Evaluation of Polymeric Micro/Nanofibrous Hybrid Scaffolds Prepared via Centrifugal Nozzleless Spinning for Tissue Engineering Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fibrous Scaffolds
2.2. Characterization of the Scaffold Microstructures by Scanning Electron Microscopy
- (1)
- Fiber samples were fixed to the holders with double-sided adhesive tape and were examined with a Phenom G2 scanning electron microscope (Phenom-World BV, Eindhoven, The Netherlands).
- (2)
- SEM scans were acquired via a scanning electron microscope (FIB-SEM, LYRA3 GMU, Tescan, Brno, Czech Republic). The applied acceleration voltage was 10 kV. The investigated samples were covered with a Pt conductive layer.
2.3. Brunauer–Emmett–Teller (BET) Analysis
2.4. Sterilization of the Prepared Fibrous Scaffolds
2.5. Cellular Component, Isolation, and Characterization
2.6. Cell Cultivation
2.7. Cell Visualization and Confocal Microscopy
3. Results
3.1. Fibrous Scaffolds
3.2. Characterization of the Scaffold Microstructure by SEM
3.2.1. Microstructure of the 3D Fiber Constructs from the Individual Polymers
3.2.2. Microstructure of 3D Fiber Constructs from the Polymer Blends
3.3. BET Analysis
BET Analysis of PLA/PCL 3D Fiber Constructs
3.4. Biocompatibility and Cell Colonization of the Prepared Scaffolds
3.4.1. Comparison of Cell Colonization of Selected Scaffolds
3.4.2. Time Course of PLA/PCL Scaffold Colonization
3.4.3. Suitability of the Scaffolds from a Biological Point of View
4. Discussion
4.1. Use of PLA and PCL Composite Fibers and Optimal PLA/PCL Ratio
4.2. Influence of Fiber and Pore Size on Cell Colonization
4.3. Effect of Micro/Nanofiber Surface Roughness on Cell Colonization
4.4. Effect of Internal Porosity of Individual Fibers on Cell Colonization
5. Conclusions and Further Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bacakova, L.; Bacakova, M.; Pajorova, J.; Kudlackova, R.; Stankova, L.; Filova, E.; Musilkova, J.; Potocky, S.; Kromka, A. Nanofibrous scaffolds as promising cell carriers for tissue engineering. In Nanofiber Research: Reaching New Heights; Rahman, M.M., Asiri, A.M., Eds.; Intechopen Limited: London, UK, 2016; pp. 29–54. [Google Scholar]
- Malik, S.; Sundarrajan, S.; Hussain, T.; Nazir, A.; Ayyoob, M.; Berto, F.; Ramakrishna, S. Sustainable nanofibers in tissue engineering and biomedical applications. Mat. Design Process Comm. 2021, 3, e202. [Google Scholar] [CrossRef]
- Younes, H.M.; Kadavil, H.; Ismail, H.M.; Adib, S.A.; Zamani, S.; Alany, R.G.; Al-Kinani, A.A. Overview of Tissue Engineering and Drug Delivery Applications of Reactive Electrospinning and Crosslinking Techniques of Polymeric Nanofibers with Highlights on Their Biocompatibility Testing and Regulatory Aspects. Pharmaceutics 2024, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Vasita, R.; Katti, D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 2006, 1, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Naqvi, S.; Gopinath, P. Chapter 7—Applications of Nanofibers in Tissue Engineering. In Micro and Nano Technologies, Applications of Nanomaterials; Bhagyaraj, S.M., Oluwafemi, O.S., Kalarikkal, N., Thomas, S., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 179–203. [Google Scholar]
- Dahlin, R.L.; Kasper, F.K.; Mikos, A.G. Polymeric nanofibers in tissue engineering. Tissue Eng. B Rev. 2011, 17, 349–364. [Google Scholar] [CrossRef]
- Balusamy, B.; Senthamizhan, A.; Uyar, T. Electrospun Nanofibers for Wound Dressing and Tissue Engineering Applications. Hacet. J. Biol. Chem. 2020, 48, 459–481. [Google Scholar] [CrossRef]
