. Build. Mater. 2012, 27, 32–38. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M.A. Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr. Build. Mater. 2013, 42, 205–216. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.; Sun, X. Experimental investigation on the elastic modulus and fracture properties of basalt fiber–reinforced fly ash geopolymer concrete. Constr. Build. Mater. 2022, 338, 127570. [Google Scholar] [CrossRef]
- Abbas, A.G.N.; Aziz, F.N.A.A.; Abdan, K.; Nasir, N.A.M.; Huseien, G.F. Experimental evaluation and statistical modeling of kenaf fiber-reinforced geopolymer concrete. Constr. Build. Mater. 2023, 367, 130228. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Zhuo, J.; Zhang, Y.; Wan, C. A review of the mechanical properties and durability of basalt fiber-reinforced concrete. Constr. Build. Mater. 2022, 359, 129360. [Google Scholar] [CrossRef]
- Al-Kharabsheh, B.N.; Arbili, M.M.; Majdi, A.; Alogla, S.M.; Hakamy, A.; Ahmad, J.; Deifalla, A.F. Basalt fibers reinforced concrete: Strength and failure modes. Materials 2022, 15, 7350. [Google Scholar] [CrossRef]
- Vatin, N.I.; Hematibahar, M.; Gebre, T.H. Impact of basalt fiber reinforced concrete in protected buildings: A review. Front. Built Environ. 2024, 10, 1407327. [Google Scholar] [CrossRef]
- Yu, W.; Jin, L.; Du, X. Experimental study on compression failure characteristics of basalt fiber-reinforced lightweight aggregate concrete: Influences of strain rate and structural size. Cem. Concr. Compos. 2023, 138, 104985. [Google Scholar] [CrossRef]
- Xie, H.; Yang, L.; Zhang, Q.; Huang, C.; Chen, M.; Zhao, K. Research on energy dissipation and damage evolution of dynamic splitting failure of basalt fiber reinforced concrete. Constr. Build. Mater. 2022, 330, 127292. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Xie, A.; Qi, Y. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete. Constr. Build. Mater. 2017, 152, 154–167. [Google Scholar] [CrossRef]
- Li, Z.; Chen, W.; Hao, H.; Khan, M.Z.N. Physical and mechanical properties of new lightweight ambient-cured EPS geopolymer composites. J. Mater. Civ. Eng. 2021, 33, 04021094. [Google Scholar] [CrossRef]
- Kioupis, D.; Skaropoulou, A.; Tsivilis, S.; Kakali, G. Properties and durability performance of lightweight fly ash based geopolymer composites incorporating expanded polystyrene and expanded perlite. Ceramics 2022, 5, 821–836. [Google Scholar] [CrossRef]
- Wei, J.; Yang, Q.; Jiang, Q.; Li, X.; Liu, S.; Li, K.; Wang, Q. Mechanical properties of basalt fiber reinforced ambient-cured lightweight expanded polystyrene geopolymer concrete. J. Build. Eng. 2023, 80, 108072. [Google Scholar] [CrossRef]
- Qin, L.; Yan, J.; Zhou, M.; Liu, H.; Wang, A.; Zhang, W.; Duan, P.; Zhang, Z. Mechanical properties and durability of fiber reinforced geopolymer composites: A review on recent progress. Eng. Rep. 2023, 5, e12708. [Google Scholar] [CrossRef]
- Wei, J.; Yang, Q.; Jiang, Q.; Li, X.; Liu, S.; Li, K.; Wang, Q. Strain rate effect on the axial compressive properties of basalt fiber-reinforced ambient-cured lightweight expanded polystyrene geopolymer concrete. Mater. Struct. 2024, 57, 132. [Google Scholar]
- GB/T203; Granulated Blast Furnace Slag Used for Cement Production. National Standards of People’s Republic of China: Beijing, China, 2008.
- GB/T 629-1997; Chemical Reagent. Sodium Hydroxide. National Standards of People’s Republic of China: Beijing, China, 1997.
- ASTM C138-16; Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM C1437-20; Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C496-17; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C348-21; Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM C349-18; Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2018.
- Babu, D.S.; Babu, K.G.; Tiong-Huan, W. Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete. Cem. Concr. Compos. 2006, 28, 520–527. [Google Scholar] [CrossRef]
- Mahmud, H.; Jumaat, M.Z.; Alengaram, U.J. Influence of sand/cement ratio on mechanical properties of palm kernel shell concrete. J. Appl. Sci. 2009, 9, 1764–1769. [Google Scholar] [CrossRef]
- Tassew, S.T.; Lubell, A.S. Mechanical properties of lightweight ceramic concrete. Mater. Struct. 2012, 45, 561–574. [Google Scholar] [CrossRef]
- ACI 213R-14; Guide for Structural Lightweight Aggregate Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2014.
- Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Compos. Part B Eng. 2016, 89, 253–265. [Google Scholar] [CrossRef]
- Wang, T.; Fan, X.; Gao, C. Flexural properties of fiber reinforced geopolymer composites: Experimental investigation and toughness evaluation. J. Sustain. Cem.-Based Mater. 2025, 14, 1536–1548. [Google Scholar] [CrossRef]
- Tao, J.; Jing, M.; Yang, Q.; Liang, F. Fracture Behaviour of Basalt Fibre-Reinforced Lightweight Geopolymer Concrete: A Multidimensional Analysis. Materials 2025, 18, 3549. [Google Scholar] [CrossRef]
- Le Roy, R.; Parant, E.; Boulay, C. Taking into account the inclusions’ size in lightweight concrete compressive strength prediction. Cem. Concr. Res. 2005, 35, 770–775. [Google Scholar] [CrossRef]
- CECS 38-2004; Technical Specification for Fiber Reinforced Concrete Structures. China Engineering Construction Standardization Association: Beijing, China, 2004.
- Morrell, R. Handbook of Properties of Technical and Engineering Ceramics Part 1: An Introduction for the Engineer and Designer; Her Majesty’s Stationary Office: London, UK, 1985. [Google Scholar]
Component | Fly Ash (wt%) | Slag (wt%) |
---|---|---|
SiO2 | 43 | 34.00 |
Al2O3 | 23 | 17.60 |
CaO | 5.6 | 34.00 |
MgO | 0.95 | 6.21 |
Fe2O3 | 2.5 | 1.01 |
SO3 | 0.8 | 1.62 |
Total | 75.85 | 94.44 |
Diameter (μm) | Density (kg/m3) | Elastic Modulus (GPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|
7–15 | 2.63–2.65 | 91–110 | 3000–4800 | 3.1 |
Na2O (%) | SiO2 (%) | H2O (%) | Ms (SiO2/Na2O) | Pomerol (Be/68 °F) | Specific Gravity |
---|---|---|---|---|---|
8.54 | 27.30 | 64.16 | 3.30 | 38.5 | 1.37 |
Specimen ID | Mix Proportions of Main Materials | EPS | BF | Sp/(kg/m3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Slag | FA | NaOH | Na2SiO3 | Sand | H2O | Wt/(kg/m3) | Vol (%) | Wt/ (kg/m3) | Vol/(%) | ||
GC00BF00 | 348.8 | 348.8 | 45.2 | 216.9 | 1011.8 | 118 | 0 | 0 | 0 | 0 | 10.5 |
LEGC10BF04 | 348.8 | 348.8 | 45.2 | 216.9 | 811.8 | 118 | 1.8 | 10 | 10.6 | 0.4 | 10.5 |
LEGC10BF06 | 348.8 | 348.8 | 45.2 | 216.9 | 811.8 | 118 | 1.8 | 10 | 15.9 | 0.6 | 10.5 |
LEGC10BF08 | 348.8 | 348.8 | 45.2 | 216.9 | 811.8 | 118 | 1.8 | 10 | 21.2 | 0.8 | 10.5 |
LEGC20BF04 | 348.8 | 348.8 | 45.2 | 216.9 | 611.8 | 118 | 3.7 | 20 | 10.6 | 0.4 | 10.5 |
LEGC20BF06 | 348.8 | 348.8 | 45.2 | 216.9 | 611.8 | 118 | 3.7 | 20 | 15.9 | 0.6 | 10.5 |
LEGC20BF08 | 348.8 | 348.8 | 45.2 | 216.9 | 611.8 | 118 | 3.7 | 20 | 21.2 | 0.8 | 10.5 |
LEGC30BF04 | 348.8 | 348.8 | 45.2 | 216.9 | 411.8 | 118 | 5.5 | 30 | 10.6 | 0.4 | 10.5 |
LEGC30BF06 | 348.8 | 348.8 | 45.2 | 216.9 | 411.8 | 118 | 5.5 | 30 | 15.9 | 0.6 | 10.5 |
LEGC30BF08 | 348.8 | 348.8 | 45.2 | 216.9 | 411.8 | 118 | 5.5 | 30 | 21.2 | 0.8 | 10.5 |
LEGC40BF04 | 348.8 | 348.8 | 45.2 | 216.9 | 211.8 | 118 | 7.3 | 40 | 10.6 | 0.4 | 10.5 |
