Multiaxial Fatigue Behavior of CFRP Thin-Walled Tubes: An Experimental Study with Analysis of the Acoustic Signals
Abstract
1. Introduction
2. Experimental Program
2.1. Material and Test Specimen
2.2. Multiaxial Fatigue Tests
- Phase shift (δ = 0°, 45°, 90°) considering the applied sinusoidal signals for axial-torsion loads.
- Constant biaxiality ratio (λT = 1), calculated based on Equation (3).
- Load ratio (R = −1; 0.05; 0.5) is defined as R = Fmin/Fmax = Tmin/Tmax, where F—axial force and T—torque.
3. Numerical Analysis
3.1. Numerical Model
3.2. Stress Analysis
3.3. Buckling Analysis
4. Results and Discussion
4.1. Multiaxial Experimental Data
- In-phase load
- 45° out-of-phase
- 90° out-of-phase
4.2. Stiffness Variation
4.3. Analysis of the Acoustic Signals
- The characteristic damage state (CDS) was assumed to represent fatigue life at the end of the first significant gradient of cumulative counts [58].
- S-N curves comparison
5. Post-Failure Analysis
6. Conclusions
- (1)
- The discrete model incorporated the shear nonlinear material model with progressive damage, allowing for the analysis of the local stress state acting on the material under axial-torsion loads. Due to the inhomogeneity of the stress, a node within a zig-zag area, where reaches maximum values, was considered. The discrete model includes the effect of fiber undulation, which provides the physical meaning of the filament-wound composites.
- (2)
- Since buckling phenomena can occur during the reverse load ratio, the numerical analysis was run to assess the macroscale stability of the geometry. The numerical analysis based on Riks terms (nonlinear buckling assessment) allowed us to define the Euler force (equal to the maximum value) total of 7.43 kN. When comparing the numerical results with the experimental data, the FEA was found to overestimate the compressive strength. Based on the comparison between the maximum cyclic load applied during the multiaxial tests and the critical static compressive load, a safety margin of 2.86 was calculated. Based on that, it can be assumed that there is no possibility of buckling at the macroscale for multiaxial fatigue performed under R = −1. Incorporating the geometrical imperfections into the FE model would improve the accuracy of the results under compressive loading.
- (3)
- The effect of the phase shift has been the objective of this research. The experimental data shows that 90° out-of-phase loads result in shorter fatigue life in comparison to in-phase loads. Due to the large data scatter observed under 45° out-of-phase loading, these results were excluded from the phase-shift analysis, as the effect could not be reliably revealed.
- (4)
- Considering the mean stress effect, there is a noticeable effect on fatigue performance for positive load ratios. The higher the mean stress, the shorter the fatigue life, as the experimental data shows. Due to the large scatter and low correlation of the data under reverse load ratio conditions, a reliable analysis could not be performed.
- (5)
- The damage development analyzed implicitly by displacement and rotational amplitude suggests that the majority of fatigue life covers the stable microdamage development. A more gradual trend is observed for R = −1, especially for displacement, which might suggest the impact of additional factors, e.g., local buckling.
- (6)
- The analysis of acoustic signals in terms of the cumulative counts’ function allowed for indirect assessment of the damage accumulation manner in the investigated CFRP material. Based on this analysis, the first gradient of damage was identified as the CDS point and used for delivering the S-N curves. Further investigation would require a deeper analysis of the collected signals to cluster them and associate them with particular failure mechanisms.
- (7)
- Post-failure macro and microscale observations give information about the failure, indicating that in the reference material, the damage affects both the matrix and the fibers. We observe different modes of damage. All of this supports the need to develop more comprehensive approaches for numerical modelling of fatigue behavior in filament-wound pipes.