- Kharaghani, D.; Kaffashsaei, E.; Md, K.H.; Kim, I.S. The effect of polymeric nanofibers used for 3D-printed scaffolds on cellular activity in tissue engineering: A review. Int. J. Mol. Sci. 2023, 24, 9464. [Google Scholar] [CrossRef]
- Ogueri, K.S.; Laurencin, C.T. Nanofiber Technology for Regenerative Engineering. ACS Nano 2020, 14, 9347–9363. [Google Scholar] [CrossRef]
- Anjum, S.; Rahman, F.; Pandey, P.; Arya, D.K.; Alam, M.; Rajinikanth, P.S.; Ao, Q. Electrospun biomimetic nanofibrous scaffolds: A promising prospect for bone tissue engineering and regenerative medicine. Int. J. Mol. Sci. 2022, 23, 9206. [Google Scholar] [CrossRef]
- Nemati, S.; Kim, S.; Shin, Y.M. Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg. 2019, 6, 36. [Google Scholar] [CrossRef]
- Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; Kamarudin, S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023, 15, 2418. [Google Scholar] [CrossRef]
- Udomluck, N.; Koh, W.G.; Lim, D.J.; Park, H. Recent developments in nanofiber fabrication and modification for bone tissue engineering. Int. J. Mol. Sci. 2020, 21, 99. [Google Scholar] [CrossRef]
- Yan, X.; Yao, H.; Luo, J.; Li, Z.; Wei, J. Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. Polymers 2022, 14, 2940. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, J.; Pang, L.; Chen, J.; Qi, M.; You, S.; Ren, N. An anisotropic three-dimensional electrospun micro/nanofibrous hybrid PLA/PCL scaffold. RSC Adv. 2019, 9, 9838–9844. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Z.; Chen, X.; Han, M.; Xu, J.; Li, T.; Yu, L.; Qin, M.L.; Li, M.; Zhang, H.; et al. Multiscale anisotropic scaffold integrating 3D printing and electrospinning techniques as a heart-on-a-chip platform for evaluating drug-induced cardiotoxicity. Adv. Healthc. Mater. 2023, 12, 2300719. [Google Scholar] [CrossRef] [PubMed]
- Reid, J.; Dwyer, K.D.; Schmitt, P.R.; Soepriatna, A.H.; Coulombe, K.L.K.; Callanan, A. Architected fibrous scaffolds for engineering anisotropic tissues. Biofabrication 2021, 13, 045007. [Google Scholar] [CrossRef]
- Mondésert, H.; Bossard, F.; Favier, D. Anisotropic electrospun honeycomb polycaprolactone scaffolds: Elaboration, morphological and mechanical properties. J. Mech. Behav. Biomed. Mater. 2021, 113, 104124. [Google Scholar] [CrossRef]
- Erickson, A.E.; Edmondson, D.; Chang, F.C.; Wood, D.; Gong, A.; Levengood, S.L.; Zhang, M. High-throughput and high-yield fabrication of uniaxially-aligned chitosan-based nanofibers by centrifugal electrospinning. Carbohydr. Polym. 2015, 134, 467–474. [Google Scholar] [CrossRef]
- Weitz, R.T.; Harnau, L.; Rauschenbach, S.; Burghard, M.; Kern, K. Polymer Nanofibers via Nozzle-Free Centrifugal Spinning. Nano Lett. 2008, 8, 1187–1191. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y. Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost. Polym. Rev. 2014, 54, 677–701. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Duan, Y.-S.; Xu, Q.; Zhang, B. A review on nanofiber fabrication with the effect of high-speed centrifugal force field. J. Eng. Fiber Fabr. 2019, 14, 1–11. [Google Scholar] [CrossRef]
- Ren, L.; Pandit, V.; Elkin, J.; Denman, T.; Cooper, J.A.; Kotha, S.P. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration. Nanoscale 2013, 5, 2337–2345. [Google Scholar] [CrossRef] [PubMed]