LEGC40BF06 | 348.8 | 348.8 | 45.2 | 216.9 | 211.8 | 118 | 7.3 | 40 | 15.9 | 0.6 | 10.5 |
LEGC40BF08 | 348.8 | 348.8 | 45.2 | 216.9 | 211.8 | 118 | 7.3 | 40 | 21.2 | 0.8 | 10.5 |
No. | Test Description | Dimensions (mm) | Number of Groups | Specimens Per Group | Total Specimens |
---|---|---|---|---|---|
1 | Splitting Tensile Strength Test | 50 × 100 | 13 | 3 | 39 |
2 | Flexural and Compressive Strength Test | 40 × 40 × 160 | 13 | 3 | 39 |
Parameter | Description | Unit |
---|---|---|
Peak stress | MPa | |
Peak strain | -- | |
a | Energy-based damage index | -- |
b | Statistical damage coefficient | -- |
Initial elastic modulus | MPa | |
h | Plastic strain evolution coefficient | -- |
i | Plastic strain growth exponent | -- |
Specimen ID | Fitted Parameters | |||||||
---|---|---|---|---|---|---|---|---|
a | b | h | i | R2 | ||||
LEGC10BF04 | 1.972 | 0.01855 | 3.763 | −75.425 | 106.26 | −374.866 | 5.828 | 0.9915 |
LEGC10BF06 | 2.867 | 0.01873 | 14.207 | −31.769 | 153.09 | 38.037 | 13.910 | 0.9959 |
LEGC10BF08 | 3.139 | 0.02211 | 13.74 | −43.404 | 141.97 | −168.38 | 154.52 | 0.9981 |
LEGC20BF04 | 2.423 | 0.02060 | 16.726 | −34.323 | 117.65 | −285,787.4 | 1942.83 | 0.9914 |
LEGC20BF06 | 2.369 | 0.02586 | 8.6626 | −44.5713 | 91.6 | 618,804.4 | −3270.8 | 0.9969 |
LEGC20BF08 | 3.176 | 0.01971 | 26.301 | −27.583 | 161.14 | 1444.205 | 3052.53 | 0.9943 |
LEGC30BF04 | 2.268 | 0.02110 | 29.926 | −16.538 | 107.50 | −10,588,465 | 4.6018 | 0.9943 |
LEGC30BF06 | 2.474 | 0.02120 | 74.535 | −12.076 | 116.69 | −177,214.7 | 332.374 | 0.9934 |
LEGC30BF08 | 2.413 | 0.02591 | 16.467 | −24.2303 | 93.13 | −343,671.3 | 4.1504 | 0.9931 |
LEGC40BF04 | 2.038 | 0.01938 | 7.301 | –21.616 | 105.14 | –1814.642 | 3.431 | 0.9959 |
LEGC40BF06 | 2.194 | 0.01725 | 4.337 | −39.0991 | 127.19 | −995.5579 | 4.7579 | 0.9838 |
LEGC40BF08 | 2.018 | 0.01905 | 6.8949 | −41.8101 | 105.90 | −28,932.03 | 215.139 | 0.9884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, F.; Yang, Q.; Tao, J. Multi-Performance Evolution and Elasto-Plastic Damage Modeling of Basalt Fiber-Reinforced EPS Geopolymer Lightweight Concrete. Polymers 2025, 17, 2471. https://doi.org/10.3390/polym17182471
Liang F, Yang Q, Tao J. Multi-Performance Evolution and Elasto-Plastic Damage Modeling of Basalt Fiber-Reinforced EPS Geopolymer Lightweight Concrete. Polymers. 2025; 17(18):2471. https://doi.org/10.3390/polym17182471
Chicago/Turabian StyleLiang, Feng, Qingshun Yang, and Jutao Tao. 2025. "Multi-Performance Evolution and Elasto-Plastic Damage Modeling of Basalt Fiber-Reinforced EPS Geopolymer Lightweight Concrete" Polymers 17, no. 18: 2471. https://doi.org/10.3390/polym17182471
APA StyleLiang, F., Yang, Q., & Tao, J. (2025). Multi-Performance Evolution and Elasto-Plastic Damage Modeling of Basalt Fiber-Reinforced EPS Geopolymer Lightweight Concrete. Polymers, 17(18), 2471. https://doi.org/10.3390/polym17182471