Polymer Micelles as Nanocarriers of Bioactive Peptides
Abstract
:1. Introduction
2. Bioactive Peptides—Classification and Mode of Action
2.1. Classification of AMPs
AMP | Source | Sequence | Active Against | Ref. | |
---|---|---|---|---|---|
B A C T E R I A | Colicin M | E. coli | METLTVHAPSPSTNLPSYGNGAFSLSAPHVPGAGPLLVQVVYSFFQSPNMCLQALTQLEDYIKKHGASNPLTLQIISTNIGYFCNAERNLVLHPGISVYDAYHFAKPAPSQYDYRSMNMKQMSGNVTTPIVALAHYLWGNGAERSVNIANIGLKISPMKINQIKDIIKSGVVGTFPVSTKFTHATGDYNVITGAYLGNITLKTEGTLTISANGSWTYNGVVRSYDDKYDFNASTHRGVIGESLTRLGAMFSGKEYQILLPGEIHIKESGKR | Enterobacter, Escherichia, Klebsiella, Morganella, Salmonella, Shigella, and Yersinia | [18] |
Gramicidin | B. brevis | XGAXAXVXWXWXWXWX | Gram-positive bacteria; Gram-negative bacteria | [18] | |
Microvionin | Microbacterium arborescens | MWQKAARGGSSVSPSEEFRRVLTLFATRSRASDRLHCRRDLGHGKEVELMSLEQLEALDASSEAAEMAASLGSQSC | Methicillin-resistant S. aureus (MRSA) and Streptococcus pneumonia | [18] | |
Plantazolicin | Bacillus amyloliquefaciens | MTQIKVPTALIASVHGEGQHLFEPMAARCTCTTIISSSSTF | Closely related strains of genus Bacillus | [18] | |
Sonorensin | B. sonorensis | MKGDIKMQPFHDEPQSLEMDQFQADDMTLWDAGRHHANVKHCASCWSCGSCASCWSCMGHSCWSCMGHSCWSCAGHSCWSCMGHSCWSCMGHSCWSCAGHCCGSCWHGGM | B. subtilis, E. coli, Listeria monocytogenes, P. aeruginosa, S. aureus, Vibrio vulnificus | [18] | |
Nisin | Lactococcus, Staphylococcu, Streptococcus spp. | MSTKDFNLDLVSVSKKDSGASPRITSISLCTPGCKTGALMGCNMKTATCHCSIHVSK | Staphylococci, streptococci, enterococci, bacilli, listeria | [18] | |
Epidermin | S. epidermidis | MEAVKEKNDLFNLDVKVNAKESNDSGAEPRIASKFICTPGCAKTGSFNSYCC | S. hemolyticus, S. capitis, S. simulans, S. saprophyticus, S. hominis, S. epidermidis, S. aureus | [18] | |
Microcin L | E. coli | MKTWQVFFIILPISIIISLIVKQLNSSNLVQSVVSGIAIALMISIFFNRGK | E. coli, S. enterica, Shigella spp., P. aeruginosa | [18] | |
Abp118 | Lactobacillus salivarius | MKNLDKRFTIMTEDNLASVNGGKNGYGGSGNRWVHCGAGIVGGALIGAIGGPWSAVAGGISGGFTSCR | Listeria monocytogenes | [18] | |
Pediocin | Pediococcus spp. | MKKIEKLTEKEMANIIGGKYYGNGVTCGKHSCSVDWGKATTCIINNGAMAWATGGHQGNHKC | Listeria spp. | [16] | |
P L A N T S | Mj-AMP2 | Garden four-o’clock (Mirabilis jalapa) | MAKVPIAFLKFVIVLILFIAMSGMIEACIG NGGRCNENVGPPYCCSGFCLRQPNQG YGVCRNR | B. megaterium, S. lutea, Magnaporthe oryzae | [2] |
PmAMP1 | Western white pine (Pinus monticola) | METKHLAYVMFVLVSLFLAMAQPSQA SYFSAWVGPGCNNHNARYNKCGCSNIS HNVHGGYEFVYQGQAPTAYNTNNCKG VAQTRFSSNVNQACSNFAWKSVFIQC | Leptosphaeria maculans | [2] | |
SmAMP2 | Chickweed (Stellaria media) | MLNMKSFALLMLFATLVGVTIAYDPNG KCGRQYGKCRAGQCCSQYGYCGSGSKY CAHNTPLSEIEPTAAGQCYRGRCSGGLC CSKYGYCGSGPAYCGLGMCQGSCLPDM PNHPAQIQARTEAAQAEAQAEAYNQA NEAAQVEAYYQAQTQAQPQVEPAVTK AP | Alternaria sp. and Fusarium sp. | [2] | |