- Loordhuswamy, A.M.; Krishnaswamy, V.R.; Korrapati, P.S.; Thinakaran, S.; Rengaswami, G.D. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 42, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Yang, B. Centrifugally spun starch-based fibers from amylopectin rich starches. Carbohydr. Polym. 2016, 137, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Kotha, S.P. Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Mater. Lett. 2014, 117, 153–157. [Google Scholar] [CrossRef]
- Mahalingam, S.; Edirisinghe, M. Forming of Polymer Nanofibers by a Pressurised Gyration Process. Macromol. Rapid Commun. 2013, 34, 1134–1139. [Google Scholar] [CrossRef]
- Zannini Luz, H.; dos Santos, L.A.L. Centrifugal spinning for biomedical use: A review. Rev. Solid. State Mater. Sci. 2023, 48, 519–534. [Google Scholar] [CrossRef]
- Marjuban, S.M.H.; Rahman, M.; Duza, S.S.; Ahmed, M.B.; Patel, D.K.; Rahman, M.S.; Lozano, K. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers 2023, 15, 1253. [Google Scholar] [CrossRef]
- Gholipour-Kanani, A.; Daneshi, P. A Review on Centrifugal and Electro-Centrifugal Spinning as New Methods of Nanofibers Fabrication. J. Text. Polym. 2022, 10, 41–55. [Google Scholar]
- Ayati, S.S.; Karevan, M.; Stefanek, E.; Bhia, M.; Akbari, M. Nanofibers Fabrication by Blown-Centrifugal Spinning. Macromol. Mater. Eng. 2022, 307, 2100368. [Google Scholar] [CrossRef]
- Shanmugasundaram, S.; Chaudhry, H.; Livingston Arinzeh, T. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng. A 2011, A17, 831–840. [Google Scholar] [CrossRef]
- Beran, M.; Drahorád, J.; Hušek, Z.; Toman, F. A Device for the Production of Nanofibres or Microfibres from Solutions, Emulsions, Liquid Suspensions or Melts Containing a Spinning Substance. Czech Utility Model 30609 Patent 30609, 2017, Industrial Property Office of Czech Republic, Prague, Czech Republic. Available online: https://isdv.upv.gov.cz/webapp/!resdb.pta.frm (accessed on 21 December 2024).
- Beran, M.; Toman, F.; Drahorad, J.; Hovorka, J.; Husek, Z. A Device for Producing Fibers or Microfibers. U.S. Patent US2017233896A1, 17 August 2017. Available online: https://worldwide.espacenet.com/patent/search/family/053491243/publication/US2017233896A1?q=US2017233896A1 (accessed on 21 December 2024).
- Nie, K.; Han, S.; Yang, J.; Sun, Q.; Wang, X.; Li, Y.; Li, Q. Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering. Polymers 2020, 12, 1977. [Google Scholar] [CrossRef] [PubMed]
- Estes, B.T.; Diekman, B.O.; Gimble, J.M.; Guilak, F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 2010, 5, 1294–1311. [Google Scholar] [CrossRef] [PubMed]
- Travnickova, M.; Kasalkova, N.S.; Sedlar, A.; Molitor, M.; Musilkova, J.; Slepicka, P.; Svorcik, V.; Bacakova, L. Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils. Biomed. Mater. 2021, 16, 025016. [Google Scholar] [CrossRef] [PubMed]
- Bacakova, L.; Zarubova, J.; Travnickova, M.; Musilkova, J.; Pajorova, J.; Slepicka, P.; Kasalkova, N.S.; Svorcik, V.; Kolska, Z.; Motarjemi, H.; et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018, 36, 1111–1126. [Google Scholar] [CrossRef]
- Bacakova, L.; Novotna, K.; Hadraba, D.; Musilkova, J.; Slepicka, P.; Beran, M. Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers 2022, 14, 602. [Google Scholar] [CrossRef]
- Liao, G.-Y.; Zhou, X.-P.; Chen, L.; Zeng, X.-Y.; Xie, X.-L.; Mai, Y.-W. Electrospun aligned PLLA/PCL/functionalized multiwalled carbon nanotube composite fibrous membranes and their bio/mechanical properties. Compos. Sci. Technol. 2012, 72, 248–255. [Google Scholar] [CrossRef]
