Data-Driven Optimization of Discontinuous and Continuous Fiber Composite Processes Using Machine Learning: A Review
Abstract
1. Introduction
- Systematically surveying recent advances in ML applications across diverse composite manufacturing processes—including Automated Composite Fiber Placement (ACFP), pultrusion, Resin Transfer Molding (RTM), Sheet Molding Compounds (SMC), and additive and spray-based techniques.
- Highlighting emerging trends, cross-cutting challenges, and open research questions at the intersection of ML, materials engineering, and process control.
- Proposing and demonstrating a hybrid physics-informed ML model tailored for predicting and optimizing composite process outcomes under limited data regimes.
- Emphasizing the role of hybrid physics–ML models, real-time monitoring, digital twins, and surrogate modeling in advancing performance, efficiency, and automation in composite manufacturing.
2. Need for ML in Composite Manufacturing
2.1. Data-Driven Innovations in Polymer and Composite Materials
2.2. Data-Driven Solutions for Composite Manufacturing
3. Data-Driven Approaches in Composite Materials
4. In-Depth Research Analysis
4.1. XPBD-Based Surrogate for RL-Driven Robotic Draping
4.2. HSI-Guided Prediction of Laser-Structured FRP for Metallic Coating Adhesion
4.3. CNN-Driven Surrogate Optimization for Variable-Geometry Draping
4.4. Digitized Data Acquisition and Synchronization for Pultrusion
4.5. Predicting GFRP Fracture Toughness from Standard Mechanical Properties via ML
- ANN: input → hidden layers → linear output , optimized with MSE and early stopping.
- Random Forest: ensemble of regression trees, prediction via averaging:
- Gradient Boosting (GBDT): additive model handling nonlinear feature interactions:
4.6. ML-Driven Prediction of Axial Load Capacity in Pultruded GFRP Columns
4.7. Performance Comparison of ML Models
5. AI Model Architecture for Natural Fiber-Based Composite Fabrication
5.1. Hybrid XPBD–GNN Surrogate for Forming Simulation
5.2. HSI-Enhanced Surface Defect Segmentation
5.3. Multi-Modal Fusion for Closed-Loop Control
5.4. Transfer Learning and Domain Randomization
- A residual policy is learned via proximal policy optimization (PPO) on real-world rollouts, correcting the model-based controller :
- A CycleGAN [157] is trained to map lab-calibrated reflectance spectra to production-domain spectra , preserving key absorption features (e.g., O–H, C–H bands):
- During surrogate training, material parameters are sampled from distributions reflecting natural-fiber heterogeneity:Each XPBD–GNN rollout uses a random draw to enforce robustness. An auxiliary consistency loss penalizes extreme deviations from reference data:
5.5. Model Inference
- Graph input:
- –
- nodes sampling local patches of the fiber preform, each with an 8-dimensional feature vector (e.g., local modulus, shear, moisture, thickness).
- –
- random undirected edges , with 2-dimensional edge attributes (e.g., relative distance and orientation).
- –
- 3D positions used only for visualization.
- Hyperspectral image (HSI) input:
- –
- A single hyperspectral cube of shape , with reflectance values drawn from a standard normal distribution to emulate pre-processed spectral bands.
- Expected outputs:
- XPBD-GNN surrogate predicts per-node deformation gradients (flattened to four values) and a scalar reorientation . In the dummy run, we observe
- Spectral-UNet produces a volumetric segmentation logits tensor of shape , corresponding to five material/defect classes across the HSI volume.
- Cross-Attention Controller fuses the graph embedding (averaged hidden state, ) and a summary HSI feature vector (e.g., fractions of “good,” “void,” “fuzz”) to output three control adjustments:
6. Discussion
6.1. Key Implications
6.2. Limitations and Future Directions
- Reducing reliance on large labeled datasets by leveraging physics-informed neural networks, meta-learning, or synthetic-to-real domain adaptation will broaden applicability to new materials and geometries without costly retraining.
- Developing modular, open-architecture twins that can ingest multisensor data, execute surrogate-accelerated simulations, and issue control recommendations will accelerate adoption across domains from automotive to wind-energy composites.
- Establishing benchmarks for ML model resilience to noise, missing data, and drift—as well as regulatory pathways for approving AI-driven inspection and design tools—will be essential for deployment in safety-critical industries.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Zhang, Y.; Sun, Z.; Yin, H.; Feng, Y. Machine learning in polymer science: A new lens for physical and chemical exploration. Prog. Mater. Sci. 2026, 156, 101544. [Google Scholar] [CrossRef]
- Althagafi, T.M.; Tahir, M.H.; Badshah, A.; Alzahrani, F.M.A.; Al-Buriahi, M.S.A. Designing of a library of polymers and prediction of thermal conductivity: A machine assisted framework. J. Phys. Chem. Solids 2026, 208, 113041. [Google Scholar] [CrossRef]
- Yu, X.; Song, A.; Khodadadi, N.; Yu, Y.; Nanni, A. A novel approach for predicting FRP debonding strain in concrete using an optimized self-learning model. Compos. Struct. 2025, 372, 119572. [Google Scholar] [CrossRef]
- Qu, H.; Hu, T.; Qu, J.; Taffese, W.Z. A machine learning model based on GAN-ANN data augmentation for predicting the bond strength of FRP-reinforced concrete under high-temperature conditions. Compos. Struct. 2025, 369, 119321. [Google Scholar] [CrossRef]
- Zhang, H.; Li, F.; Chen, L. Neural network-based prediction of stability coefficients for pultruded Fiber-Reinforced Polymer columns. Comput. Struct. 2025, 316, 107888. [Google Scholar] [CrossRef]
- Kabiru Sa’Adu, S.; Khe, C.; Shukur, M.F.; Kwok Feng, C.; Lai, C.W.; You, K.Y.; Nik Roseley, N.R.; Aboelazm, E. Transition metal coordination polymer-derived materials for supercapacitor applications: Recent advances and future perspectives. R. Soc. Open Sci. 2025, 12, 250919. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, B.; Wu, H. Paving continuous thermal conduction pathway for flexible composite materials. Mater. Today Phys. 2025, 57, 101808. [Google Scholar] [CrossRef]
