Potential of Annatto Seeds (Bixa orellana L.) Extract Together with Pectin-Edible Coatings: Application on Mulberry Fruits (Morus nigra L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Annatto Extract
2.3. Mulberries
2.4. Coating Solution
2.5. Titratable Acidity (TA), Soluble Solid Content (SSC), and Maturity Index (MI)
2.6. Mass Loss, Moisture Content, and Hydrogenionic Potential (pH)
2.7. Bioactive Compounds
2.8. Statistical Analysis
3. Results
3.1. Soluble Solid Content (SSC), Titratable Acidity (TA) and Maturity Index (MI)
3.2. Mass Loss, Moisture Content, and pH
3.3. Bioactive Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | Control sample |
MI | Maturity Index |
PEC | Coating with only pectin |
PEC5 | Coating with 5% of annatto extract in pectin |
PEC10 | Coating with 10% of annatto extract in pectin |
PEC2L | Coating with one layer of pectin coating under a layer of PEC10 |
SSC | Soluble solids content |
TA | Titratable acidity |
References
- Sharifee, F.; Asadpour, L.; Shariati, S.; Salehzadeh, A. Facilitation of infectious and non-infectious wound healing using Morus nigra fruit extract ointment: An in vitro and in vivo study. Int. Immunopharmacol. 2024, 134, 112230. [Google Scholar] [CrossRef] [PubMed]
- Khadivi, A.; Hosseini, A.-S.; Naderi, A. Morphological characterizations of Morus nigra L., M. alba L., and M. alba L. var. nigra. Genet. Resour. Crop Evol. 2024, 71, 1635–1642. [Google Scholar] [CrossRef]
- Santana, L.L.D.; Andrade, I.H.P.; Santos, S.P.D.; Souza, C.O.D.; Ribeiro, C.D.F.; Cruz, R.S. Prospection on the black mulberry (Morus nigra L.): A technological and scientific analysis. An. Acad. Bras. Ciências 2024, 96, e20240464. [Google Scholar] [CrossRef]
- Memete, A.R.; Teusdea, A.C.; Timar, A.V.; Vuscan, A.N.; Mintaș, O.S.; Cavalu, S.; Vicas, S.I. Effects of Different Edible Coatings on the Shelf Life of Fresh Black Mulberry Fruits (Morus nigra L.). Agriculture 2022, 12, 1068. [Google Scholar] [CrossRef]
- Villegas, C.; Albarracín, W. Aplicación y efecto de un recubrimiento comestible sobre la vida útil de la mora de castilla (Rubus glaucus Benth). Vitae 2016, 23, 202–209. [Google Scholar] [CrossRef]
- Pérez, D.A.; Gómez, J.M.; Castellanos, D.A. Combined modified atmosphere packaging and guar gum edible coatings to preserve blackberry (Rubus glaucus Benth). Food Sci. Technol. Int. 2021, 27, 353–365. [Google Scholar] [CrossRef]
- Kusmita, L.; Franyoto, Y.D.; Mutmainah, M.; Puspitaningrum, I.; Nurcahyanti, A.D.R. Bixa orellana L. carotenoids: Antiproliferative activity on human lung cancer, breast cancer, and cervical cancer cells in vitro. Nat. Prod. Res. 2022, 36, 6421–6427. [Google Scholar] [CrossRef] [PubMed]