- (8)
- A deeper damage-based analysis should be performed to reveal the failure mechanisms sequence throughout the fatigue life, as well as the material reference state. While current research provides insight into macroscopic damage accumulation, further investigation of data from acoustic emission combined with observations at the microscale by SEM or CT would help identify the exact nature of damage. This will allow for a better understanding of damage development and failure mechanisms, which is crucial in terms of fatigue behavior modeling.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
(tubular specimen) | |
material non-linearity factor | |
shear strain in the material frame of reference | |
δ | phase shift |
ν12 | Poisson’s ratio |
normal stresses calculated in the material frame of reference | |
geometrical normal stress in the laminate frame of reference | |
shear stress calculated in the material frame of reference | |
geometrical shear stress | |
CDS | characteristic damage state |
CFRP | carbon fiber-reinforced polymer |
d | damage parameter |
DIC | digital image correlation |
elastic moduli | |
FEM/A | Finite Element Method/Analysis |
FW | filament winding |
HCF | high cycle fatigue |
R | load ratio |
S4R | 4-node, quadrilateral, stress/displacement shell element with reduced integration and a large-strain formulation |
USDFLD | user-defined field |
UTS | Ultimate Tensile Strength |
WP | winding pattern |
Subscripts and superscripts | |
amp | amplitude |
n | non-symmetric |
s | symmetric |
i | increment number |
1, 2, 3 | material axes |
x, y | laminate axes |
References
- Kizaki, T.; Zhang, J.; Yao, Q.; Yanagimoto, J. Continuous manufacturing of CFRP sheets by rolling for rapid fabrication of long CFRP products. Compos. B Eng. 2020, 189, 107896. [Google Scholar] [CrossRef]
- Bona, A. Theoretical and Experimental Review of Applied Mechanical Tests for Carbon Composites with Thermoplastic Polymer Matrix. Trans. Aerosp. Res. 2019, 2019, 55–65. [Google Scholar] [CrossRef]
- Quaresimin, M. 50th Anniversary Article: Multiaxial Fatigue Testing of Composites: From the Pioneers to Future Directions. Strain 2015, 51, 16–29. [Google Scholar] [CrossRef]
- Olsson, R. A survey of test methods for multiaxial and out-of-plane strength of composite laminates. Compos. Sci. Technol. 2011, 71, 773–783. [Google Scholar] [CrossRef]
- Skinner, T.; Datta, S.; Chattopadhyay, A.; Hall, A. Fatigue damage behavior in carbon fiber polymer composites under biaxial loading. Compos. B Eng. 2019, 174, 106942. [Google Scholar] [CrossRef]
- Lucía Zumaquero, P.; Correa, E.; Justo, J.; París, F. Transverse biaxial tests on long fibre reinforced composites. Compos. Struct. 2022, 297, 115868. [Google Scholar] [CrossRef]
- Mei, J. Modeling of Multi-Axial Fatigue Damage Under Non-Proportional Variable-Amplitude Loading Conditions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2016. [Google Scholar]
- Xu, J.; Geier, N.; Shen, J.; Krishnaraj, V.; Samsudeensadham, S. A review on CFRP drilling: Fundamental mechanisms, damage issues, and approaches toward high-quality drilling. J. Mater. Res. Technol. 2023, 24, 9677–9707. [Google Scholar] [CrossRef]