- Kennedy, S.M.; K, A.; Padmapriya, K.; Rb, J.R. Artificial intelligence and machine learning-driven design of self-healing biomedical composites. Expert Rev. Med. Devices 2025, 22, 787–805. [Google Scholar] [CrossRef]
- Liao, H.; Hu, S.; Yang, H.; Wang, L.; Tanaka, S.; Takigawa, I.; Li, W.; Fan, H.; Gong, J.P. Data-driven de novo design of super-adhesive hydrogels. Nature 2025, 644, 89–95. [Google Scholar] [CrossRef]
- Cadamuro, F.; Piazzoni, M.; Gamba, E.; Sonzogni, B.; Previdi, F.; Nicotra, F.; Ferramosca, A.; Russo, L. Artificial Intelligence tool for prediction of ECM mimics hydrogel formulations via click chemistry. Biomater. Adv. 2025, 175, 214323. [Google Scholar] [CrossRef]
- Chen, X.; Yu, R.; Yuan, X.; Wang, X. Toughening epoxy resins: Recent advances in network architectures and rheological behavior. Polymer 2025, 334, 128770. [Google Scholar] [CrossRef]
- Hassan, A.U.; Güleryüz, C.; El Azab, I.H.; Elnaggar, A.Y.; Mahmoud, M.H.H. A graph neural network assisted reverse polymers engineering to design low bandgap benzothiophene polymers for light harvesting applications. Mater. Chem. Phys. 2025, 339. [Google Scholar] [CrossRef]
- Anwar Parvez, M.; Mehedi, I.M. High-Accuracy Polymer Property Detection via Pareto-Optimized SMILES-Based Deep Learning. Polymers 2025, 17, 1801. [Google Scholar] [CrossRef]
- Zheng, Y.; Luo, Y.; Zhang, X.; Xu, J. Integrating CDIO framework into polymer engineering education: A hands-on approach to design, process, and evaluate biodegradable 3D printing filaments. Educ. Chem. Eng. 2025, 52, 111–118. [Google Scholar] [CrossRef]
- Jeon, J.H.; Yoon, C.K.; Quan, Y.J.; Choi, J.Y.; Hong, S.; Lee, W.I.; Kwon, K.K.; Ahn, S.H. Effect of fiber entanglement in chopped glass fiber reinforced composite manufactured via long fiber spray-up molding. Heliyon 2023, 9, e22170. [Google Scholar] [CrossRef]
- McBride, K.; Sundmacher, K. Overview of surrogate modeling in chemical process engineering. Chem. Ing. Tech. 2019, 91, 228–239. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Hoi, S.C. Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3365–3387. [Google Scholar] [CrossRef] [PubMed]
- Wiering, M.A.; Van Otterlo, M. Reinforcement learning. Adapt. Learn. Optim. 2012, 12, 729. [Google Scholar]
- Dhinakaran, V.; Surendar, K.; Riyaz, M.H.; Ravichandran, M. Review on study of thermosetting and thermoplastic materials in the automated fiber placement process. Mater. Today Proc. 2020, 27, 812–815. [Google Scholar] [CrossRef]
- Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.; et al. Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 2022, 8, 59. [Google Scholar] [CrossRef]
- Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.; Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Sommer, T.; et al. Graph neural networks for materials science and chemistry. Commun. Mater. 2022, 3, 93. [Google Scholar] [CrossRef]
- Würth, T.; Krauß, C.; Zimmerling, C.; Kärger, L. Physics-informed neural networks for data-free surrogate modelling and engineering optimization–an example from composite manufacturing. Mater. Des. 2023, 231, 112034. [Google Scholar] [CrossRef]
- Alagulakshmi, R.; Ramalakshmi, R.; Veerasimman, A.; Palani, G.; Selvaraj, M.; Basumatary, S. Advancements of machine learning techniques in fiber-filled polymer composites: A review. Polym. Bull. 2025, 82, 2059–2089. [Google Scholar] [CrossRef]
- de Castro Saiki, L.E.; Gomes, G.F. Understanding and mitigating delamination in composite materials: A comprehensive review. Mech. Adv. Mater. Struct. 2024, 31, 13147–13167. [Google Scholar] [CrossRef]
- Jamal, M.A.; Shah, O.R.; Ghafoor, U.; Qureshi, Y.; Bhutta, M.R. Additive manufacturing of continuous fiber-reinforced polymer composites via fused deposition modelling: A comprehensive review. Polymers 2024, 16, 1622. [Google Scholar] [CrossRef] [PubMed]
- Safonov, A.A.; Carlone, P.; Akhatov, I. Mathematical simulation of pultrusion processes: A review. Compos. Struct. 2018, 184, 153–177. [Google Scholar] [CrossRef]
- Desai, A.A.; Khan, S. Optimizing Nd: YAG laser cutting of carbon fiber reinforcing polymer with newly developed resin using Taguchi-GRA approach and machine learning integration. Multidiscip. Model. Mater. Struct. 2024, 20, 1213–1228. [Google Scholar] [CrossRef]
- Soydan, Z.; Şahin, F.İ.; Acaralı, N. Advancements in polymeric matrix composite production: A review on methods and approaches. Turk. J. Eng. 2024, 8, 677–686. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, Z.; Liu, Y.; Tu, H.; Wei, Y. A comprehensive review of fiber-reinforced polymer-matrix composites under low-velocity impact. Mech. Adv. Mater. Struct. 2025, 1–39. [Google Scholar] [CrossRef]
- van Grootel, A.; Chang, J.; Wardle, B.L.; Olivetti, E. Manufacturing variability drives significant environmental and economic impact: The case of carbon fiber reinforced polymer composites in the aerospace industry. J. Clean. Prod. 2020, 261, 121087. [Google Scholar] [CrossRef]
- Valente, M.; Rossitti, I.; Sambucci, M. Different production processes for thermoplastic composite materials: Sustainability versus mechanical properties and processes parameter. Polymers 2023, 15, 242. [Google Scholar] [CrossRef]
- Suriani, M.; Rapi, H.Z.; Ilyas, R.; Petrů, M.; Sapuan, S. Delamination and manufacturing defects in natural fiber-reinforced hybrid composite: A review. Polymers 2021, 13, 1323. [Google Scholar] [CrossRef]
- Knaak, C.; von Eßen, J.; Kröger, M.; Schulze, F.; Abels, P.; Gillner, A. A spatio-temporal ensemble deep learning architecture for real-time defect detection during laser welding on low power embedded computing boards. Sensors 2021, 21, 4205. [Google Scholar] [CrossRef]