- Coelho dos Santos, D.; Silva Barboza, A.d.; Ribeiro, J.S.; Rodrigues Junior, S.A.; Campos, Â.D.; Lund, R.G. Bixa orellana L. (Achiote, Annatto) as an antimicrobial agent: A scoping review of its efficiency and technological prospecting. J. Ethnopharmacol. 2022, 287, 114961. [Google Scholar] [CrossRef]
- Ashraf, A.; Ijaz, M.U.; Muzammil, S.; Nazir, M.M.; Zafar, S.; Zihad, S.M.N.K.; Uddin, S.J.; Hasnain, M.S.; Nayak, A.K. The role of bixin as antioxidant, anti-inflammatory, anticancer, and skin protecting natural product extracted from Bixa orellana L. Fitoterapia 2023, 169, 105612. [Google Scholar] [CrossRef]
- Stoll, L.; Rech, R.; Flôres, S.H.; Nachtigall, S.M.B.; de Oliveira Rios, A. Poly(acid lactic) films with carotenoids extracts: Release study and effect on sunflower oil preservation. Food Chem. 2019, 281, 213–221. [Google Scholar] [CrossRef]
- Valdés, A.; Burgos, N.; Jiménez, A.; Garrigós, M.C. Natural Pectin Polysaccharides as Edible Coatings. Coatings 2015, 5, 865–886. [Google Scholar] [CrossRef]
- Panahirad, S.; Naghshiband-Hassani, R.; Bergin, S.; Katam, R.; Mahna, N. Improvement of Postharvest Quality of Plum (Prunus domestica L.) Using Polysaccharide-Based Edible Coatings. Plants 2020, 9, 1148. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-Q.; Li, J.; Dong, H.-L.; Li, X.; Zhang, J.-Q.; Ramaswamy, S.; Xu, F. Pectin in biomedical and drug delivery applications: A review. Int. J. Biol. Macromol. 2021, 185, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Kaynarca, G.B.; Kamer, D.D.A.; Yucel, E.; Simal Yılmaz, O.; Henden, Y.; Kaymaz, E.; Gumus, T. The potential of pectin-based films enriched with bioactive components for strawberry preservation: A sustainable and innovative coating. Sci. Hortic. 2024, 334, 113294. [Google Scholar] [CrossRef]
- Shivangi, S.; Dorairaj, D.; Negi, P.S.; Shetty, N.P. Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll. 2021, 121, 107046. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Du, W.-X.; Avena-Bustillos, R.d.J.; Soares, N.d.F.F.; McHugh, T.H. Edible films from pectin: Physical-mechanical and antimicrobial properties—A review. Food Hydrocoll. 2014, 35, 287–296. [Google Scholar] [CrossRef]
- Singaram, A.J.V.; Guruchandran, S.; Ganesan, N.D. Review on functionalized pectin films for active food packaging. Packag. Technol. Sci. 2024, 37, 237–262. [Google Scholar] [CrossRef]
- Bhatia, S.; Al-Harrasi, A.; Alhadhrami, A.S.; Shah, Y.A.; Kotta, S.; Iqbal, J.; Anwer, M.K.; Nair, A.K.; Koca, E.; Aydemir, L.Y. Physical, Chemical, Barrier, and Antioxidant Properties of Pectin/Collagen Hydrogel-Based Films Enriched with Melissa officinalis. Gels 2023, 9, 511. [Google Scholar] [CrossRef]