- Xu, T.; Miszuk, J.M.; Zhao, Y.; Sun, H.; Fong, H. Electrospun polycaprolactone 3d nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv. Healthc. Mater. 2015, 4, 2238–2246. [Google Scholar] [CrossRef]
- Hairaldin, S.Z.; Wan Yunus, W.M.Z.; Ibrahim, N.A. Effect Addition of Octadecylamine Modified Clay (ODA-MMT) to Polylactide/Polycaprolactone (PLA/PCL). Blend AMR 2011, 364, 317–321. [Google Scholar] [CrossRef]
- Pisani, S.; Dorati, R.; Conti, B.; Modena, T.; Bruni, G.; Genta, I. Design of copolymer PLA-PCL electrospun matrix for biomedical applications. React. Funct. Polym. 2018, 124, 77–89. [Google Scholar] [CrossRef]
- Aminatun Huriah, R.; Hikmawati, D.; Hadi, S.; Amrillah, T.; Abdullah, C.A.C. Nanofiber Scaffold Based on Polylactic Acid-Polycaprolactone for Anterior Cruciate Ligament Injury. Polymers 2022, 14, 2983. [Google Scholar] [CrossRef]
- Xu, T.; Yao, Q.; Miszuk, J.M.; Sanyour, H.J.; Hong, Z.; Sun, H.; Fong, H. Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells. Colloids Surf. B Biointerfaces 2018, 171, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Marei, N.H.; El-Sherbiny, I.M.; Lotfy, A.; El-Badawy, A.; El-Badri, N. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Int. J. Biol. Macromol. A 2016, 93, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, C.; Zhou, L.; Bi, Z.; Shi, M.; Wang, D.; Li, Q. Fabrication of a novel Three-Dimensional porous PCL/PLA tissue engineering scaffold with high connectivity for endothelial cell migration. Eur. Polym. J. 2021, 161, 110834. [Google Scholar] [CrossRef]
- Herrero-Herrero, M.; Gómez-Tejedor, J.A.; Vallés-Lluch, A. PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur. Polym. J. 2018, 99, 445–455. [Google Scholar] [CrossRef]
- Tambrchi, P.; Mahdavi, A.H.; DaliriJoupari, M.; Soltani, L. Polycaprolactone-co-polylactic acid nanofiber scaffold in combination with 5-azacytidine and transforming growth factor-β to induce cardiomyocyte differentiation of adipose-derived mesenchymal stem cells. Cell Biochem. Funct. 2022, 40, 668–682. [Google Scholar] [CrossRef]
- Beran, M.; Drahorád, J.; Vltavský, O. Centrifugal Nozzleless Spinning—Alternative Technology to Produce Nanofiber Constructs. Adv. Mater. Vid. Proc. Adv. Mater. 2021, 2, 210160. [Google Scholar]
- Guneta, V.; Loh, Q.L.; Choong, C. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties. J. Biomed. Mater. Res. A 2016, 104, 1090–1101. [Google Scholar] [CrossRef]
- Rad, Z.P.; Mokhtari, J.; Abbasi, M. Biopolymer based three-dimensional biomimetic micro/nanofibers scaffolds with porous structures via tailored charge repulsions for skin tissue regeneration. Polym. Adv. Technol. 2021, 32, 3535–3548. [Google Scholar]
- Kim, B.S.; Park, K.E.; Kim, M.H.; You, H.K.; Lee, J.; Park, W.H.; Kim, Y.J. Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds. Int. J. Nanomed. 2015, 10, 485–502. [Google Scholar]
- Hsia, H.C.; Nair, M.R.; Mintz, R.C.; Corbett, S.A. The fiber diameter of synthetic bioresorbable extracellular matrix influences human fibroblast morphology and fibronectin matrix assembly. Plast. Reconstr. Surg. 2011, 127, 2312–2320. [Google Scholar] [CrossRef]
- Samie, M.; Khan, A.F.; Hardy, J.G.; Yameen, M.A. Electrospun antibacterial composites for cartilage tissue engineering. Macromol. Biosci. 2022, 22, 2200219. [Google Scholar] [CrossRef] [PubMed]
- Lembach, A.; Tan, H.; Roisman, I.V.; Gambaryan-Roisman, T.; Zhang, Y.; Tropea, C.; Yarin, A.L. Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir 2010, 26, 9516–9523. [Google Scholar] [CrossRef] [PubMed]