- Md, A.Q.; Jha, K.; Haneef, S.; Sivaraman, A.K.; Tee, K.F. A review on data-driven quality prediction in the production process with machine learning for industry 4.0. Processes 2022, 10, 1966. [Google Scholar] [CrossRef]
- Florian, E.; Sgarbossa, F.; Zennaro, I. Machine learning-based predictive maintenance: A cost-oriented model for implementation. Int. J. Prod. Econ. 2021, 236, 108114. [Google Scholar]
- Stoll, A.; Benner, P. Machine learning for material characterization with an application for predicting mechanical properties. GAMM-Mitteilungen 2021, 44, e202100003. [Google Scholar] [CrossRef]
- Shahzad, K.; Mardare, A.I.; Hassel, A.W. Accelerating materials discovery: Combinatorial synthesis, high-throughput characterization, and computational advances. Sci. Technol. Adv. Mater. Methods 2024, 4, 2292486. [Google Scholar] [CrossRef]
- Griesemer, S.D.; Xia, Y.; Wolverton, C. Accelerating the prediction of stable materials with machine learning. Nat. Comput. Sci. 2023, 3, 934–945. [Google Scholar] [CrossRef]
- Tsanousa, A.; Bektsis, E.; Kyriakopoulos, C.; González, A.G.; Leturiondo, U.; Gialampoukidis, I.; Karakostas, A.; Vrochidis, S.; Kompatsiaris, I. A review of multisensor data fusion solutions in smart manufacturing: Systems and trends. Sensors 2022, 22, 1734. [Google Scholar] [CrossRef]
- Segreto, T.; Teti, R. Data quality evaluation for smart multi-sensor process monitoring using data fusion and machine learning algorithms. Prod. Eng. 2023, 17, 197–210. [Google Scholar] [CrossRef]
- Studer, S.; Bui, T.B.; Drescher, C.; Hanuschkin, A.; Winkler, L.; Peters, S.; Müller, K.R. Towards CRISP-ML (Q): A machine learning process model with quality assurance methodology. Mach. Learn. Knowl. Extr. 2021, 3, 392–413. [Google Scholar]
- Munappy, A.R.; Bosch, J.; Olsson, H.H.; Arpteg, A.; Brinne, B. Data management for production quality deep learning models: Challenges and solutions. J. Syst. Softw. 2022, 191, 111359. [Google Scholar] [CrossRef]
- Chen, Z.; Turng, L.S. A review of current developments in process and quality control for injection molding. Adv. Polym. Technol. J. Polym. Process. Inst. 2005, 24, 165–182. [Google Scholar] [CrossRef]
- Selvaraj, S.K.; Raj, A.; Rishikesh Mahadevan, R.; Chadha, U.; Paramasivam, V. A review on machine learning models in injection molding machines. Adv. Mater. Sci. Eng. 2022, 2022, 1949061. [Google Scholar] [CrossRef]
- Li, X.j.; Zuo, Z.m.; Mi, H.y.; Dong, B.b.; Antwi-Afari, M.F.; Liu, C.t.; Shen, C.y. A review of research progress on the minimization of weld lines in injection molding. Int. J. Adv. Manuf. Technol. 2024, 132, 5179–5210. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J.; Yao, L.; Tang, J.; Che, B.; Ju, S.; Jiang, D. A multi-layer resin film infusion process to control CNTs distribution and alignment for improving CFRP interlaminar fracture toughness. Compos. Struct. 2021, 260, 113510. [Google Scholar] [CrossRef]
- Hanafee, Z.; Khalina, A.; Norkhairunnisa, M.; Syams, Z.E.; Ern, L.K. The effect of different linear robot travel speed on mass flowrate of pineapple leaf fibre (PALF) automated spray up composite. Compos. Part B Eng. 2019, 156, 220–228. [Google Scholar]
- Meister, S.; Wermes, M.A.; Stüve, J.; Groves, R.M. Review of image segmentation techniques for layup defect detection in the Automated Fiber Placement process: A comprehensive study to improve AFP inspection. J. Intell. Manuf. 2021, 32, 2099–2119. [Google Scholar]
- Ekezie, F.G.C.; Sun, D.W.; Han, Z.; Cheng, J.H. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends Food Sci. Technol. 2017, 67, 58–69. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, X.; Stringer, J. Optimization of process planning for reducing material waste in extrusion based additive manufacturing. Robot.-Comput.-Integr. Manuf. 2019, 59, 317–325. [Google Scholar]
- Chang, T.; Akin, S.; Cho, S.; Lee, J.; Lee, S.A.; Park, T.; Hong, S.; Yu, T.; Ji, Y.; Yi, J.; et al. In situ spray polymerization of conductive polymers for personalized e-textiles. ACS Nano 2023, 17, 22733–22743. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, X.; Fang, Y.; Zhang, X. A path-integral-based reinforcement learning algorithm for path following of an autoassembly mobile robot. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 4487–4499. [Google Scholar]
- Zubayer, M.H.; Xiong, Y.; Wang, Y.; Imdadul, H.M. Enhancing additive manufacturing precision: Intelligent inspection and optimization for defect-free continuous carbon fiber-reinforced polymer. Compos. Part C Open Access 2024, 14, 100451. [Google Scholar] [CrossRef]
- Yao, T.T.; Liu, Y.T.; Zhu, H.; Zhang, X.F.; Wu, G.P. Controlling of resin impregnation and interfacial adhesion in carbon fiber/polycarbonate composites by a spray-coating of polymer on carbon fibers. Compos. Sci. Technol. 2019, 182, 107763. [Google Scholar]
- Ouarhim, W.; Semlali Aouragh Hassani, F.; Bouhfid, R.; el kacem Qaiss, A. Numerical, experimental and simulation study of natural fiber-based composites on injection molding. In Polymers and Composites Manufacturing; De Gruyter: Berlin, Germany, 2020; pp. 121–134. [Google Scholar]
- Bruns, C.; Micke-Camuz, M.; Bohne, F.; Raatz, A. Process design and modelling methods for automated handling and draping strategies for composite components. CIRP Annals 2018, 67, 1–4. [Google Scholar] [CrossRef]
- Sanchez, V.; Walsh, C.J.; Wood, R.J. Textile technology for soft robotic and autonomous garments. Adv. Funct. Mater. 2021, 31, 2008278. [Google Scholar] [CrossRef]
- Khan, W.A.; Anjum, M.U.; Khan, H.; Hamza, A.; Jabbar, H.; Zafar, T.; Ansari, A.R.; Nawaz, R. Application of robotic manipulation for carbon fiber reinforced polymers manufacturing-A survey. Compos. Part C Open Access 2024, 15, 100503. [Google Scholar] [CrossRef]
- Ellekilde, L.P.; Wilm, J.; Nielsen, O.W.; Krogh, C.; Kristiansen, E.; Gunnarsson, G.G.; Stenvang, T.S.; Jakobsen, J.; Kristiansen, M.; Glud, J.A.; et al. Design of automated robotic system for draping prepreg composite fabrics. Robotica 2021, 39, 72–87. [Google Scholar] [CrossRef]