- De Rosso, V.V.; Mercadante, A.Z. HPLC–PDA–MS/MS of anthocyanins and carotenoids from dovyalis and tamarillo fruits. J. Agric. Food Chem. 2007, 55, 9135–9141. [Google Scholar] [CrossRef]
- Nastasi, J.R.; Fitzgerald, M.A.; Kontogiorgos, V. Tuning the mechanical properties of pectin films with polyphenol-rich plant extracts. Int. J. Biol. Macromol. 2023, 253 Pt 7, 127536. [Google Scholar] [CrossRef]
- Flores, K.S.U.; Oliveira, I.G.S.; Souza, V.N.B.d.; Garcia, V.A.d.S.; Altemio, Â.D.C.; Martelli, S.M. Pectin-based edible coating containing gibberellic acid in the post-harvest conservation of fresh tomatoes. Ciência Agrotecnologia 2023, 47, e009223. [Google Scholar] [CrossRef]
- Grosso, A.L.; Asensio, C.M.; Grosso, N.R.; Nepote, V. Increase of walnuts’ shelf life using a walnut flour protein-based edible coating. LWT 2020, 118, 108712. [Google Scholar] [CrossRef]
- Pham, T.T.; Nguyen, L.L.P.; Dam, M.S.; Baranyai, L. Application of Edible Coating in Extension of Fruit Shelf Life: Review. AgriEngineering 2023, 5, 520–536. [Google Scholar] [CrossRef]
- Motta, C.; Martelli, S.M.; Soldi, V.; Barreto, P.L.M. Biodegradable films containing α-tocopherol/β-cyclodextrin complex. In Proceedings of the 11 Brazilian Congress on Polymers, Campos do Jordao, Brazil, 16–20 October 2011. [Google Scholar]
- Faria, R.C.d.; Ueda, K.S.; Godoi, A.S.; Santos, M.d.; Oliveira, I.G.S.; Fakhouri, F.M.; Vanzela, E.S.L.; Martelli, S.M. Coberturas biodegradáveis aplicadas em limão Taiti (Citrus aurantifolia) e sua influencia na preservação de ácido ascórbico/Biodegradable coverings applied to Taiti lemon (Citrus aurantifolia) and its influence on the preservation of ascorbic acid. Braz. J. Dev. 2020, 6, 40526–40534. [Google Scholar] [CrossRef]
- Almeida e Silva, T.; Gorup, L.F.; de Araújo, R.P.; Fonseca, G.G.; Martelli, S.M.; de Oliveira, K.M.P.; Faraoni, L.H.; de Arruda, E.G.R.; Gomes, R.A.B.; da Silva, C.H.M.; et al. Synergy of Biodegradable Polymer Coatings with Quaternary Ammonium Salts Mediating Barrier Function Against Bacterial Contamination and Dehydration of Eggs. Food Bioprocess. Technol. 2020, 13, 2065–2081. [Google Scholar] [CrossRef]
- Panahirad, S.; Dadpour, M.; Peighambardoust, S.H.; Soltanzadeh, M.; Gullón, B.; Alirezalu, K.; Lorenzo, J.M. Applications of carboxymethyl cellulose- and pectin-based active edible coatings in preservation of fruits and vegetables: A review. Trends Food Sci. Technol. 2021, 110, 663–673. [Google Scholar] [CrossRef]
- Chitarra, M.I.F. Pós-Colheita de Frutas e Hortaliças: Fisiologia e Manuseio; Universidade Federal de Lavras: Lavras, Brazil, 2005. [Google Scholar]
