Exploring the Weathering and Accelerated Environmental Aging of Wave-Transparent Reinforced Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composite Fabrication
2.2. Weathering and Accelerated Environmental Exposure
- (i)
- virgin (sample code: SFWCv).
- (ii)
- one year of weathering (sample code: A1 to A12) 1–12 months.
- (iii)
3. Characterization
4. Results and Discussions
4.1. Appearance and Morphology
4.2. Dielectric Constant and Dielectric Loss
4.3. Moisture Absorption
4.4. SFWC Composite Radome Performance
4.5. FTIR
4.6. Mechanical Properties
4.7. Thermal Conductivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarricoats, P.; Parini, C.; Rizk, M. Performance of radome-covered reflector antennas. IEE Proc. H (Microw. Opt. Antennas) 1982, 129, 153–160. [Google Scholar] [CrossRef]
- Kozakoff, D.J. Analysis of Radome-Enclosed Antennas; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Fidan, Ş.S.; Ünal, R. A Survey on Ceramic Radome Failure Types and the Importance of Defect Determination. Eng. Fail. Anal. 2023, 149, 107234. [Google Scholar] [CrossRef]
- Haider, I.; Gul, I.H.; Umer, M.A.; Baig, M.M. Silica-fiber-reinforced composites for microelectronic applications: Effects of curing routes. Materials 2023, 16, 1790. [Google Scholar] [CrossRef]
- Haider, I.; Gul, I.H.; Faraz, M.I.; Aziz, S.; Jaffery, S.H.I.; Khan, M.A.; Jung, D.-W. Investigation of Dielectric, Mechanical, and Thermal Properties of Epoxy Composites Embedded with Quartz Fibers. Polymers 2023, 15, 4133. [Google Scholar] [CrossRef]
- Aamir, M.T.; Nasir, M.A.; Iqbal, Z.; Khan, H.A.; Muneer, Z. Multi-disciplinary optimization of hybrid composite radomes for enhanced performance. Results Eng. 2023, 20, 101547. [Google Scholar] [CrossRef]
- Salazar-Cerreno, J.L.; Jehangir, S.S.; Segales, A.; Aboserwal, N.; Qamar, Z. An ultrawideband uav-based metrology platform for in-situ em testing of antennas, radars, and communication systems. In Proceedings of the 2022 IEEE Radar Conference (RadarConf22), New York City, NY, USA, 21–25 March 2022; pp. 1–5. [Google Scholar]
- Khakbaz, H.; Basnayake, A.P.; Harikumar, A.K.A.; Firouzi, M.; Martin, D.; Heitzmann, M. Tribological and mechanical characterization of glass fiber polyamide composites under hydrothermal aging. Polym. Degrad. Stab. 2024, 227, 110870. [Google Scholar] [CrossRef]
- Teja, D.H.; Muvvala, P.; Nittala, N.A.P.; Bandhu, D.; Khan, M.I.; Saxena, K.K.; Khan, M.I. Comparative performance analysis of recuperative helium and supercritical CO2 Brayton cycles for high-temperature energy systems. Energy 2024, 312, 133469. [Google Scholar] [CrossRef]
- Thomason, J.; Jenkins, P.; Yang, L. Glass Fibre Strength—A Review with Relation to Composite Recycling. Fibers 2016, 4, 18. [Google Scholar] [CrossRef]
- Haider, I.; Gul, I.H.; Aziz, S.; Faraz, M.I.; Khan, M.A.; Jaffery, S.H.I.; Jung, D.-W. Environmental aging of reinforced polymer composite radome: Reliability and performance investigation. Front. Mater. 2024, 11, 1427541. [Google Scholar] [CrossRef]
- Botelho, E.C.; Bravim Júnior, J.C.; Costa, M.L.; De Faria, M.C.M. Environmental Effects on Thermal Properties of PEI/Glass Fiber Composite Materials. J. Aerosp. Technol. Manag. 2013, 5, 241–254. [Google Scholar] [CrossRef]
