Citrus Wastes as Source of Pectin and Bioactive Compounds Extracted via One-Pot Microwave Process: An In Situ Path to Modulated Property Control †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Chemicals
2.2. Procedure of Pectin Extraction: Conventional Extraction (CE) and Microwave-Assisted Extraction (MAE)
3. Physico-Chemical Characterizations
3.1. Pectin Methylation Degree (DM)
3.2. Radical Scavenging Activity Assays of Extracted Polyphenols by Means of 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH)
3.3. Gel Permeation Chromatography (GPC)
3.4. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (FTIR-ATR)
3.5. Thermogravimetric Analysis (TGA)
3.6. Scanning Electron Microscope (SEM)
4. Results and Discussion
4.1. Comparison Between CE and MAE Methodologies: A Path to In Situ Pectin Properties Control
4.2. DPPH Assay
4.3. Gel Permeation Chromatography (GPC)
4.4. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (FTIR-ATR)
4.5. Thermogravimetric Analysis (TGA)
4.6. Scanning Electron Microscopy (SEM)
4.7. Future Outlooks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richa, D.; Kohli, D.; Mishra, A.; Kabdal, B.; Kothakota, A.; Richa, S.; Sirohi, R.; Kumar, R.; Naik, B. Citrus Fruit: Classification, Value Addition, Nutritional and Medicinal Values, and Relation with Pandemic and Hidden Hunger. J. Agric. Food Res. 2023, 2023, 100718. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef]
- Martín, M.A.; Siles, J.A.; Chica, A.F.; Martín, A. Biomethanization of Orange Peel Waste. Bioresour. Technol. 2010, 101, 8993–8999. [Google Scholar] [CrossRef]
- Zayed, A.; Tawfik Badawy, M.; Farag, M. Valorization and Extraction Optimization of Citrus Seeds for Food and Functional Food Applications. Food Chem. 2021, 355, 129609. [Google Scholar] [CrossRef] [PubMed]
- Fidelis, M.; Moura, C.; Junior, T.; Pap, N.; Mäkinen, S.; Mattila, P.; Putnik, P.; Bursać Kovačević, D.; Tian, Y.; Yang, B.; et al. Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy. Molecules 2019, 24, 3854. [Google Scholar] [CrossRef] [PubMed]
- Fierascu, R.; Fierascu, I.; Avramescu, S.; Sieniawska, E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019, 24, 4212. [Google Scholar] [CrossRef]
- Moeini, A.; Pedram, P.; Fattahi, E.; Cerruti, P.; Santagata, G. Edible Polymers and Secondary Bioactive Compounds for Food Packaging Applications: Antimicrobial, Mechanical, and Gas Barrier Properties. Polymers 2022, 14, 2395. [Google Scholar] [CrossRef]
- Nešić, A.; Onjia, A.; Davidović, S.; Dimitrijević, S.; Errico, M.E.; Santagata, G.; Malinconico, M. Design of Pectin-Sodium Alginate Based Films for Potential Healthcare Application: Study of Chemico-Physical Interactions Between the Components of Films and Assessment of Their Antimicrobial Activity. Carbohydr. Polym. 2017, 157, 981–990. [Google Scholar] [CrossRef]
- Nešić, A.; Meseldzija, S.; Davidović, S.; Miljković, M.; Onjia, A.; Dimitrijević, S.; Santagata, G. Characterization of Antifungal Citrus Pectin-Based Films for Potential Agricultural Application. Ind. Crops Prod. 2023, 204, 117386. [Google Scholar] [CrossRef]