- Esteves, M.d.C.; de Carvalho, V. Modificacoes nos teores de amido, acucares e grau de docura de frutos de seis cultivares de goiabeira (Psidium guajava L.) em diferentes estadios dematuracao. Ciência E Prática 1982, 6, 208–218. [Google Scholar]
- Nultsch, W. General Botany; Elsevier Science: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar Signaling During Fruit Ripening. Front. Plant Sci. 2020, 11, 564917. [Google Scholar] [CrossRef]
- Chisté, R.C.; Mercadante, A.Z.; Gomes, A.; Fernandes, E.; Lima, J.L.F.d.C.; Bragagnolo, N. In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species. Food Chem. 2011, 127, 419–426. [Google Scholar] [CrossRef]
- Raju, S.K.; Chandrasekar, S.; Vengadhajalapathy, P.; Sundaram, R.; Periyasamy, S.; Chinnaraj, T.; Sekar, P.; Kumar, S. Review on phytochemical composition and pharmacological activities of Bixa orellana L. J. Pharm. Biol. Sci. 2023, 10, 57–67. [Google Scholar] [CrossRef]
- Jiménez-Villeda, P.-Y.; RodrÍGuez-HernÁNdez, A.-I.; LÓPez-Cuellar, M.d.-R.; Franco-FernÁNdez, M.-J.; ChavarrÍA-HernÁNdez, N. Elaboration and characterization of pectin-gellan films added with concentrated supernatant of Streptococcus infantarius fermentations, and EDTA: Effects on the growth of Escherichia coli, Staphylococcus aureus and Listeria monocytogenes in a Mexican cheese medium, and physical-mechanical properties. Food Sci. Technol. 2019, 39, 436–443. [Google Scholar]
- Galus, S.; Uchański, P.; Lenart, A. Colour, Mechanical Properties and Water Vapour Permeability of Pectin Films. Acta Agrophysica 2013, 20, 375–384. [Google Scholar]
- Amadeu, C.A.A.; Silva, F.B.; Souza, C.J.F.; Koschevic, M.T.; Schoeninger, V.; Falcão, E.A.; Garcia, V.; Cardoso, C.A.L.; Martelli, S.M. Pectin Edible Films Filled with Ilex paraguariensis Concentrate Extract and Its Characterization. Polymers 2024, 16, 3158. [Google Scholar] [CrossRef] [PubMed]
- Brody, A.L.; de Fernando Minguillón, G.D.G.; Pereda, J.A.O.; Pérez, M.A.A. Envasado de Alimentos en Atmósferas Controladas, Modificadas ya Vacío; Acribia: Zaragoza, Spain, 1996. [Google Scholar]
- Yaviç, A. Detailed study on cold storage of mulberry fruits: Effect of postharvest putrescine treatments on quality characteristics and biochemical properties of mulberry fruits. J. Food Compos. Anal. 2024, 126, 105916. [Google Scholar] [CrossRef]
- Pleșoianu, A.M.; Nour, V. Pectin-Based Edible Coating Combined with Chemical Dips Containing Antimicrobials and Antibrowning Agents to Maintain Quality of Fresh-Cut Pears. Horticulturae 2022, 8, 449. [Google Scholar] [CrossRef]
- Hernandez, E. Edible coatings from lipids and resins. Edible Coat. Film. Improv. Food Qual. 1994, 1, 279–304. [Google Scholar]
- Maguire, K.M.; Banks, N.H.; Opara, L.U. Factors affecting weight loss of apples. Hortic. Rev. 2010, 25, 197–234. [Google Scholar]