- Wulkersdorfer, B.; Kao, K.K.; Agopian, V.G.; Ahn, A.; Dunn, J.C.; Wu, B.M.; Stelzner, M. Bimodal porous scaffolds by sequential electrospinning of poly(glycolic acid) with sucrose particles. Int. J. Polym. Sci. 2010, 1–9. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, S.; Gil, M.; Song, S.; Kim, S.W.; Lee, K.J. Preparation of poly-1-butene nanofiber mat and its application as shutdown layer of next generation lithium ion battery. Polymers 2020, 12, 2267. [Google Scholar] [CrossRef]
- Nam, J.; Huang, Y.; Agarwal, S.; Lannutti, J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007, 13, 2249–2257. [Google Scholar] [CrossRef]
- Simonet, M.; Schneider, O.; Neuenschwander, P.; Stark, W. Ultraporous 3d polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polym. Eng. Sci. 2007, 47, 2020–2026. [Google Scholar] [CrossRef]
- Baker, B.; Gee, A.; Metter, R.; Nathan, A.; Marklein, R.; Burdick, J.; Mauck, R. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 2008, 29, 2348–2358. [Google Scholar] [CrossRef]
- Blakeney, B.A.; Tambralli, A.; Anderson, J.M.; Andukuri, A.; Lim, D.J.; Dean, D.R.; Jun, H.W. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 2011, 32, 1583–1590. [Google Scholar] [CrossRef]
- Pham, Q.P.; Sharma, U.; Mikos, A.G. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 2006, 7, 2796–2805. [Google Scholar] [CrossRef]
- Mahjour, S.B.; Sefat, F.; Polunin, Y.; Wang, L.; Wang, H. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs. J. Biomed. Mater. Res. A 2016, 104, 1479–1488. [Google Scholar] [CrossRef]
- Lee, J.B.; Jeong, S.; Bae, M.S.; Yang, D.H.; Heo, D.N.; Kim, C.H.; Alsberg, E.; Kwon, I.K. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng. A 2011, 17, 2695–2702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Meng, S.; Huang, Y.; Xu, M.; He, Y.; Lin, H.; Han, J.; Chai, Y.; Wei, Y.; Deng, X. Electrospun gelatin/β-tcp composite nanofibers enhance osteogenic differentiation of bmscs andin vivobone formation by activating Ca2+-sensing receptor signaling. Stem Cells Int. 2015, 2015, 507154. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, S.J.; Soscia, D.A.; Oztan, B.; Mosier, A.P.; Jean-Gilles, R.; Gadre, A.; Cady, N.C.; Yener, B.; Castracane, J.; Larsen, M. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous plga scaffolds. Biomaterials 2012, 33, 3175–3186. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, S.; Zhao, C.; Yang, D.; Cui, T.; Liu, Y.; Min, Y. Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering. Nanoscale Res. Lett. 2021, 16, 1–13. [Google Scholar] [CrossRef]
- Gittens, R.A.; McLachlan, T.; Olivares-Navarrete, R.; Cai, Y.; Berner, S.; Tannenbaum, R.; Schwartz, Z.; Sandhage, K.H.; Boyan, B.D. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 2011, 32, 3395–3403. [Google Scholar] [CrossRef]
- Díaz-Gómez, L.; Ballarin, F.M.; Abraham, G.A.; Concheiro, A. Random and aligned PLLA: PRGF electrospun scaffolds for regenerative medicine. J. Appl. Polym. Sci. 2014, 132, 41372. [Google Scholar] [CrossRef]
- Oktay, B.; Kayaman-Apohan, N.; Erdem-Kuruca, S.; Süleymanoğlu, M. Fabrication of collagen immobilized electrospun poly (vinyl alcohol) scaffolds. Polym. Adv. Technol. 2015, 26, 978–987. [Google Scholar] [CrossRef]
- Dubey, P.; Bhushan, B.; Sachdev, A.; Matai, I.; Kumar, S.; Gopinath, P. Silver-nanoparticle-incorporated composite nanofibers for potential wound-dressing applications. J. Appl. Polym. Sci. 2015, 132, 42473. [Google Scholar] [CrossRef]