- Zannini, D.; Dal Poggetto, G.; Malinconico, M.; Santagata, G.; Immirzi, B. Citrus Pomace Biomass as a Source of Pectin and Lignocellulose Fibers: From Waste to Upgraded Biocomposites for Mulching Applications. Polymers 2021, 13, 1280. [Google Scholar] [CrossRef]
- Adetunji, L.R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the Pectin Production Process Using Novel Extraction Techniques: A Review. Food Hydrocoll. 2017, 62, 239–250. [Google Scholar] [CrossRef]
- Singhal, S.; Swami Hulle, N.R. Citrus Pectins: Structural Properties, Extraction Methods, Modifications and Applications in Food Systems—A Review. Appl. Food Res. 2022, 2, 100215. [Google Scholar] [CrossRef]
- Nešić, A.; Bonis, M.; Dal Poggetto, G.; Ruocco, G.; Santagata, G. Microwave Assisted Extraction of Raw Alginate as a Sustainable and Cost-Effective Method to Treat Beach-Accumulated Sargassum Algae. Polymers 2023, 15, 2979. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Osama, K.; Varjani, S.; Farooqui, A.; Younis, K. Microwave-Assisted Valorization and Characterization of Citrus Limetta Peel Waste into Pectin as a Perspective Food Additive. J. Food Sci. Technol. 2023, 60, 1284–1293. [Google Scholar] [CrossRef]
- García-Martín, J.F.; Feng, C.-H.; Domínguez-Fernández, N.-M.; Álvarez-Mateos, P. Microwave-Assisted Extraction of Polyphenols from Bitter Orange Industrial Waste and Identification of the Main Compounds. Life 2023, 13, 1864. [Google Scholar] [CrossRef]
- Petrotos, K.; Giavasis, I.; Gerasopoulos, K.; Mitsagga, C.; Papaioannou, C.; Gkoutsidis, P. Optimization of Vacuum-Microwave-Assisted Extraction of Natural Polyphenols and Flavonoids from Raw Solid Waste of the Orange Juice Producing Industry at Industrial Scale. Molecules 2021, 26, 246. [Google Scholar] [CrossRef]
- Dranca, F.; Vargas, M.; Oroian, M. Physicochemical properties of pectin from Malus domestica “Falticeni” apple pomace as affected by non-conventional extraction techniques. Food Hydrocoll. 2020, 100, 105383. [Google Scholar] [CrossRef]
- Lasunon, P.; Sengkhamparn, N. Effect of Ultrasound-Assisted, Microwave-Assisted and Ultrasound-Microwave-Assisted Extraction on Pectin Extraction from Industrial Tomato Waste. Molecules 2022, 27, 1157. [Google Scholar] [CrossRef]
- Cho, E.-H.; Jung, H.-T.; Lee, B.-H.; Kim, H.-S.; Rhee, J.-K.; Yoo, S.-H. Green Process Development for Apple-Peel Pectin Production by Organic Acid Extraction. Carbohydr. Polym. 2018, 204, 97–103. [Google Scholar] [CrossRef]
- Picot-Allain, M.C.N.; Ramasawmy, B.; Emmambux, M.N. Extraction, Characterisation, and Application of Pectin from Tropical and Sub-Tropical Fruits: A Review. Food Rev. Int. 2022, 38, 282–312. [Google Scholar] [CrossRef]