- Lufu, R.; Ambaw, A.; Opara, U.L. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Sci. Hortic. 2020, 272, 109519. [Google Scholar] [CrossRef]
- Wang, F.; Lu, M.; Zhou, S.; Lu, Z.; Ran, S. Effect of fiber surface modification on the interfacial adhesion and thermo-mechanical performance of unidirectional epoxy-based composites reinforced with bamboo fibers. Molecules 2019, 24, 2682. [Google Scholar] [CrossRef]
- Sucheta; Chaturvedi, K.; Sharma, N.; Yadav, S.K. Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int. J. Biol. Macromol. 2019, 133, 284–293. [Google Scholar] [CrossRef]
- Careli-Gondim, Í.; Mesquita, T.C.; Vilas Boas, E.V.d.B.; Caliari, M.; Soares Júnior, M.S. The effect of active coating and refrigerated storage on the quality of Avocado cultivar, Quintal. J. Food Sci. Technol. 2020, 57, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Said, N.S.; Olawuyi, I.F.; Lee, W.Y. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Gels 2023, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, Y.; Chen, Q.; Liu, Y.; Lu, L.; Arain, M.M.; Li, Z.; Pan, S.; Liu, F. Pectin based gels and their advanced application in food: From hydrogel to emulsion gel. Food Hydrocoll. 2025, 160, 110841. [Google Scholar] [CrossRef]
- Lin, M.; Li, Y.; Gao, Q.; Shi, L.; He, W.; Li, W.; Liang, Y.; Zhang, Z. Dynamic changes in physicochemical and transcriptional expression profiles of mulberry (Morus alba L.) fruit during ripening. Food Biosci. 2024, 57, 103606. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Mota, R.V.d. Caracterização física e química de geleia de amora-preta. Food Sci. Technol. 2006, 26, 539–543. [Google Scholar] [CrossRef]
- Wu, X.; Prior, R.L. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: Fruits and berries. J. Agric. Food Chem. 2005, 53, 2589–2599. [Google Scholar] [CrossRef]
- Ferreira, D.S.; Rosso, V.V.d.; Mercadante, A.Z. Compostos bioativos presentes em amora-preta (Rubus spp.). Rev. Bras. De Frutic. 2010, 32, 664–674. [Google Scholar] [CrossRef]
SSC (Brix %) | |||||
Day | CT | PEC | PEC5 | PEC10 | PEC2L |
0 | 7.00 Ag ± 0.01 | 7.00 Ae ± 0.01 | 7.50 Af ± 0.01 | 7.00 Ag ± 0.01 | 7.50 Ag ± 0.01 |
2 | 8.00 Af ± 0.01 | 7.00 Ce ± 0.01 | 7.00 Cf ± 0.01 | 7.50 Bf ± 0.01 | 8.00 Af ± 0.01 |
4 | 11.00 Ae ± 0.01 | 9.50 Cd ± 0.01 | 8.00 Ee ± 0.01 | 10.50 Be ± 0.01 | 9.00 De ± 0.01 |
6 | 17.50 Ad ± 0.01 | 9.50 Cd ± 0.01 | 9.50 Cd ± 0.01 | 9.50 Cd ± 0.01 | 12.50 Bd ± 0.01 |
8 | 18.00 Ac ± 0.01 | 12.50 Cc ± 0.01 | 11.75 Dc ± 0.01 | 11.50 Dc ± 0.01 | 13.25 Bc ± 0.01 |
10 | 19.50 Ab ± 0.01 | 17.00 Bb ± 0.01 | 16.00 Ca ± 0.01 | 15.00 Db ± 0.01 | 15.00 Db ± 0.01 |
12 | 21.50 Aa ± 0.01 | 13.50 Da ± 0.01 | 14.50 Cb ± 0.01 | 14.00 Ca ± 0.01 | 17.50 Ba ± 0.01 |