- Gugulothu, D.; Barhoum, A.; Afzal, S.M.; Venkateshwarlu, B.; Uludag, H. Structural Multifunctional Nanofibers and Their Emerging Applications. In Handbook of Nanofibers; Barhoum, A., Bechelany, M., Makhlouf, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 693–732. [Google Scholar]
- Salalha, W.; Dror, Y.; Khalfin, R.; Cohen, Y.; Yarin, A.L.; Zussman, E. Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir 2004, 20, 9852–9855. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Lu, W.; Guo, Y. Antibacterial porous coaxial drug-carrying nanofibers for sustained drug-releasing applications. Nanomaterials 2021, 11, 1316. [Google Scholar] [CrossRef]
- Abolhasani, M.M.; Naebe, M.; Amiri, M.; Shirvanimoghaddam, K.; Anwar, S.; Michels, J.J.; Asadi, K. Hierarchically structured porous piezoelectric polymer nanofibers for energy harvesting. Adv. Sci. 2020, 7, 2000517. [Google Scholar] [CrossRef]
- Gulfam, M.; Lee, J.M.; Kim, J.; Lim, D.W.; Lee, E.K.; Chung, B.G. Highly porous core-shell polymeric fiber network. Langmuir 2011, 27, 10993–10999. [Google Scholar] [CrossRef] [PubMed]
- Serag, E.; El-Aziz, A.M.A.; El-Maghraby, A.; Nahla, T. Electrospun non-wovens potential wound dressing material based on polyacrylonitrile/chicken feathers keratin nanofiber. Sci. Rep. 2022, 12, 15460. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Sheng, W.; Huang, K.; Hou, C.; Yue, H.; Hu, B.; Wang, M.; Wei, D.; Li, Q.; Zhao, L.; et al. Novel cigarlike TiO2 nanofibers: Fabrication, improved mechanical, and electrochemical performances. ACS Appl. Mater. Interfaces 2013, 5, 2278–2282. [Google Scholar] [CrossRef] [PubMed]
- Nathani, A.; Sharma, C.S. Electrospun mesoporous poly(styrene-block-methyl- methacrylate) nanofibers as biosensing platform: Effect of fibers porosity on sensitivity. Electroanalysis 2019, 31, 2138–2144. [Google Scholar] [CrossRef]
- Kalaoglu-Altan, O.I.; Kirac-Aydin, A.; Sumer Bolu, B.; Sanyal, R.; Sanyal, A. Diels-Alder “Clickable” Biodegradable Nanofibers: Benign Tailoring of Scaffolds for Biomolecular Immobilization and Cell Growth. Bioconjugate Chem. 2017, 28, 2420–2428. [Google Scholar] [CrossRef]
- Linh, N.T.B.; Min, Y.K.; Song, H.; Lee, B. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 95B, 184–191. [Google Scholar] [CrossRef]
- Wang, X.; Ding, B.; Li, B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today 2013, 16, 229–241. [Google Scholar] [CrossRef]
- Oliveira, C.; Costa-Pinto, A.R.; Reis, R.L.; Martins, A.; Neves, N.M. Biofunctional nanofibrous substrate comprising immobilized antibodies and selective binding of autologous growth factors. Biomacromolecules 2014, 15, 2196–2205. [Google Scholar] [CrossRef]
- Priyanto, A.; Hapidin, D.A.; Suciati, T.; Khairurrijal, K. Current Developments on Rotary Forcespun Nanofibers and Prospects for Edible Applications. Food Eng. Rev. 2022, 14, 435–461. [Google Scholar] [CrossRef]
- Depan, D.; Misra, R. Processing–structure–functional property relationship in organic–inorganic nanostructured scaffolds for bone-tissue engineering: The response of preosteoblasts. J. Biomed. Mater. Res. A 2012, 100A, 3080–3091. [Google Scholar] [CrossRef] [PubMed]
- Ghalei, S.; Li, J.; Douglass, M.; Garren, M.; Handa, H. Synergistic approach to develop antibacterial electrospun scaffolds using honey and s-nitroso-n-acetyl penicillamine. ACS Biomater. Sci. Eng. 2021, 7, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Li, J.; Zhang, N.; Xu, B.; Li, Y.; Ding, N.; Ge, B. Self-assembly and cross-linking preparation of tilapia-skin-derived collagen/alginate hydrogels for efficient wound repairing. Polym. Eng. Sci. 2024, 64, 2146–2156. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, X.; Yildirimer, L.; Lang, Q.; Lin, Z.; Zheng, R.; Zhang, Y.; Cui, W.; Annabi, N.; Khademhosseini, A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater. 2017, 49, 66–77. [Google Scholar] [CrossRef]