- Walia, K.; Khan, A.; Breedon, P. Polymer-based additive manufacturing: Process optimisation for low-cost industrial robotics manufacture. Polymers 2021, 13, 2809. [Google Scholar] [PubMed]
- Blies, P.M.; Keller, S.; Kuenzer, U.; El Manyari, Y.; Maier, F.; Sause, M.G.; Wasserer, M.; Hinterhölzl, R.M. Towards the automation of woven fabric draping via reinforcement learning and Extended Position Based Dynamics. J. Manuf. Processes 2025, 141, 336–350. [Google Scholar] [CrossRef]
- Jiang, S.; Dieng, A.B.; Webb, M.A. Property-guided generation of complex polymer topologies using variational autoencoders. npj Comput. Mater. 2024, 10, 139. [Google Scholar] [CrossRef]
- Barkanov, E.; Akishin, P.; Namsone, E.; Bondarchuk, A.; Pantelelis, N. Real-time characterization of pultrusion processes with a temperature control. Mech. Compos. Mater. 2020, 56, 135–148. [Google Scholar] [CrossRef]
- Dias, R.d.C.C.; Costa, M.L.; de Sousa Santos, L.; Schledjewski, R. Kinetic parameter estimation and simulation of pultrusion process of an epoxy-glass fiber system. Thermochim. Acta 2020, 690, 178636. [Google Scholar] [CrossRef]
- Heimbucher, C.; Seeßelberg, L.; Giese, E.; Boysen, S.; Herrmann, A.S. Investigation of quality related process variables in pultrusion by correlation of numerical and experimental data with application of an inline data acquisition system. J. Compos. Mater. 2024, 58, 867–891. [Google Scholar] [CrossRef]
- Talabi, S.I.; Tobin, J.; Strom, B.; Brownstein, I.; Kunc, V.; Hassen, A.A. Recent and future developments in pultrusion technology with consideration for curved geometries: A review. Compos. Part B Eng. 2024, 238, 111678. [Google Scholar] [CrossRef]
- Volk, M.; Yuksel, O.; Baran, I.; Hattel, J.H.; Spangenberg, J.; Sandberg, M. Cost-efficient, automated, and sustainable composite profile manufacture: A review of the state of the art, innovations, and future of pultrusion technologies. Compos. Part B Eng. 2022, 246, 110135. [Google Scholar] [CrossRef]
- Mukherji, A.; Tarapore, N.; Njuguna, J. Determination of cure mechanism inside die for a part manufacturing during large-scale pultrusion. J. Appl. Polym. Sci. 2022, 139, 52035. [Google Scholar] [CrossRef]
- Son, J.; Mungale, C.; Baruah, S.; Vaidya, U.; Schmitz, T. Tool wear, mechanistic force modeling, and surface finish in CFRP milling. J. Manuf. Processes 2025, 141, 1397–1415. [Google Scholar] [CrossRef]
- Aegerter, N.; Volk, M.; Maio, C.; Schneeberger, C.; Ermanni, P. Pultrusion of hybrid bicomponent fibers for 3D printing of continuous fiber reinforced thermoplastics. Adv. Ind. Eng. Polym. Res. 2021, 4, 224–234. [Google Scholar] [CrossRef]
- Novo, P.; Silva, J.F.; Nunes, J.; Marques, A. Pultrusion of fibre reinforced thermoplastic pre-impregnated materials. Compos. Part B Eng. 2016, 89, 328–339. [Google Scholar] [CrossRef]
- Laudiero, F.; Minghini, F.; Tullini, N. Buckling and postbuckling finite-element analysis of pultruded FRP profiles under pure compression. J. Compos. Constr. 2014, 18, 04013026. [Google Scholar] [CrossRef]
- Hazra, T. A Low Cost 2-Axis plc Controlled Filament Winding Machine with Simplified Fiber Winding Angle and Tension Control System. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 2011. [Google Scholar]
- Jois, K.C.; Mölling, T.; Schuster, J.; Grigat, N.; Gries, T. Towpreg manufacturing and characterization for filament winding application. Polym. Compos. 2024, 45, 7893–7905. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J.; Yan, W.; Xin, S.; Xu, J. A fast and precise filament winding path planning method based on discrete non-iterative semi-geodesic algorithm for all applicable mandrel. Compos. Commun. 2023, 40, 101620. [Google Scholar] [CrossRef]
- Liang, J.; Liu, L.; Qin, Z.; Zhao, X.; Li, Z.; Emmanuel, U.; Feng, J. Experimental study of curing temperature effect on mechanical performance of carbon fiber composites with application to filament winding pressure vessel design. Polymers 2023, 15, 982. [Google Scholar] [CrossRef]
- Mindermann, P.; Gresser, G.T. Adaptive winding pin and hooking capacity model for coreless filament winding. J. Reinf. Plast. Compos. 2023, 42, 26–38. [Google Scholar]
- Carosella, S.; Hügle, S.; Helber, F.; Middendorf, P. A short review on recent advances in automated fiber placement and filament winding technologies. Compos. Part B Eng. 2024, 287, 111843. [Google Scholar]
- Zhu, H.; Zou, K.; Bao, W. Study on process of chemical fiber filament automatic doffing system based on simulation platform and machine learning. J. Eng. Fibers Fabr. 2021, 16, 15589250211054833. [Google Scholar] [CrossRef]
- Mersch, J.; Friese, D.; Le Xuan, H. Toward the Automation of the 3D Robotic Coreless Filament Winding Process for High-Performance Composite Materials With Multiple Reinforcement Levels. Appl. Res. 2025, 4, e202400145. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Kang, Y.; Hu, S.; Guan, C.; Guo, W.; Lian, Z.; Liang, S. Defect recognition in fiber-optic coil winding based on improved MobileNetV1. IEEE Sens. J. 2024, 24, 27300–27308. [Google Scholar] [CrossRef]
- Yadegari, H.; Taherian, R.; Dariushi, S. Investigation on mechanical properties of hybrid aluminum/composite tubes manufactured by filament winding and hand lay-up. Polym. Polym. Compos. 2021, 29, S1486–S1497. [Google Scholar] [CrossRef]
- Lorenz, N.; Zawadzki, T.; Keller, L.; Fuchs, J.; Fischer, K.; Hopmann, C. Characterization and modeling of an epoxy vitrimer based on disulfide exchange for wet filament winding applications. Polym. Eng. Sci. 2024, 64, 3682–3702. [Google Scholar] [CrossRef]
- Aldhahri, K.S.; Klosterman, D.A. Additively manufactured resin transfer molding (RTM) plastic tooling for producing composite T-joint structures. Prog. Addit. Manuf. 2025, 10, 2283–2301. [Google Scholar] [CrossRef]
- Djebara, Y.; Imad, A.; Saouab, A.; Kanit, T. A numerical modelling for resin transfer molding (RTM) process and effective thermal conductivity prediction of a particle–filled composite carbon–epoxy. J. Compos. Mater. 2021, 55, 3–15. [Google Scholar] [CrossRef]