- Santagata, G.; Mallardo, S.; Fasulo, G.; Lavermicocca, P.; Valerio, F.; Di Biase, M.; Di Stasio, M.; Malinconico, M.; Volpe, M.G. Pectin-Honey Coating as Novel Dehydrating Bioactive Agent for Cut Fruit: Enhancement of the Functional Properties of Coated Dried Fruits. Food Chem. 2018, 258, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Straccia, M.C.; d’Ayala, G.G.; Romano, I.; Laurienzo, P. Novel Zinc Alginate Hydrogels Prepared by Internal Setting Method with Intrinsic Antibacterial Activity. Carbohydr. Polym. 2015, 125, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Amirian, J.; Zeng, Y.; Shekh, M.I.; Sharma, G.; Stadler, F.J.; Song, J.; Du, B.; Zhu, Y. In-Situ Crosslinked Hydrogel Based on Amidated Pectin/Oxidized Chitosan as Potential Wound Dressing for Skin Repairing. Carbohydr. Polym. 2021, 251, 117005. [Google Scholar] [CrossRef] [PubMed]
- Chuenkaek, T.; Kobayashi, T. Citrus Waste Upcycling toward Pectin Moisturizer Films Plasticized with Glycerol and Polyethylene Glycol. ACS Sustain. Resour. Manag. 2024, 1, 213–224. [Google Scholar] [CrossRef]
- Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Optimization of Microwave Assisted Extraction of Pectin from Orange Peel. Carbohydr. Polym. 2013, 97, 703–709. [Google Scholar] [CrossRef]
- Akar, Z.; Küçük, M.; Doğan, H. A New Colorimetric DPPH• Scavenging Activity Method with No Need for a Spectrophotometer Applied on Synthetic and Natural Antioxidants and Medicinal Herbs. J. Enzym. Inhib. Med. Chem. 2017, 32, 640–647. [Google Scholar] [CrossRef]
- Kaya, B.; Okur, I.; Alpas, H.; Oztop, M. High Hydrostatic Pressure Assisted Extraction of Pectin from Sugar Beet Pulp. Int. J. Food Sci. Technol. 2021, 56, 4861–4870. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Microwave-Assisted Extraction of Pectin from Grape Pomace. Sci. Rep. 2022, 12, 12722. [Google Scholar] [CrossRef]
- Kute, A.B.; Mohapatra, D.; Kotwaliwale, N.; Giri, S.K.; Sawant, B.P. Characterization of Pectin Extracted from Orange Peel Powder Using Microwave-Assisted and Acid Extraction Methods. Agric. Res. 2020, 9, 241–248. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Characterization of Pectin from Grape Pomace: A Comparison of Conventional and Pulsed Ultrasound-Assisted Extraction Techniques. Foods 2022, 11, 2274. [Google Scholar] [CrossRef]
- Zakaria, N.; Rahman, R.; Norulfairuz, D.; Joe Dailin, D.; Jusoh, M. Microwave-Assisted Extraction of Pectin from Pineapple Peel. Malays. J. Fundam. Appl. Sci. 2021, 17, 33–38. [Google Scholar] [CrossRef]
- Van Audenhove, J.; Bernaerts, T.; De Smet, V.; Delbaere, S.; Van Loey, A.M.; Hendrickx, M.E. The Structure and Composition of Extracted Pectin and Residual Cell Wall Material from Processing Tomato: The Role of a Stepwise Approach Versus High-Pressure Homogenization-Facilitated Acid Extraction. Foods 2021, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Sengkhamparn, N.; Lasunon, P.; Tettawong, P. Effect of Ultrasound Assisted Extraction and Acid Type Extractant on Pectin from Industrial Tomato Waste. Chiang Mai Univ. J. Nat. Sci. 2019, 18, 214–225. [Google Scholar] [CrossRef]