- Wang, S.F.; Wu, Y.; Cheng, Y.; Hu, W. The development of polylactic acid/multi-wall carbon nanotubes/polyethylene glycol scaffolds for bone tissue regeneration application. Polymers 2021, 13, 1740. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Assadpour, E.; Shahiri Tabarestani, H.; Falsafi, S.R.; Jafari, S. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends Food Sci. Technol. 2020, 100, 190–209. [Google Scholar] [CrossRef]
Spinned Solution in CF | PLA | PHB | PBS | PCL | PHB/PLA | PHB/PBS | PLA/PCL |
---|---|---|---|---|---|---|---|
Polymers weight ratio (w/w) | 4/1 | 1/4, 2/7 | 5/1, 13.5/4 | ||||
Total dry matter % (w/w) in solutions | 10.00 | 2.00 | 14.00 | 10.00 | 2.38 | 6.36, 6.00 | 10.00 |
Rotation speed (rpm) | 3500 | 3000 | 4000 | 3000 | 3500 | 3500 | 1500–5000 |
Solution flow (mL/min) | 15 | 8 | 7 | 8 | 10 | 12 | 15 |
Air flow (m3/h) | 60–65 | 55–60 | 25–30 | 8 | 10 | 66–69 | 15 |
Rottary Speed of the Spinning Disc (rpm) | Median of Fiber Diameter (µm) |
---|---|
1500 | 6.84 ± 5.77 |
3000 | 5.71 ± 3.61 |
5000 | 7.81 ± 3.79 |
SAMPLE | Specific Surface Area (m2/g) | BJH Pore Size (cm3/g) |
---|---|---|
AM ± SD | AM ± SD | |
PHB (not sterilized) | 12.4 ± 2.6 | 0.013 ± 0.003 |
PHB (sterilized) | 15.2 ± 1.7 | 0.018 ± 0.005 |
PLA (not sterilized) | 15.2 ± 1.9 | 0.014 ± 0.002 |
PLA (sterilized) | 15.5 ± 1.6 | 0.011 ± 0.003 |
PLA/PCL 5/1 (sterilized) | 36.1 ± 2.0 | 0.045 ± 0.004 |
PLA/PCL 13.5/4 (sterilized) | 63.9 ± 17.6 | 0.063 ± 0.003 |
SAMPLE | Cell Ingrowth (µm) | ||
---|---|---|---|
Day 2 | Day 6 | Day 10 | |
PLA | 171 ± 4 | 141 ± 42 | 153 ± 14 |
PHB | 154 ± 20 | 104 ± 23 | 116 ± 38 |
PHB/PBS 1/4 (w/w) | n.a. | 180 ± 42 | 175 ± 35 |
PHB/PBS 2/7 (w/w) | 171 ± 1 | 175 ± 20 | 173 ± 18 |
PLA/PHB 4/1 (w/w) | 153 ± 10 | 162 ± 20 | 158 ± 50 |
PLA/PCL 5/1 (w/w) | 160 ± 42 | 147 ± 37 | 241 ± 36 |
PLA/PCL 13.5/4 (w/w) | 202 ± 64 | 427 ± 98 | 413 ± 66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beran, M.; Musílková, J.; Sedlář, A.; Slepička, P.; Veselý, M.; Kolská, Z.; Vltavský, O.; Molitor, M.; Bačáková, L. Evaluation of Polymeric Micro/Nanofibrous Hybrid Scaffolds Prepared via Centrifugal Nozzleless Spinning for Tissue Engineering Applications. Polymers 2025, 17, 386. https://doi.org/10.3390/polym17030386
Beran M, Musílková J, Sedlář A, Slepička P, Veselý M, Kolská Z, Vltavský O, Molitor M, Bačáková L. Evaluation of Polymeric Micro/Nanofibrous Hybrid Scaffolds Prepared via Centrifugal Nozzleless Spinning for Tissue Engineering Applications. Polymers. 2025; 17(3):386. https://doi.org/10.3390/polym17030386
Chicago/Turabian StyleBeran, Miloš, Jana Musílková, Antonín Sedlář, Petr Slepička, Martin Veselý, Zdeňka Kolská, Ondřej Vltavský, Martin Molitor, and Lucie Bačáková. 2025. "Evaluation of Polymeric Micro/Nanofibrous Hybrid Scaffolds Prepared via Centrifugal Nozzleless Spinning for Tissue Engineering Applications" Polymers 17, no. 3: 386. https://doi.org/10.3390/polym17030386
APA StyleBeran, M., Musílková, J., Sedlář, A., Slepička, P., Veselý, M., Kolská, Z., Vltavský, O., Molitor, M., & Bačáková, L. (2025). Evaluation of Polymeric Micro/Nanofibrous Hybrid Scaffolds Prepared via Centrifugal Nozzleless Spinning for Tissue Engineering Applications. Polymers, 17(3), 386. https://doi.org/10.3390/polym17030386