- Neitzel, B.; Puch, F. Application of capacitive sensors and controlled injection pressure to minimize void formation in resin transfer molding. Polym. Compos. 2023, 44, 1658–1671. [Google Scholar] [CrossRef]
- Xu, X.; Wei, K.; Mei, M.; Li, M.; Yang, X. An ultrasound-assisted resin transfer molding to improve the impregnation and dual-scale flow for carbon fiber reinforced resin composites. Compos. Sci. Technol. 2024, 255, 110710. [Google Scholar] [CrossRef]
- Saad, A.; Echchelh, A.; Hattabi, M.; El Ganaoui, M. Optimization of the cycle time in resin transfer molding process by numerical simulation. J. Reinf. Plast. Compos. 2012, 31, 1388–1399. [Google Scholar] [CrossRef]
- Wu, C.C.; Young, W.B. On the Fabrication Processes of Structural Supercapacitors by Resin Transfer Molding and Vacuum-Assisted Resin Transfer Molding. J. Compos. Sci. 2024, 8, 418. [Google Scholar] [CrossRef]
- Soares, L.L.; Amico, S.C.; Isoldi, L.A.; Souza, J.A. Modeling of the resin transfer molding process including viscosity dependence with time and temperature. Polym. Compos. 2021, 42, 2795–2807. [Google Scholar] [CrossRef]
- Buchinger, V.; Sharif Khodaei, Z. Vacuum assisted resin transfer moulding process monitoring by means of distributed fibre-optic sensors: A numerical and experimental study. Adv. Compos. Mater. 2022, 31, 467–484. [Google Scholar] [CrossRef]
- Schenk, V.; De Calbiac, J.; D’Elia, R.; Olivier, P.; Labastie, K.; Destarac, M.; Guerre, M. Epoxy Vitrimer Formulation for Resin Transfer Molding: Reactivity, Process, and Material Characterization. ACS Appl. Polym. Mater. 2024, 6, 6087–6095. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, L.; Zheng, C.; Li, J. Research on the method of improving the laying accuracy of automated fiber placement. Int. J. Adv. Manuf. Technol. 2023, 125, 4883–4897. [Google Scholar] [CrossRef]
- Zemzemoglu, M.; Unel, M.; Tunc, L.T. Enhancing automated fiber placement process monitoring and quality inspection: A hybrid thermal vision based framework. Compos. Part B Eng. 2024, 285, 111753. [Google Scholar]
- Zhang, Y.; Wang, W.; Liu, Q.; Guo, Z.; Ji, Y. Research on defect detection in automated fiber placement processes based on a multi-scale detector. Electronics 2022, 11, 3757. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, L.; Cai, Z.; Li, J.; Ke, Y. Multi-source lay-up error analysis and lay-up pressure optimization for robotic automated fiber placement (AFP). Compos. Part A Appl. Sci. Manuf. 2025, 193, 108825. [Google Scholar]
- Kukwi, T.; Shan, C.; Pengfei, L.; Zhang, B.; Leiyang, G.; Wang, Z. Continuous Improvement in Composite Manufacturing: A Review of Automated Fiber Placement Process Evolution and Future Research Prospects. Appl. Compos. Mater. 2025, 32, 1267–1314. [Google Scholar] [CrossRef]
- Wen, L.; Li, S.; Dong, Z.; Shen, H.; Xu, E. Research on Automated Fiber Placement Surface Defect Detection Based on Improved YOLOv7. Appl. Sci. 2024, 14, 5657. [Google Scholar] [CrossRef]
- Brysch, M.; Bahar, M.; Hohensee, H.C.; Sinapius, M. Single system for online monitoring and inspection of automated fiber placement with object segmentation by artificial neural networks. J. Intell. Manuf. 2022, 33, 2013–2025. [Google Scholar] [CrossRef]
- Zhang, W.; Fei, L.; Jiang, T.; Minghui, Y.; Weiqiang, C.; Xilun, D. Overview of current design and analysis of potential theories for automated fibre placement mechanisms. Chin. J. Aeronaut. 2022, 35, 1–13. [Google Scholar] [CrossRef]
- Legenstein, A.; Füssel, L.; Heider, D.; Gillespie, J.W., Jr.; Cender, T.A. Stretch-steering of highly aligned discontinuous fiber tape with automated fiber placement. Compos. Part B Eng. 2024, 287, 111801. [Google Scholar] [CrossRef]
- Ma, H.; Jiang, Z.; Yuan, C.; Cheng, C.; Wu, J.; Zhong, Y.; Tie, J.; Gao, F.; Zhan, X.; Zhang, Q. Dynamical Adsorption Behavior Prediction of Dried Tobacco Leaf Heterogeneous Interfaces through Simulation and Image Recognition Techniques. Langmuir 2024, 40, 19195–19208. [Google Scholar] [CrossRef]
- Li, L.; Xue, B.; Lin, H.; Lan, W.; Wang, X.; Wei, J.; Li, M.; Li, M.; Duan, Y.; Lv, J.; et al. The adsorption and release mechanism of different aged microplastics toward Hg(II) via batch experiment and the deep learning method. Chemosphere 2024, 350, 141067. [Google Scholar] [CrossRef]
- Yao, L.; Wang, J.; Chuai, M.; Lomov, S.V.; Carvelli, V. Physics-informed machine learning for loading history dependent fatigue delamination of composite laminates. Compos. Part A Appl. Sci. Manuf. 2024, 187, 108474. [Google Scholar] [CrossRef]
- Perin, M.; Lim, Y.; Berti, G.A.; Lee, T.; Jin, K.; Quagliato, L. Single and Multiple Gate Design Optimization Algorithm for Improving the Effectiveness of Fiber Reinforcement in the Thermoplastic Injection Molding Process. Polymers 2023, 15, 3094. [Google Scholar] [CrossRef]
- Azizian, M.; Almeida, J.H.S.; Azizian, M. Efficient strategies for reliability analysis and uncertainty quantification for filament-wound cylinders under internal pressure. J. Compos. Mater. 2023, 57, 1863–1874. [Google Scholar] [CrossRef]
- Esmaeili, Y.R.; Cosco, B.; Najjaran, H. Vacuum bag leak detection for resin infusion: An electric current–based analogy. Int. J. Adv. Manuf. Technol. 2023, 124, 1775–1786. [Google Scholar] [CrossRef]
- Caliskan, A. Prediction of the behavior of composite materials & structures using neural networks. In Proceedings of the 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, USA, 11–14 June 2001; Volume 4, pp. 2938–2946. [Google Scholar]
- Dhanesh, E.; Nagarajan, V.; Vinod Kumar, K.; Karthik, B. Quantitative assessment of impact damage in stitched foam-filled Aluminium honeycomb Sandwich panels by experimental and machine learning methods. Polym. Compos. 2024, 45, 13663–13675. [Google Scholar] [CrossRef]
- Ren, H.; Wang, W.; Tang, W.; Zhang, R. Machine eye for defects: Machine learning-based solution to identify and characterize topological defects in textured images of nematic materials. Phys. Rev. Res. 2024, 6, 013259. [Google Scholar] [CrossRef]