Titratable Acidity (g/kg of Citric Acid) | |||||
Day | CT | PEC | PEC5 | PEC10 | PEC2L |
0 | 11.72 Aa ± 0.07 | 11.53 Aa ± 0.06 | 11.09 Ab ± 0.04 | 10.17 Ab ± 0.05 | 12.02 Aa ± 0.09 |
2 | 8.58 Bb ± 0.06 | 8.40 Bb ± 0.05 | 13.27 Aa ± 0.03 | 13.73 Aa ± 0.01 | 9.00 Bb ± 0.01 |
4 | 6.27 Bc ± 0.04 | 8.24 Ab ± 0.03 | 8.43 Ac ± 0.03 | 7.12 ABcd ± 0.12 | 6.70 Bc ± 0.05 |
6 | 5.77 Bc ± 0.01 | 7.94 Ab ± 0.07 | 7.07 ABd ± 0.10 | 5.82 Bd ± 0.11 | 6.09 Bcde ± 0.05 |
10 | 6.04 Bc ± 0.06 | 4.33 Cc ± 0.05 | 7.74 Acd ± 0.03 | 6.19 Bd ± 0.05 | 5.33 BCe ± 0.09 |
12 | 5.62 Bc ± 0.04 | 4.95Cc ± 0.04 | 5.57 Ce ± 0.02 | 6.66 Acd ± 0.01 | 5.60 Bde ± 0.04 |
Maturation Index | |||||
Day | CT | PEC | PEC5 | PEC10 | PEC2L |
0 | 6.05 Af ± 0.36 | 6.06 Ae ± 0.19 | 6.76 Ae ± 0.11 | 6.40 Ad ± 0.58 | 6.22 Ae ± 0.16 |
2 | 9.35 Ae ± 0.66 | 8.35 Bd ± 0.47 | 5.28 Cf ± 0.13 | 5.46 Cd ± 0.053 | 8.89 Abd ± 0.09 |
4 | 17.58 Ad ± 1.03 | 11.54 Cc ± 0.40 | 9.50 Dd ± 0.33 | 13.55 Bc ± 1.22 | 13.45 BCc ± 0.95 |
6 | 30.32 Ab ± 0.61 | 12.01 Dc ± 0.98 | 14.89 Cc ± 0.41 | 18.99 Bb± 0.61 | 19.63 Bb ± 0.81 |
10 | 31.59 Ab ± 0.80 | 31.12 Ab ± 0.47 | 15.19 Cc ± 0.55 | 17.89 Cb ± 0.73 | 27.36 Ba ± 2.19 |
12 | 33.43 Aa ± 0.18 | 32.92 Aab ±1.36 | 28.72 Ba± 0.89 | 22.52 Da ± 0.30 | 25.88 Ca± 1.57 |
pH | |||||
---|---|---|---|---|---|
Day | CT | PEC | PEC5 | PEC10 | PEC2L |
0 | 3.30 Ab ± 0.05 | 3.30 Ad ± 0.05 | 3.30 Aef ± 0.05 | 3.30 Ad ± 0.05 | 3.30 Ae ± 0.05 |
2 | 3.51 Ab ± 0.03 | 3.37 Bd ± 0.03 | 3.15 Df ± 0.01 | 3.23 Cd ± 0.01 | 3.32 Be ± 0.04 |
4 | 4.07 Aa ± 0.03 | 3.84 Bb ± 0.03 | 3.59 Ccd ± 0.01 | 4.04 Aa ± 0.07 | 3.92 Ba ± 0.03 |
6 | 4.14 Aa ± 0.26 | 3.70 Bb ± 0.11 | 3.73 ABbc ± 0.20 | 3.77 ABb ± 0.18 | 3.53 Bd ± 0.04 |
8 | 4.19 Aa ± 0.17 | 4.12 Aa ± 0.10 | 3.78 Bab ± 0.02 | 3.87 Bb ± 0.03 | 3.82 Bb ± 0.06 |
10 | 4.11 Aa ± 0.07 | 3.79 Cb ± 0.03 | 3.95 Ba ± 0.03 | 3.54 Ec ± 0.02 | 3.68 Dc ± 0.01 |
12 | 3.55 BCb ± 0.04 | 3.75 Abc ± 0.05 | 3.43 Cde ± 0.08 | 3.60 Bc ± 0.06 | 3.51 BCd ± 0.01 |
Treatment | Storage Days | ||||
---|---|---|---|---|---|
0 | 3 | 6 | 9 | 12 | |
CT | 91.1 Aa ± 0.2 | 82.9 Bd ± 0.1 | 81.1 Cd ± 0.1 | 76.7 De ± 0.2 | 70.2 Ee ± 0.1 |
PEC | 91.1 Aa ± 0.2 | 84.7 Bc ± 0.1 | 83.0 Cc ± 0.0 | 79.3 Dd ± 0.2 | 74.7 Ed ± 0.2 |
PEC5 | 91.1 Aa ± 0.2 | 85.0 Bc ± 0.1 | 83.1 Cc ± 0.2 | 80.2 Dc ± 0.1 | 76.6Ec ± 0.1 |
PEC10 | 91.1 Aa ± 0.2 | 85.6 Bb ± 0.2 | 83.8 Cb ± 0.1 | 81.1 Db ± 0.1 | 79.3 Eb ± 0.2 |
PEC2L | 91.1 Aa ± 0.2 | 86.6 Ba ± 0.2 | 85.6 Ca ± 0.2 | 82.9 Da ± 0.2 | 82.0 Da ± 0.1 |
all-trans-carotene | |||||
Treatment | Storage days | ||||
0 | 3 | 6 | 9 | 12 | |
CT | 38.7 Aa ± 0.2 | 35.4 Bd ± 0.0 | 34.5 Cd ± 0.0 | 32.6 De ± 0.1 | 29.17 Ec ± 0.55 |
PEC | 38.7 Aa ± 0.2 | 36.1 Bc ± 0.1 | 35.3 Cc ± 0.2 | 33.7 Dd ± 0.1 | 31.7 Eb ± 0.2 |