- Sayah, M.; Chabir, R.; El Madani, N.; Kandri Rodi, Y.; Kandri, E.; Fouad, O.; Touzani, H.; Errachidi, F. Comparative Study on Pectin Yield According To the State of the Orange Peels and Acids Used. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 15658–15665. [Google Scholar] [CrossRef]
- Fraeye, I.; De Roeck, A.; Duvetter, T.; Verlent, I.; Hendrickx, M.; Van Loey, A. Influence of Pectin Properties and Processing Conditions on Thermal Pectin Degradation. Food Chem. 2007, 105, 555–563. [Google Scholar] [CrossRef]
- Chan, S.Y.; Choo, W.S.; Young, D.J.; Loh, X.J. Pectin as a Rheology Modifier: Origin, Structure, Commercial Production and Rheology. Carbohydr. Polym. 2017, 161, 118–139. [Google Scholar] [CrossRef]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef]
- Costanzo, G.; Iesce, M.R.; Naviglio, D.; Ciaravolo, M.; Vitale, E.; Arena, C. Comparative Studies on Different Citrus Cultivars: A Revaluation of Waste Mandarin Components. Antioxidants 2020, 9, 517. [Google Scholar] [CrossRef]
- Mao, Y.; Robinson, J.; Binner, E. Current Status of Microwave-Assisted Extraction of Pectin. Chem. Eng. J. 2023, 473, 145261. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.-G.; Sun, H.-J.; Wei, Z.-J. Pectin from Abelmoschus Esculentus: Optimization of Extraction and Rheological Properties. Int. J. Biol. Macromol. 2014, 70, 498–505. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of Pectin Degree of Esterification by Diffuse Reflectance Fourier Transform Infrared Spectroscopy. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Güzel, M.; Akpınar, Ö. Valorisation of Fruit By-Products: Production Characterization of Pectins from Fruit Peels. Food Bioprod. Process. 2019, 115, 126–133. [Google Scholar] [CrossRef]
- Duan, X.; Yang, Z.; Yang, J.; Liu, F.; Xu, X.; Pan, S. Structural and Emulsifying Properties of Citric Acid Extracted Satsuma Mandarin Peel Pectin. Foods 2021, 10, 2459. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.H.F.; Oliveira, T.Í.S.; Rosa, M.F.; Cavalcante, F.L.; Moates, G.K.; Wellner, N.; Waldron, K.W.; Azeredo, H.M.C. Pectin Extraction from Pomegranate Peels with Citric Acid. Int. J. Biol. Macromol. 2016, 88, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Karbuz, P.; Tugrul, N. Microwave and Ultrasound Assisted Extraction of Pectin from Various Fruits Peel. J. Food Sci. Technol. 2021, 58, 641–650. [Google Scholar] [CrossRef]
- Guolin, H.; Jeffrey, S.; Kai, Z.; Xiaolan, H. Application of Ionic Liquids in the Microwave-Assisted Extraction of Pectin from Lemon Peels. J. Anal. Methods Chem. 2012, 2012, 302059. [Google Scholar] [CrossRef]
- Prasetyaningrum, A.; Jos, B.; Ratnawati, R.; Rokhati, N.; Riyanto, T.; Prinanda, G.R. Sequential Microwave-Ultrasound Assisted Extraction of Flavonoid from Moringa Oleifera: Product Characteristic, Antioxidant and Antibacterial Activity. Indones. J. Chem. 2022, 22, 303–316. [Google Scholar] [CrossRef]
- Gallo, G.; Zannini, D.; Immirzi, B.; De Bruno, A.; Fiorentino, G.; Dal Poggetto, G. Host–Guest Complexes HP-β-CD/Citrus Antioxidants: Exploratory Evaluations of Enhanced Properties in Biodegradable Film Packaging. Antioxidants 2023, 12, 763. [Google Scholar] [CrossRef]