- Quaresimin, M. 2.13 Multiaxial Fatigue of Composites: Experimental Evidences and Life Prediction Methodology. In Reference Module in Materials Science and Materials Engineering; Comprehensive Composite Materials II; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 249–274. [Google Scholar] [CrossRef]
- Weng, J.; Meng, T.; Wen, W.; Weng, S. Multiaxial fatigue life prediction of composite laminates. Chin. J. Aeronaut. 2020, 34, 227–237. [Google Scholar] [CrossRef]
- Aboul Wafa, M.N.; Hamdy, A.H.; El-Midany, A.A. Combined Bending and Torsional Fatigue of Woven Roving GRP. J. Eng. Mater. Technol. 1997, 119, 180–185. [Google Scholar] [CrossRef]
- Quaresimin, M.; Susmel, L.; Talreja, R. Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. Int. J. Fatigue 2010, 32, 2–16. [Google Scholar] [CrossRef]
- Carraro, P.A.; Quaresimin, M. A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loading. Compos. Sci. Technol. 2014, 99, 154–163. [Google Scholar] [CrossRef]
- Quaresimin, M.; Carraro, P.A. On the investigation of the biaxial fatigue behaviour of unidirectional composites. Compos. B Eng. 2013, 54, 200–208. [Google Scholar] [CrossRef]
- Quaresimin, M.; Carraro, P.A.A. Damage initiation and evolution in glass/epoxy tubes subjected to combined tension-torsion fatigue loading. Int. J. Fatigue 2014, 63, 25–35. [Google Scholar] [CrossRef]
- Quaresimin, M.; Carraro, P.A.; Mikkelsen, L.P.; Lucato, N.; Vivian, L.; Brøndsted, P.; Sørensen, B.F.; Varna, j.; Talreja, R. Damage evolution under cyclic multiaxial stress state: A comparative analysis between glass/epoxy laminates and tubes. Compos. B Eng. 2014, 61, 282–290. [Google Scholar] [CrossRef]
- Quaresimin, M.; Carraro, P.A.; Maragoni, L. Influence of load ratio on the biaxial fatigue behaviour and damage evolution in glass/epoxy tubes under tension–torsion loading. Compos. Part. A Appl. Sci. Manuf. 2015, 78, 294–302. [Google Scholar] [CrossRef]
- Qi, D.; Cheng, G. Fatigue behavior of filament-wound glass fiber reinforced epoxy composite tubes under tension/torsion biaxial loading. Polym. Compos. 2007, 28, 116–123. [Google Scholar] [CrossRef]
- Lee, C.S.; Hwang, W.; Park, H.C.; Han, K.S. Fatigue Failure Model for Composite Laminates under Multi-Axial Cyclic Loading. Key Eng. Mater. 2000, 183–187, 945–950. [Google Scholar] [CrossRef]
- Yang, N.H.; Nayeb-Hashemi, H.; Vaziri, A. Multi-Axial Failure Models for Fiber-Reinforced Composites. J. ASTM Int. 2007, 4, 1–13. [Google Scholar] [CrossRef]
- Gude, M.; Hufenbach, W.; Koch, I. Damage evolution of novel 3D textile-reinforced composites under fatigue loading conditions. Compos. Sci. Technol. 2010, 70, 186–192. [Google Scholar] [CrossRef]
- Sun, X.S.; Haris, A.; Tan, V.B.C.; Tay, T.E.; Narasimalu, S.; Della, C.N. A multi-axial fatigue model for fiber-reinforced composite laminates based on Puck’s criterion. J. Compos. Mater. 2012, 46, 449–469. [Google Scholar] [CrossRef]
- Satapathy, M.R.; Vinayak, B.G.; Jayaprakash, K.; Naik, N.K. Fatigue behavior of laminated composites with a circular hole under in-plane multiaxial loading. Mater. Des. 2013, 51, 347–356. [Google Scholar] [CrossRef]
- Moncy, A.; Waldbjørn, J.P.; Berggreen, C. Biaxial Strain Control Fatigue Testing Strategies for Composite Materials. Exp. Mech. 2021, 61, 1193–1208. [Google Scholar] [CrossRef]