PEC5 | 38.7 Aa ± 0.2 | 36.3 Bbc ± 0.2 | 35.4 Cbc ± 0.1 | 34.1 Dc ± 0.2 | 32.6 Eb ± 0.2 |
PEC10 | 38.7 Aa ± 0.2 | 36.4 Bb ± 0.1 | 35.6 Cb ± 0.0 | 34.5 Db ± 0.2 | 33.7 Ea ± 0.3 |
PEC2L | 38.7 Aa ± 0.2 | 36.7 Ba ± 0.2 | 36.5 Ba ± 0.2 | 35.4 Ca ± 0.1 | 34.9 Da ± 0.2 |
all-trans-lutein | |||||
Treatment | Storage days | ||||
0 | 3 | 6 | 9 | 12 | |
CT | 29.4 Aa ± 0.3 | 26.9 Bc ± 0.2 | 26.2 Cd ± 0.1 | 24.7 Dc ± 0.1 | 22.6 Ee ± 0.2 |
PEC | 29.4 Aa ± 0.3 | 27.3 Bbc ± 0.2 | 26.7 Cc ± 0.1 | 25.7 Db ± 0.1 | 24.1 Ed ± 0.3 |
PEC5 | 29.4 Aa ± 0.3 | 27.4 Bb ± 0.1 | 26.9 Cbc ± 0.25 | 25.9 Db ± 0.2 | 24.7 Ec ± 0.1 |
PEC10 | 29.4 Aa ± 0.3 | 27.7 Bab ± 0.3 | 27.0 Cb ± 0.1 | 26.2 Db ± 0.3 | 25.6 Eb ± 0.0 |
PEC2L | 29.4 Aa ± 0.3 | 27.9 Ba ± 0.1 | 27.6 BCa ± 0.3 | 26.6 Ca ± 0.1 | 26.5 Ca ± 0.2 |
Treatments | Storage Days | ||||
---|---|---|---|---|---|
0 | 3 | 6 | 9 | 12 | |
CT | 100.0 | 91.0 | 89.0 | 84.0 | 77.0 |
PEC | 100.0 | 93.0 | 91.0 | 87.0 | 82.0 |
PEC5 | 100.0 | 93.0 | 91.0 | 88.0 | 84.0 |
PEC10 | 100.0 | 94.0 | 92.0 | 89.0 | 87.0 |
PEC2L | 100.0 | 95.0 | 94.0 | 91.0 | 90.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, I.G.S.; Flores, K.S.U.; de Souza, V.N.B.; Moretto, N.C.; Verdan, M.H.; Aranha, C.P.M.; Garcia, V.A.D.S.; Cardoso, C.A.L.; Martelli, S.M. Potential of Annatto Seeds (Bixa orellana L.) Extract Together with Pectin-Edible Coatings: Application on Mulberry Fruits (Morus nigra L.). Polymers 2025, 17, 562. https://doi.org/10.3390/polym17050562
Oliveira IGS, Flores KSU, de Souza VNB, Moretto NC, Verdan MH, Aranha CPM, Garcia VADS, Cardoso CAL, Martelli SM. Potential of Annatto Seeds (Bixa orellana L.) Extract Together with Pectin-Edible Coatings: Application on Mulberry Fruits (Morus nigra L.). Polymers. 2025; 17(5):562. https://doi.org/10.3390/polym17050562
Chicago/Turabian StyleOliveira, Igor Gabriel Silva, Karina Sayuri Ueda Flores, Vinícius Nelson Barboza de Souza, Nathaly Calister Moretto, Maria Helena Verdan, Caroline Pereira Moura Aranha, Vitor Augusto Dos Santos Garcia, Claudia Andrea Lima Cardoso, and Silvia Maria Martelli. 2025. "Potential of Annatto Seeds (Bixa orellana L.) Extract Together with Pectin-Edible Coatings: Application on Mulberry Fruits (Morus nigra L.)" Polymers 17, no. 5: 562. https://doi.org/10.3390/polym17050562
APA StyleOliveira, I. G. S., Flores, K. S. U., de Souza, V. N. B., Moretto, N. C., Verdan, M. H., Aranha, C. P. M., Garcia, V. A. D. S., Cardoso, C. A. L., & Martelli, S. M. (2025). Potential of Annatto Seeds (Bixa orellana L.) Extract Together with Pectin-Edible Coatings: Application on Mulberry Fruits (Morus nigra L.). Polymers, 17(5), 562. https://doi.org/10.3390/polym17050562