- Muneer Ahmed, Z.; Nasir, M.A.; Iqbal, Z.; Aamir, M.T. Experimental Investigation and Simulation of Electro-Mechanical Behaviour of Hybrid Sandwich Composite Radomes for Aerospace Applications. Mech. Adv. Compos. Struct. 2024, 11, 401–412. [Google Scholar]
- Starkova, O.; Gagani, A.I.; Karl, C.W.; Rocha, I.B.; Burlakovs, J.; Krauklis, A.E. Modelling of environmental ageing of polymers and polymer composites—Durability prediction methods. Polymers 2022, 14, 907. [Google Scholar] [CrossRef] [PubMed]
- Haider, I.; Gul, I.H.; Umer, M.A.; Baig, M.M. A Low-Cost Silica Fiber/Epoxy Composite with Excellent Dielectric Properties, and Good Mechanical and Thermal Stability. Materials 2023, 16, 7410. [Google Scholar] [CrossRef] [PubMed]
- Capricho, J.C.; Fox, B.; Hameed, N. Multifunctionality in epoxy resins. Polym. Rev. 2020, 60, 1–41. [Google Scholar] [CrossRef]
- Gu, J.; Tang, Y.; Kong, J.; Dang, J. Polymer Matrix Wave-Transparent Composites: Materials, Properties, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Gupta, R.K. Dielectric properties of biofiber-based polymer composites. In Advances in Bio-Based Fiber; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–191. [Google Scholar]
- Wang, Y.; Nan, S.; Niu, N.; Zhang, J. Establishment of Accelerated Degradation Model and Life Evaluation Method for External Coating of Airborne Radome under Ozone. In Proceedings of the 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan), Jinan, China, 23–25 October 2020; pp. 192–197. [Google Scholar]
- Haider, I.; Gul, I.H.; Baig, M.M.; Umer, M.A. Dielectric and thermal properties of composite radome material under accelerated aging: An experimental study. J. Mater. Sci. Mater. Electron. 2024, 35, 540. [Google Scholar] [CrossRef]
- Chivukula, K.; Reddy, K.; Adusumalli, R.; Bonavath, P.; Subramaniam, S.; Mondal, M. Characterization of Environmentally Conditioned Quartz–Cyanate Ester Composites for Radome Applications. Ind. Eng. Chem. Res. 2022, 61, 5158–5169. [Google Scholar] [CrossRef]
- Mgbemena, C.O.; Li, D.; Lin, M.-F.; Liddel, P.D.; Katnam, K.B.; Thakur, V.K.; Nezhad, H.Y. Accelerated microwave curing of fibre-reinforced thermoset polymer composites for structural applications: A review of scientific challenges. Compos. Part A Appl. Sci. Manuf. 2018, 115, 88–103. [Google Scholar] [CrossRef]
- Yuan, J. Testing Standards. In Flexible Electronic Packaging and Encapsulation Technology; Wiley: Hoboken, NJ, USA, 2024; pp. 239–269. [Google Scholar]
- Rodriguez, L.; García, C.; Grace, L. Long-term durability of a water-contaminated quartz-reinforced bismaleimide laminate. Polym. Compos. 2018, 39, 2643–2649. [Google Scholar] [CrossRef]
- Youssef, G.; Newacheck, S.; Huynh, N.U.; Gamez, C. Multiscale Characterization of E-Glass/Epoxy Composite Exposed to Extreme Environmental Conditions. J. Compos. Sci. 2021, 5, 80. [Google Scholar] [CrossRef]
- Wang, X.Q.; Jian, W.; Buyukozturk, O.; Leung, C.K.; Lau, D. Degradation of epoxy/glass interface in hygrothermal environment: An atomistic investigation. Compos. Part B Eng. 2021, 206, 108534. [Google Scholar] [CrossRef]