- Lian, Y.; Wu, F.; Zhao, Q.; Han, Y.; Wang, B. Multiaxial failure behavior and fatigue life prediction of unidirectional composite laminates. Compos. Sci. Technol. 2024, 247, 110430. [Google Scholar] [CrossRef]
- Amijima, S.; Fujii, T.; Hamaguchi, M. Static and fatigue tests of a woven glass fabric composite under biaxial tension-torsion loading. Composites 1991, 22, 281–289. [Google Scholar] [CrossRef]
- Fujii, T.; Shiina, T.; Okubo, K. Fatigue Notch Sensitivity of Glass Woven Fabric Composites Having a Circular Hole under Tension/Torsion Biaxial Loading. J. Compos. Mater. 1994, 28, 234–251. [Google Scholar] [CrossRef]
- Smith, E.; Pascoe, K. Biaxial fatigue of a glass-fibre reinforced composite. Part 2, failure criteria for fatigue and fracture. In Biaxial and Multiaxial Fatigue EGF 3; Brown, M., Miller, K.J., Eds.; Mechanical Engineering Publications: London, UK, 1989; pp. 397–421. [Google Scholar]
- Atcholi, K.E.; Oytana, C.; Varchon, D.; Perreux, D. Superposed torsion-flexure of composite materials: Experimental method and example of application. Composites 1992, 23, 327–333. [Google Scholar] [CrossRef]
- Qiao, Y.; Deleo, A.A.; Salviato, M. A study on the multi-axial fatigue failure behavior of notched composite laminates. Compos Part A Appl. Sci. Manuf. 2019, 127, 105640. [Google Scholar] [CrossRef]
- Saeedifar, M.; Zarouchas, D. Damage characterization of laminated composites using acoustic emission: A review. Compos. B Eng. 2020, 195, 108039. [Google Scholar] [CrossRef]
- Smolnicki, M.; Duda, S.; Stabla, P.; Osiecki, T. Mechanical investigation of inverse FML under mode II loading using acoustic emission and finite element method. Compos. Struct. 2023, 313, 116943. [Google Scholar] [CrossRef]
- Smolnicki, M.; Duda, S.; Stabla, P.; Osiecki, T. Mechanical investigation on interlaminar behaviour of inverse FML using acoustic emission and finite element method. Compos. Struct. 2022, 294, 115810. [Google Scholar] [CrossRef]
- Smolnicki, M.; Duda, S.; Zielonka, P.; Stabla, P.; Lesiuk, G.; Lopes, C.C.C. Combined experimental–numerical mode I fracture characterization of the pultruded composite bars. Arch. Civ. Mech. Eng. 2023, 23, 146. [Google Scholar] [CrossRef]
- Smolnicki, M.; Duda, S.; Stabla, P.; Zielonka, P.; Lesiuk, G. Acoustic emission with machine learning in fracture of composites: Preliminary study. Arch. Civ. Mech. Eng. 2023, 23, 3. [Google Scholar] [CrossRef]
- Mao, H.; Mahadevan, S. Fatigue damage modelling of composite materials. Compos. Struct. 2002, 58, 405–410. [Google Scholar] [CrossRef]
- Talreja, R. Chapter 3—Damage Characterization. Compos. Mater. Ser. 1991, 4, 79–103. [Google Scholar] [CrossRef]
- Brod, M.; Dean, A.; Rolfes, R. Numerical life prediction of unidirectional fiber composites under block loading conditions using a progressive fatigue damage model. Int. J. Fatigue 2021, 147, 106159. [Google Scholar] [CrossRef]
- Brod, M.; Just, G.; Dean, A.; Jansen, E.; Koch, I.; Rolfes, R.; Gude, M. Numerical modelling and simulation of fatigue damage in carbon fibre reinforced plastics at different stress ratios. Thin-Walled Struct. 2019, 139, 219–231. [Google Scholar] [CrossRef]
- Brod, M.; Dean, A.; Scheffler, S.; Gerendt, C.; Rolfes, R. Numerical modeling and experimental validation of fatigue damage in Cross-Ply CFRP composites under inhomogeneous stress states. Compos. B Eng. 2020, 200, 108050. [Google Scholar] [CrossRef]