MAE | pH | SLR (g/mL) | Temperature (°C) | Time (s) | PY (%) | AOs (mg/mL) | DM (%) | DPPH (%) |
---|---|---|---|---|---|---|---|---|
PEC1-HAc PEC1-CA | 2 | 1:20 | 90 | 180 | 10.6 ± 1.5 22.5 ± 1.3 | 6.4 ± 1.8 19.8 ± 1.4 | 49.0 ± 3.0 34.0 ± 2.5 | 10.6 ± 1.0 10.5 ± 1.3 |
PEC2-HAc PEC2-CA | 2.5 | 1:20 | 90 | 180 | 10.8 ± 0.9 9.5 ± 1.1 | 3.3 ± 1.0 7.2 ± 0.5 | 62.1 ± 1.7 43.6 ± 2.8 | 4.1 ± 0.8 7.0 ± 1.4 |
PEC3-HAc PEC3-CA | 3 | 1:20 | 90 | 180 | 7.7 ± 1.4 7.3 ± 1.1 | 4.7 ± 1.2 5.8 ± 1.3 | 83.5 ± 3.2 72.7 ± 1.1 | 1.2 ± 0.5 5.6 ± 2.1 |
PEC1-CA-residue | 2 | 1:20 | 90 | 180 | 6.5 ± 1.0 | 25.2 ± 3.2 | 16.5 ± 2.4 | 5.4 ± 2.6 |
CE | pH | SLR (g/mL) | Temperature (°C) | Time (h) | PY (%) | AOs (mg/mL) | DM (%) | DPPH (%) |
PEC4-HAc | 2 | 1:10 | 100 | 6 | 24.1 ± 2.2 | 16.5 ± 1.7 | 70.3 ± 1.3 | 6.1 ± 2.2 |
PEC4-CA | 2 | 1:10 | 100 | 6 | 30.0 ± 2.7 | 20.7 ± 2.0 | 28.6 ± 1.8 | 9.8 ± 1.3 |
Samples | Mn (kDa) | Mw (kDa) | WFr1% | WFr2% |
---|---|---|---|---|
PEC1-HAc | 195.575 | 390.166 | 74 | 26 |
PEC1-CA | 134.352 | 218.951 | 53 | 47 |
PEC2-HAc | 233.713 | 472.280 | 54 | 46 |
PEC2-CA | 294.180 | 567.688 | 55 | 45 |
PEC3-HAc | 186.208 | 377.988 | 59 | 41 |
PEC3-CA | 142.157 | 231.053 | 64 | 36 |
PEC4-HAc | 43.775 | 118.463 | 63 | 37 |
PEC4-CA | 35.303 | 93.269 | 33 | 67 |
Samples | Tonset, 10% wt. (°C) | Tpeak1 (°C) | Tpeak2 (°C) | Tpeak3 (°C) |
---|---|---|---|---|
Citrus PEC | 221.5 | 126 | 241.6 | - |
PEC1-HAc | 203.3 | 174.3 | 228.3 | 338.6 |
PEC1-CA | 182.6 | 154.1 | 234.3 | 336.2 |
PEC4-HAc | 213.1 | 171.2 | 236.9 | 333.1 |
PEC4-CA | 186.2 | 165.2 | 232.9 | 327.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zannini, D.; Monteforte, M.; Gargiulo, L.; Marino, T.; Gomez d’Ayala, G.; Santagata, G.; Dal Poggetto, G. Citrus Wastes as Source of Pectin and Bioactive Compounds Extracted via One-Pot Microwave Process: An In Situ Path to Modulated Property Control. Polymers 2025, 17, 659. https://doi.org/10.3390/polym17050659
Zannini D, Monteforte M, Gargiulo L, Marino T, Gomez d’Ayala G, Santagata G, Dal Poggetto G. Citrus Wastes as Source of Pectin and Bioactive Compounds Extracted via One-Pot Microwave Process: An In Situ Path to Modulated Property Control. Polymers. 2025; 17(5):659. https://doi.org/10.3390/polym17050659
Chicago/Turabian StyleZannini, Domenico, Martina Monteforte, Luca Gargiulo, Tiziana Marino, Giovanna Gomez d’Ayala, Gabriella Santagata, and Giovanni Dal Poggetto. 2025. "Citrus Wastes as Source of Pectin and Bioactive Compounds Extracted via One-Pot Microwave Process: An In Situ Path to Modulated Property Control" Polymers 17, no. 5: 659. https://doi.org/10.3390/polym17050659
APA StyleZannini, D., Monteforte, M., Gargiulo, L., Marino, T., Gomez d’Ayala, G., Santagata, G., & Dal Poggetto, G. (2025). Citrus Wastes as Source of Pectin and Bioactive Compounds Extracted via One-Pot Microwave Process: An In Situ Path to Modulated Property Control. Polymers, 17(5), 659. https://doi.org/10.3390/polym17050659