- Jesuarockiam, N.; Jawaid, M.; Zainudin, E.S.; Sultan, M.T.H.; Yahaya, R. Enhanced Thermal and Dynamic Mechanical Properties of Synthetic/Natural Hybrid Composites with Graphene Nanoplateletes. Polymers 2019, 11, 1085. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Gu, T.; Liu, J.; Chen, S.; Zhao, F.; Len, S.; Dou, J.; Qian, X.; Wang, J. Degradation behavior and ageing mechanism of E-glass fiber reinforced epoxy resin composite pipes under accelerated thermal ageing conditions. Compos. Part B Eng. 2024, 270, 111131. [Google Scholar] [CrossRef]
- Dogan, A.; Arman, Y. The effect of hygrothermal aging and UV radiation on the low-velocity impact behavior of the glass fiber-reinforced epoxy composites. Iran. Polym. J. 2019, 28, 193–201. [Google Scholar] [CrossRef]
- Chaichanawong, J.; Thongchuea, C.; Areerat, S. Effect of moisture on the mechanical properties of glass fiber reinforced polyamide composites. Adv. Powder Technol. 2016, 27, 898–902. [Google Scholar] [CrossRef]
- Grace, L.R. The effect of moisture contamination on the relative permittivity of polymeric composite radar-protecting structures at X-band. Compos. Struct. 2015, 128, 305–312. [Google Scholar] [CrossRef]
- Cormier, L.; Joncas, S. Effects of cold temperature, moisture and freeze-thaw cycles on the mechanical properties of unidirectional glass fiber-epoxy composites. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, FL, USA, 12–15 April 2010; p. 2823. [Google Scholar]
- Hallberg, Ö.; Peck, D.S. Recent humidity accelerations, a base for testing standards. Qual. Reliab. Eng. Int. 1991, 7, 169–180. [Google Scholar] [CrossRef]
- Chandra, M.P.; Ayaz, M.A.; Goud, P.N.; Sateesh, N. Modelling and analysis of aircraft radome using different materials. Mater. Today Proc. 2022, 62, 4492–4497. [Google Scholar] [CrossRef]
- Qamar, Z.; Salazar-Cerreno, J.L.; Aboserwal, N. An ultra-wide band radome for high-performance and dual-polarized radar and communication systems. IEEE Access 2020, 8, 199369–199381. [Google Scholar] [CrossRef]
- Tahseen, H.U.; Yang, L.; Zhou, X. Design of FSS-antenna-radome system for airborne and ground applications. IET Commun. 2021, 15, 1691–1699. [Google Scholar] [CrossRef]
- Kim, Y.C.; Min, H.; Yu, J.; Suhr, J.; Lee, Y.K.; Kim, K.J.; Kim, S.H.; Nam, J.-D. Nonlinear and complex cure kinetics of ultra-thin glass fiber epoxy prepreg with highly-loaded silica bead under isothermal and dynamic-heating conditions. Thermochim. Acta 2016, 644, 28–32. [Google Scholar] [CrossRef]
- Cecen, V.; Seki, Y.; Sarikanat, M.; Tavman, I.H. FTIR and SEM analysis of polyester- and epoxy-based composites manufactured by VARTM process. J. Appl. Polym. Sci. 2008, 108, 2163–2170. [Google Scholar] [CrossRef]
- de Lahidalga de Lorenzo, M.M. Durability of GFRP Composites Under Harsh Environments: Effect of pH and Temperature. Master’s Thesis, Statler College of Engineering and Mineral Resources, Morgantown, WV, USA, 2018. [Google Scholar]
- Bilaç, O.; Duran, C. Mechanical, thermal, and dielectric properties of glass mullite composites for low-temperature cofired ceramic and radome applications. Int. J. Appl. Ceram. Technol. 2023, 20, 3287–3296. [Google Scholar] [CrossRef]