- Gerendt, C.; Dean, A.; Mahrholz, T.; Englisch, N.; Krause, S.; Rolfes, R. On the progressive fatigue failure of mechanical composite joints: Numerical simulation and experimental validation. Compos. Struct. 2020, 248, 112488. [Google Scholar] [CrossRef]
- Duda, S.; Smolnicki, M.; Stabla, P.; Zielonka, P.; Osiecki, T.; Gao, C.; Lesiuk, G. Experimental characterization and modeling of cylindrical CFRP structures under quasi-static multiaxial loading conditions. Thin-Walled Struct. 2024, 195, 111364. [Google Scholar] [CrossRef]
- Abolin’sh, D.S. Compliance tensor for an elastic material reinforced in one direction. Polym. Mech. 1965, 1, 28–32. [Google Scholar] [CrossRef]
- Stabla, P.; Smolnicki, M.; Błażejewski, W. The Numerical Approach to Mosaic Patterns in Filament-Wound Composite Pipes. Appl. Compos. Mater. 2021, 28, 181–199. [Google Scholar] [CrossRef]
- Stabla, P.; Lubecki, M.; Smolnicki, M. The effect of mosaic pattern and winding angle on radially compressed filament-wound CFRP composite tubes. Compos. Struct. 2022, 292, 115644. [Google Scholar] [CrossRef]
- De Menezes, E.A.W.; Lisbôa, T.V.; Almeida, J.H.S.; Spickenheuer, A.; Amico, S.C.; Marczak, R.J. On the winding pattern influence for filament wound cylinders under axial compression, torsion, and internal pressure loads. Thin-Walled Struct. 2023, 191, 111041. [Google Scholar] [CrossRef]
- Lisbôa, T.V.; Almeida, J.H.S., Jr.; Spickenheuer, A.; Stommel, M.; Amico, S.C.; Marczak, R.J. FEM updating for damage modeling of composite cylinders under radial compression considering the winding pattern. Thin-Walled Struct. 2022, 173, 108954. [Google Scholar] [CrossRef]
- Lisbôa, T.V.; Almeida, J.H.S.; Dalibor, I.H.; Spickenheuer, A.; Marczak, R.J.; Amico, S.C. The role of winding pattern on filament wound composite cylinders under radial compression. Polym. Compos. 2020, 41, 2446–2454. [Google Scholar] [CrossRef]
- Morozov, E.V. The effect of filament-winding mosaic patterns on the strength of thin-walled composite shells. Compos. Struct. 2006, 76, 123–129. [Google Scholar] [CrossRef]
- Vasiliev, V.V.; Morozov, E.V. Advanced Mechanics of Composite Materials, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Sayem Uddin, M.; Morozov, E.V.; Shankar, K. The effect of filament winding mosaic pattern on the stress state of filament wound composite flywheel disk. Compos. Struct. 2014, 107, 260–275. [Google Scholar] [CrossRef]
- Chang, F.-K.; Lessard, L.B. Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings: Part I—Analysis. J. Compos. Mater. 1991, 25, 2–43. [Google Scholar] [CrossRef]
- Talreja, R.; Varna, J. Modeling Damage, Fatigue and Failure of Composite Materials; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Peng, T.; Liu, Y.; Saxena, A.; Goebel, K. In-situ fatigue life prognosis for composite laminates based on stiffness degradation. Compos. Struct. 2015, 132, 155–165. [Google Scholar] [CrossRef]
- Almeida, J.H.S.; St-Pierre, L.; Wang, Z.; Ribeiro, M.L.; Tita, V.; Amico, S.C.; Castro, S.G.P. Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinders. Compos. B Eng. 2021, 225, 109224. [Google Scholar] [CrossRef]
- Bisagni, C. Numerical analysis and experimental correlation of composite shell buckling and post-buckling. Compos. B Eng. 2000, 31, 655–667. [Google Scholar] [CrossRef]