- Wei, H.; Wu, C.; Hu, W.; Su, T.H.; Oura, H.; Nishi, M.; Naito, T.; Chung, S.; Shen, L. LS-DYNA Machine Learning-Based Multiscale Method for Nonlinear Modeling of Short Fiber-Reinforced Composites. J. Eng. Mech. 2023, 149. [Google Scholar] [CrossRef]
- Lemoyne, R.; Mastroianni, T.; Hessel, A.; Nishikawa, K. Application of a Multilayer Perceptron Neural Network for Classifying Software Platforms of a Powered Prosthesis Through a Force Plate; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 402–405. [Google Scholar] [CrossRef]
- Yun, M.y.; Lopez, E.; Chinesta, F.; Advani, S. Manifold embedding of heterogeneity in permeability of a woven fabric for optimization of the VARTM process. Compos. Sci. Technol. 2018, 168, 238–245. [Google Scholar] [CrossRef]
- Tunukovic, V.; McKnight, S.; Hifi, A.; Mohseni, E.; Pierce, S.G.; Vithanage, R.K.; Dobie, G.; MacLeod, C.N.; Cochran, S.; O’Hare, T. Human-machine collaborative automation strategies for ultrasonic phased array data analysis of carbon fibre reinforced plastics. NDT E Int. 2025, 154, 103392. [Google Scholar] [CrossRef]
- Alshannaq, A.A.; Awawdeh, A.R. Implementation of Machine Learning in Predicting Pin-Bearing Strength of Aged and Nonaged Pultruded GFRP Composites. J. Compos. Constr. 2024, 28, 04024014. [Google Scholar] [CrossRef]
- Alshannaq, A.A.; Tamimi, M.F.; Abu Qamar, M.I. Machine learning-assisted prediction of durability behavior in pultruded fiber-reinforced polymeric (PFRP) composites. Results Eng. 2025, 25, 104198. [Google Scholar] [CrossRef]
- Chai, B.X.; Wang, J.; Dang, T.K.M.; Nikzad, M.; Eisenbart, B.; Fox, B. Comprehensive Composite Mould Filling Pattern Dataset for Process Modelling and Prediction. J. Compos. Sci. 2024, 8, 153. [Google Scholar] [CrossRef]
- Lee, H.G.; Sohn, J.M. A Comparative Analysis of Buckling Pressure Prediction in Composite Cylindrical Shells Under External Loads Using Machine Learning. J. Mar. Sci. Eng. 2024, 12, 2301. [Google Scholar] [CrossRef]
- Mendoza, A.; Schneider, J.; Parra, E.; Roux, S. Measuring yarn deformations induced by the manufacturing process of woven composites. Compos. Part A Appl. Sci. Manuf. 2019, 120, 127–139. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, R.; Zhao, P.; Li, L.; Zhang, D. Curing simulation and data-driven curing curve prediction of thermoset composites. Sci. Rep. 2024, 14, 31860. [Google Scholar] [CrossRef]
- Lizarralde, I.; Sapountzi, E.; Bénéthuilière, T.; Sket, F.; González, C. An X-ray computed tomography analysis of damage induced by thermal cycling in non-crimp fabric composites. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106699. [Google Scholar] [CrossRef]
- Pfrommer, J.; Zimmerling, C.; Liu, J.; Kärger, L.; Henning, F.; Beyerer, J. Optimisation of manufacturing process parameters using deep neural networks as surrogate models. Procedia CIRP 2018, 72, 426–431. [Google Scholar] [CrossRef]
- Santos, R.; Vandepitte, D.; Moens, D. Prediction of composite pressure vessels’ burst strength through machine learning. Compos. Struct. 2025, 351, 118617. [Google Scholar] [CrossRef]
- Karamov, R.; Akhatov, I.; Sergeichev, I.V. Prediction of fracture toughness of pultruded composites based on supervised machine learning. Polymers 2022, 14, 3619. [Google Scholar] [CrossRef]
- Tannous, M.; Rodriguez, S.; Ghnatios, C.; Chinesta, F. Integrating simulation and machine learning for accurate preform charge prediction in Sheet Molding Compound manufacturing. Int. J. Mater. Form. 2025, 18, 15. [Google Scholar] [CrossRef]
- Berenstein, R.; Shahar, O.B.; Shapiro, A.; Edan, Y. Grape clusters and foliage detection algorithms for autonomous selective vineyard sprayer. Intell. Serv. Robot. 2010, 3, 233–243. [Google Scholar] [CrossRef]
- Alkan, M.; İnce, H.H.; Çakiroğlu, M.A.; Süzen, A.A. Prediction of rebound amount in dry mix shotcrete by a fast adaboosting neural network. Teh. Vjesn. 2021, 28, 426–432. [Google Scholar] [CrossRef]
- Appels, J.P.; Sämann, P.; Naumann, J.; Brauer, C.; Stefaniak, D.; Atli-Veltin, B.; Dransfeld, C. Investigation of Fiber Volume Fraction as Key Parameter in Cryogenic Hydrogen Tank Development; Society for the Advancement of Material and Process Engineering: Diamond Bar, CA, USA, 2025; p. 778. [Google Scholar] [CrossRef]
- Iqbal, S.; Xiao, X. Optimization of FE Crashworthiness Model for Sheet Molding Compound (SMC) with Extended Strength Distribution Model and Machine Learning; DEStech Publications Inc.: Lancaster, PA, USA, 2022. [Google Scholar] [CrossRef]
- Stieber, S.; Hoffmann, A.; Schiendorfer, A.; Reif, W.; Beyrle, M.; Faber, J.; Richter, M.; Sause, M. Towards Real-time Process Monitoring and Machine Learning for Manufacturing Composite Structures. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; pp. 1455–1458. [Google Scholar] [CrossRef]
- Szarski, M.; Chauhan, S. Instant flow distribution network optimization in liquid composite molding using deep reinforcement learning. J. Intell. Manuf. 2023, 34, 197–218. [Google Scholar] [CrossRef]
- Ivan, R.; Sorgato, M.; Zanini, F.; Lucchetta, G. Improving Numerical Modeling Accuracy for Fiber Orientation and Mechanical Properties of Injection Molded Glass Fiber Reinforced Thermoplastics. Materials 2022, 15, 4720. [Google Scholar] [CrossRef]
- Mendikute, J.; Baskaran, M.; Llavori, I.; Zugasti, E.; Aretxabaleta, L.; Aurrekoetxea, J. Predicting the effect of voids generated during RTM on the low-velocity impact behaviour by machine learning-based surrogate models. Compos. Part B Eng. 2023, 260, 110790. [Google Scholar] [CrossRef]
- Causon, M.; Iglesias, M.; Matveev, M.; Endruweit, A.; Tretyakov, M. Real-time Bayesian inversion in resin transfer moulding using neural surrogates. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108355. [Google Scholar] [CrossRef]