- Gu, J.; Dong, W.; Tang, Y.; Guo, Y.; Tang, L.; Kong, J.; Tadakamalla, S.; Wang, B.; Guo, Z. Ultralow dielectric, fluoride-containing cyanate ester resins with improved mechanical properties and high thermal and dimensional stabilities. J. Mater. Chem. C 2017, 5, 6929–6936. [Google Scholar] [CrossRef]
- Sulochana, G.; Prasad, C.V.; Bhatti, S.; Madhav, V.V.; Saxena, K.K.; Khan, M.I.; Aloui, Z.; Prakash, C.; Khan, M.I. Impact of multi-walled carbon nanotubes (MWCNTs) on hybrid biodiesel blends for cleaner combustion in CI engines. Energy 2024, 303, 131911. [Google Scholar] [CrossRef]
- Li, R.; Yang, X.; Li, J.; Shen, Y.; Zhang, L.; Lu, R.; Wang, C.; Zheng, X.; Chen, H.; Zhang, T. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging. Mater. Today Phys. 2022, 22, 100594. [Google Scholar] [CrossRef]
- Khan, M.A.; Jaffery, S.H.I.; Baqai, A.A.; Khan, M. Comparative analysis of tool wear progression of dry and cryogenic turning of titanium alloy Ti-6Al-4V under low, moderate and high tool wear conditions. Int. J. Adv. Manuf. Technol. 2022, 121, 1269–1287. [Google Scholar] [CrossRef]
- Tsai, Y.; Bosze, E.; Barjasteh, E.; Nutt, S. Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Compos. Sci. Technol. 2009, 69, 432–437. [Google Scholar] [CrossRef]
Sample Code | Aging Time | Temperature | RH |
---|---|---|---|
Month | °C | % | |
SFWCv | Unaged | 19.7 | 48 |
SFWC-A1 | Jan | 19.7 | 48 |
SFWC-A2 | Feb | 21.6 | 50 |
SFWC-A3 | Mar | 25.3 | 49 |
SFWC-A4 | Apr | 29.9 | 57 |
SFWC-A5 | May | 37.4 | 58 |
SFWC-A6 | Jun | 40.8 | 63 |
SFWC-A7 | Jul | 38.3 | 72 |
SFWC-A8 | Aug | 36.1 | 77 |
SFWC-A9 | Sep | 30.2 | 69 |
SFWC-A10 | Oct | 28.3 | 60 |
SFWC-A11 | Nov | 24.3 | 55 |
SFWC-A12 | Dec | 19.1 | 43 |
Total Aging Time | One-Year Weathering |
Sample Code | Aging Time | Temperature | RH |
---|---|---|---|
Hours | °C | % | |
SFWC-B1 | 60 | 85 | 85 |
SFWC-B2 | 80 | 85 | 85 |
SFWC-B3 | 100 | 85 | 85 |
SFWC-B4 | 120 | 85 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, I.; Khan, M.A.; Aziz, S.; Jaffery, S.H.I.; Faraz, M.I.; Gul, I.H.; Jung, D.-W.; Saidani, T.; Shewakh, W.M. Exploring the Weathering and Accelerated Environmental Aging of Wave-Transparent Reinforced Composites. Polymers 2025, 17, 357. https://doi.org/10.3390/polym17030357
Haider I, Khan MA, Aziz S, Jaffery SHI, Faraz MI, Gul IH, Jung D-W, Saidani T, Shewakh WM. Exploring the Weathering and Accelerated Environmental Aging of Wave-Transparent Reinforced Composites. Polymers. 2025; 17(3):357. https://doi.org/10.3390/polym17030357
Chicago/Turabian StyleHaider, Imran, Muhammad Ali Khan, Shahid Aziz, Syed Husain Imran Jaffery, Muhammad Iftikhar Faraz, Iftikhar Hussain Gul, Dong-Won Jung, Taoufik Saidani, and Walid M. Shewakh. 2025. "Exploring the Weathering and Accelerated Environmental Aging of Wave-Transparent Reinforced Composites" Polymers 17, no. 3: 357. https://doi.org/10.3390/polym17030357
APA StyleHaider, I., Khan, M. A., Aziz, S., Jaffery, S. H. I., Faraz, M. I., Gul, I. H., Jung, D.-W., Saidani, T., & Shewakh, W. M. (2025). Exploring the Weathering and Accelerated Environmental Aging of Wave-Transparent Reinforced Composites. Polymers, 17(3), 357. https://doi.org/10.3390/polym17030357