- ASTME739-10; Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (-N) Fatigue Data. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- Heidary, H.; Ahmadi, M.; Rahimi, A.; Minak, G. Wavelet-based acoustic emission characterization of residual strength of drilled composite materials. J. Compos. Mater. 2013, 47, 2897–2908. [Google Scholar] [CrossRef]
Authors | Matrix | Fibers | Load Ratios (R) | Lay-Up Configuration | Specimen Type |
---|---|---|---|---|---|
Lee et al. [19] | Epoxy | Carbon woven | 0.05 | [0/90]n | Tubular |
Yang et al. [20] | Epoxy | E-Glass | NR | [±45]4 | Shaft |
Gude et al. [21] | Epoxy | E-Glass | 0/1/10 | - | Tubular |
Sun et al. [22] | Epoxy | Glass | 10 vertical, 0.1 horizontal | [0/90]4 [±45]4 | Cruciform |
Satapathy et al. [23] | Epoxy | Carbon | 0.1 | [±45]S | Tubular |
Moncy et al. [24] | Epoxy | Glass UD | 0.1 | [[0/60/0/−60]S/0/60/0/−60]S | Cruciform |
Lian et al. [25] | Epoxy | Glass | NR | [0]6 | Tubular |
Amijima et al. [26] | Polyester | Glass woven | 0 | [0/90]n | Tubular |
Wafa et al. [11] | Polyester | Glass woven | −1 | [0/90]n [±45]n | Tubular |
Fuji et al. [27] | Polyester | Glass woven | 0 | [0/90]n | Tubular |
Smith et al. [28] | Polyester | Glass woven | −1 | [0/90]13 [22.5/112.5]13 [±45]13 | Cruciform |
Qi et al. [18] | Epoxy | Glass woven | 0/−1 | [±35] [±55] [±70] | Tubular |
Atcholi et al. [29] | Epoxy | Glass UD | −1 | [0]n | Bar |
Quaresimin et al. [3,14] | Epoxy | Glass woven | 0.05/0.1/0.5/−1 | [90]n [0/502/0/−502]S [0/602/0/−602]S | Tubular |
Qiao et al. [30] | Epoxy | Glass UD | 0.1 | [+45/90/−45/0]s [0/90]2s | Notched specimen |
Skinner et al. [5] | Epoxy | Carbon woven | 0.1/0.3 | [0/90]S | Cruciform |
Weng et al. [10] | Epoxy | Carbon woven | NR | [45/70/0/−70/−45] | Tubular |
Zumaquero et al. [6] | Epoxy | Carbon UD | NR | [0]n | Cruciform |
Material | E1 [MPa] | E2 [MPa] | ν12 [-] | G12 [MPa] |
---|---|---|---|---|
CFRP | 128,100 | 5378 | 0.345 | 3132 |
80 MPa | 640 MPa | 140 MPa | 69 MPa |
R2 | Phase Shift | |||
---|---|---|---|---|
0° | 45° | 90° | ||
R-ratio | −1 | 0.56 | 0.03 | 0.40 |
0.05 | 0.89 | 0.20 | 0.66 | |
0.5 | 0.70 | 0.26 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duda, S.; Smolnicki, M.; Zielonka, P.; Stabla, P.; Lesiuk, G. Multiaxial Fatigue Behavior of CFRP Thin-Walled Tubes: An Experimental Study with Analysis of the Acoustic Signals. Polymers 2025, 17, 2701. https://doi.org/10.3390/polym17192701
Duda S, Smolnicki M, Zielonka P, Stabla P, Lesiuk G. Multiaxial Fatigue Behavior of CFRP Thin-Walled Tubes: An Experimental Study with Analysis of the Acoustic Signals. Polymers. 2025; 17(19):2701. https://doi.org/10.3390/polym17192701
Chicago/Turabian StyleDuda, Szymon, Michał Smolnicki, Paweł Zielonka, Paweł Stabla, and Grzegorz Lesiuk. 2025. "Multiaxial Fatigue Behavior of CFRP Thin-Walled Tubes: An Experimental Study with Analysis of the Acoustic Signals" Polymers 17, no. 19: 2701. https://doi.org/10.3390/polym17192701
APA StyleDuda, S., Smolnicki, M., Zielonka, P., Stabla, P., & Lesiuk, G. (2025). Multiaxial Fatigue Behavior of CFRP Thin-Walled Tubes: An Experimental Study with Analysis of the Acoustic Signals. Polymers, 17(19), 2701. https://doi.org/10.3390/polym17192701