- Castro, J.; Sket, F.; Helfen, L.; González, C. In situ local imaging and analysis of impregnation during liquid moulding of composite materials using synchrotron radiation computed laminography. Compos. Sci. Technol. 2021, 215, 108999. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Bwar, K.; Eisenbart, B.; Lu, G.; Belaadi, A.; Fox, B.; Chai, B. Application of machine learning for composite moulding process modelling. Compos. Commun. 2024, 48, 101960. [Google Scholar] [CrossRef]
- Zhao, W.; Queralta, J.P.; Westerlund, T. Sim-to-real transfer in deep reinforcement learning for robotics: A survey. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 737–744. [Google Scholar]
- Gebauer, J.; Gruber, F.; Holfeld, W.; Grählert, W.; Lasagni, A.F. Prediction of the quality of thermally sprayed copper coatings on laser-structured CFRP surfaces using hyperspectral imaging. Photonics 2022, 9, 439. [Google Scholar] [CrossRef]
- Zimmerling, C.; Poppe, C.; Kärger, L. Estimating optimum process parameters in textile draping of variable part geometries-a reinforcement learning approach. Procedia Manuf. 2020, 47, 847–854. [Google Scholar] [CrossRef]
- Helfrich, T.; Wilhelm, M.; Kuppler, O.; Rosenberg, P.; Henning, F. Development of a standardized data acquisition prototype for heterogeneous sensor environments as a basis for ML applications in pultrusion. In Proceedings of the International Conference on Machine Learning For Cyber-Physical Systems, Hamburg, Germany, 29–31 March 2023; Springer Nature: Cham, Switzerland, 2023; pp. 101–110. [Google Scholar]
- Kajendran, P.; Narayanan, P. Machine learning-based prediction of ultimate load in pultruded glass fibre column under axial compression. Matéria 2025, 30, e20240793. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, W.; Gao, J.; Hu, Z.; Luo, X.; Cao, Y.; Chen, Y.; Sun, Y.; Wang, W. Physics-informed regularization for domain-agnostic dynamical system modeling. Adv. Neural Inf. Process. Syst. 2024, 37, 739–774. [Google Scholar]
- Berrone, S.; Pintore, M. Meshfree Variational-Physics-Informed Neural Networks (MF-VPINN): An Adaptive Training Strategy. Algorithms 2024, 17, 415. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, F.; Low, M.Y.H.; Wang, Z.; Ng, A.B.; See, S. Towards Accelerating Physics Informed Graph Neural Network for Fluid Simulation. In Proceedings of the SIGGRAPH Asia 2024 Posters, Tokyo, Japan, 3–6 December 2024; pp. 1–3. [Google Scholar]
- Huang, Z.; Tu, L.; Guo, Z.; Shi, M.; Gao, Y.; Liu, X. Scalable imaging through scattering media via physics-informed sparse optronic convolutional neural networks with knowledge distillation. Opt. Commun. 2025, 585, 131809. [Google Scholar] [CrossRef]
- Li, D.; Deng, K.; Zhang, D.; Liu, Y.; Leng, H.; Yin, F.; Ren, K.; Song, J. LPT-QPN: A lightweight physics-informed transformer for quantitative precipitation nowcasting. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–19. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Guo, Y.; Li, Y. Lightweight spatial-spectral shift module with multi-head MambaOut for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 18, 921–934. [Google Scholar] [CrossRef]
- Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep learning meets hyperspectral image analysis: A multidisciplinary review. J. Imaging 2019, 5, 52. [Google Scholar] [CrossRef]
- Guhan, T.; Revathy, N. EMLARDE tree: Ensemble machine learning based random de-correlated extra decision tree for the forest cover type prediction. Signal Image Video Process. 2024, 18, 8525–8536. [Google Scholar] [CrossRef]
- Luo, K.; Zhao, J.; Wang, Y.; Li, J.; Wen, J.; Liang, J.; Soekmadji, H.; Liao, S. Physics-informed neural networks for PDE problems: A comprehensive review. Artif. Intell. Rev. 2025, 58, 1–43. [Google Scholar] [CrossRef]
- Perin, M.; Berti, G.A.; Lee, T.; Quagliato, L. Gate design algorithm to maximize the fiber orientation effectiveness in thermoplastic injection-molded components. Mater. Res. Proc. 2023, 28, 321–330. [Google Scholar] [CrossRef]
- Saidi, T.; Hasan, M.; Amalia, Z.; Salsabila, S. The analysis of the bond strength between natural fiber reinforced polymer (NFRP) sheets and concrete. Results Eng. 2023, 18, 101124. [Google Scholar] [CrossRef]
- Xue, P.; Li, Z.; Sun, X. Enhancing Velocity Spectrum Picking with Physics-Constrained Deep Learning Models Introduction. In Proceedings of the 86th EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, Toulouse, France, 2–5 June 2025; Volume 2025, pp. 1–5. [Google Scholar]
- Gairola, S.; Naik, T.P.; Sinha, S.; Singh, I. Environment aging of lignocellulosic fibers and their composites: Visual, mechanical, and microstructural aspects. Int. J. Biol. Macromol. 2024, 283, 137722. [Google Scholar] [CrossRef] [PubMed]
- Issasfa, B.; Benmansour, T.; Valle, V.; Latreche, A.; Bouakba, M. New calculation method of the mechanical tensile behaviour of lumen biofibres using statistical comparison with two conventional methods. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 178. [Google Scholar] [CrossRef]
- Islam, S.; Hasan, B. An overview of the effects of water and moisture absorption on the performance of hemp fiber and its composites. SPE Polym. 2025, 6, e10167. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, H.; Zhang, W.; Chen, W.; Zhou, Z.; Heidari, A.A.; Chen, H.; Xu, G. ICycle-GAN: Improved cycle generative adversarial networks for liver medical image generation. Biomed. Signal Process. Control 2024, 92, 106100. [Google Scholar] [CrossRef]
Process | Challenges | Advantages | Core ML Requirements | Scientific Basis |
---|---|---|---|---|
Spray-up process | ||||
Robotic Draping |
| |||
Pultrusion | ||||
Filament Winding |
| |||
Resin Transfer Molding (RTM) | ||||
Automated Fiber Placement (AFP) |
Authors | Year | Application | ML Method | Key Findings |
---|---|---|---|---|
Ma et al. [102] | 2024 | Wetting on porous tobacco surfaces | Image recognition + FE simulations | Predicted droplet spread and infiltration; linked microstructure to evaporation dynamics. |
Li et al. [103] | 2024 | Online broken-filament detection in carbon fiber winding | RetinaNet w/ multiscale kernel fusion + strand-numbering | Enabled in-line detection and tracking of broken fibers with high accuracy. |
Yao et al. [104] | 2022 | EMC selection for solder-joint reliability | Multi-fidelity Bayesian optimization + ANN | Identified optimal epoxy formulations minimizing creep strain under thermal cycling. |
Dos Santos & Castro [123] | 2025 | Imperfection-sensitive cylinder design | SVM, Kriging, Random Forest surrogates | Mapped mass–stiffness trade-offs; RF achieved best inverse-design performance. |
Perin et al. [105] | 2023 | Injection-mold gate optimization | Gradient boosting + FVM simulations | Predicted gate locations to improve local stiffness by up to 27%. |
Castro et al. [135] | 2021 | In situ RTM impregnation monitoring | Segmentation network on SR-CL images | Quantified void formation and flow front evolution in woven preforms. |
Azizian & Almeida [106] | 2022 | Uncertainty in filament--wound cylinders | Taguchi screening + boosted-tree regression | Predicted reliability under pressure; identified critical ply-thickness uncertainties. |
Esmaeili et al. [107] | 2022 | Vacuum-bag leak detection | Electrical-circuit analogue + ML classifiers | Achieved leak-location accuracy; slashed diagnosis time to seconds. |
Ren et al. [110] | 2024 | Topological defect identification in nematics | Object detection + vision transformers | Automated recognition of ±1/2 defects with >90% accuracy across varied textures. |
Wei et al. [111] | 2023 | Multiscale modeling of SFRC in LS-DYNA | Deep Material Network | Predicted nonlinear anisotropy at speeds orders of magnitude faster than DNS. |
Tunukovic et al. [114] | 2025 | Ultrasonic PAUT analysis of CFRP | Multi-model AI pipeline (supervised, unsupervised, self-supervised) | Boosted F1 by 17.2%, reduced inspection time to <2 min. |
Alshannaq [115,116] | 2024/25 | Pin-bearing strength of pultruded GFRP | Gradient boosting on the literature data | Revealed biases in design codes; proposed revised strength formulas. |
Wang et al. [136] | 2024 | RTM process metamodeling | PixelRNN image-based metamodel | Achieved 97.3% resin-flow prediction accuracy at half the simulation cost. |
Chai et al. [117] | 2024 | RTM filling pattern dataset | — (dataset release) | Provided benchmark dataset for ML process modeling in composite molding. |
Lee & Sohn [118] | 2024 | Buckling prediction of filament--wound shells | RF, XGBoost, SVR, ANN, etc. | RF and XGBoost outperformed linear methods, achieving lowest prediction errors. |
Ivan et al. [132] | 2022 | Fiber orientation in injection molding | GA-optimized RSC + ANN surrogate | Halved orientation-prediction error; improved modulus and strength forecasts by 43–59%. |
Pfrommer et al. [122] | 2018 | Textile draping parameter optimization | Deep ANN surrogate in surrogate-based optimization | Reduced FE simulations needed and improved best-known draping solution. |
Causon et al. [134] | 2024 | Real-time Bayesian inversion in RTM | Ensemble Kalman Inversion + ANN surrogate | Estimated local porosity/permeability in ≤ 1 s with confidence intervals. |
Method | Strengths | Limitations | Industrial Feasibility |
---|---|---|---|
XPBD surrogate for RL-driven draping (Blies et al.) | Fast simulation vs. FEM; stable constraint solving; experimentally validated | Lower accuracy than FEM; requires detailed material input; residual corrections needed | High, suitable for robotic lay-up lines |
HSI-guided prediction for FRP coating (Gebauer et al.) | Links laser structuring, HSI, DL; closed-loop rework; ∼80% accuracy | Sensitive to spectral noise; limited training data; equipment cost | Medium, feasible in high-value aerospace/automotive lines |
CNN surrogate for variable-geometry draping (Zimmerling et al.) | Generalizes across geometries; reduces FEM calls; low prediction error | Needs retraining for unusual shapes; reward design sensitive | Medium–High, promising for flexible textile forming |
Digitized data framework for pultrusion (Helfrich et al.) | Standardized OPC UA + MQTT; synchronized datasets; real-time filtering | Prototype stage; bandwidth and latency issues; integration challenges | High, strong enabler for ML-based process optimization |
ML prediction of GFRP fracture toughness (Karamov et al.) | Uses standard test data; avoids fracture toughness tests; interpretable models | Dependent on dataset diversity; microstructure not fully captured | High, easy adoption in QC and design workflows |
ML-driven axial load prediction in pultruded GFRP columns (Kajendran et al.) | Combines mechanics with ML; ANN outperformed RSM; captures , , H effects | Limited dataset; splitting not well modeled; no post-peak prediction | Medium–High, useful for design but needs larger datasets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malashin, I.; Martysyuk, D.; Tynchenko, V.; Gantimurov, A.; Nelyub, V.; Borodulin, A. Data-Driven Optimization of Discontinuous and Continuous Fiber Composite Processes Using Machine Learning: A Review. Polymers 2025, 17, 2557. https://doi.org/10.3390/polym17182557
Malashin I, Martysyuk D, Tynchenko V, Gantimurov A, Nelyub V, Borodulin A. Data-Driven Optimization of Discontinuous and Continuous Fiber Composite Processes Using Machine Learning: A Review. Polymers. 2025; 17(18):2557. https://doi.org/10.3390/polym17182557
Chicago/Turabian StyleMalashin, Ivan, Dmitry Martysyuk, Vadim Tynchenko, Andrei Gantimurov, Vladimir Nelyub, and Aleksei Borodulin. 2025. "Data-Driven Optimization of Discontinuous and Continuous Fiber Composite Processes Using Machine Learning: A Review" Polymers 17, no. 18: 2557. https://doi.org/10.3390/polym17182557
APA StyleMalashin, I., Martysyuk, D., Tynchenko, V., Gantimurov, A., Nelyub, V., & Borodulin, A. (2025). Data-Driven Optimization of Discontinuous and Continuous Fiber Composite Processes Using Machine Learning: A Review. Polymers, 17(18), 2557. https://doi.org/10.3390/polym17182557