NpRS | Garlic (Allium sativum) | RSLNLLMFR | C. albicans | [2] | |
SN1 | Potato (Solanum tuberosum) | MKLFLLTLLLVTLVITPSLIQTTMAGSNF CDSKCKLRCSKAGLADRCLKYCGICCEE CKCVPSGTYGNKHECPCYRDKKNSKGKSKCP | Rhizoctonia solani | [2] | |
SN2 | Tomato (Solanum lycopersicum) | MAISKALFASLLLSLLLLEQVQSIQTDQVSSNAISEGADSYKKIDCGGACAARCRLSS RPRLCHRACGTCCARCNCVPPGTSGNTE TCPCYASLTTHGNKRKCP | S. cerevisiae | [2] | |
CC-AMP1 | Ghost Pepper (Capsicum chinense × frutescens) | ZETLDPICMAKCVLKCGKKAWCLTKCI AGCVL | E. coli, K. pneumonia, A. baumannii, P. aeruginosa | [2] | |
A N I M A L S | Cecropin A | Cecropia moth (Hyalophora cecropia) | KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK-amide | A. baumannii, P. aeruginosa | [2] |
Melittin | Honey bee (Apis mellifera) | GIGAVLKVLTTGLPALISWIKRKRQQ-NH2 | S. aureus, A. baumannii | [2] | |
Piscidin 2 | Schlegel’s black rockfish (Sebastes schlegelii) | MRFIMLFLVLSMVVLMAEPGEAFIHHIFG AIKRIFGDKQRDMADQQELDQRAFDRE RAFN | S. aureus, Trypanosoma brucei | [2] | |
TBD-1 | European pond turtle (Emys orbicularis) | YDLSKNCRLRGGICYIGKCPRRFFRSGSCS RGNVCCLRFG | E. coli, L. monocytogenes, MRSA, C. albicans | [2] | |
Pelovaterin | Chinese soft-shelled turtle (Pelodiscus sinensis) | DDTPSSRCGSGGWGPCLPIVDLLCIVHV TVGCSGGFGCCRIG | P. aeruginosa, Proteus vulgaris | [2] | |
Oh-Cath | King cobra (Ophiophagus hannah) | MEGFFWKTLLVVGALAIGGTSSLPHKP LTYEEAVDLAVSIYNSKSGEDSLYRLLE AVPPPEWDPLSESNQELNFTIKETVCLV AEERSLEECDFQEDGAIMGCTGYYFFGESPPVLVLTCKPVGEEEEQKQEEGNEEEKE VEKEEKEEDEKDQPRRVKRFKKFFKKLKNSVKKRAKKFFKKPRVIGVSIPF | P. aeruginosa, Enterobacter aerogenes | [2] | |
Cancrin | Crab-eating frog (Rana cancrivora) | GSAQPYKQLHKVVNWDPYG | E. coli, S. aureus, C. albicans | [2] | |
Magainin 2 | African clawed frog (Xenopus laevis) | GIGKFLHSAKKFGKAFVGEIMNS | E. coli, B. megaterium, A. baumannii | [2] | |
Buforin II | Asian toad (Duttaphrynus melanostictus) | TRSSRAGLQFPVGRVHRLLRK | E. coli, S. typhimurium, S. aureus, B. subtilis | [2] | |
Indolicidin | Cattle (Bos taurus) | ILPWKWPWWPWRR-amide | HIV, C. neoformans, C. albicans, Trichosporon beigelii, E. coli, P. aeruginosa, S. typhimurium, Staphyloccocus sp. | [18] | |
Protegrin | Pig (Sus scrofa) | RGGRLCYCRRRFCVCVGR-amide | E. coli, S. aureus, P. aeruginosa, Chlamydia trachomatis, Neisseria gonorrhoeae, C. albicans, HIV | [2] | |
θ-defensin-1 | Rhesus monkey (Macaca mulatta) | RCICTRGFCRCLCRRGVC | S. aureus, C. albicans | [2] | |
H U M A N | α-defensin 5, Paneth cell-specific | Human (Homo sapiens) | MRTIAILAAILLVALQAQAESLQERADEATTQKQSGEDNQDLAISFAGNGLSALRTSGSQARATCYCRTG RCATRESLSGVCEISGRLYRLCCR | S. aureus, E. coli | [2] |
LL-37 | Human (Homo sapiens) | LLGDFFRKSKEKIGKEFKRIVQRIKDFLR NLVPRTES | Gram-positive; Gram-negative | [2] | |
HNP-1 | Human (Homo sapiens) | ACYCRIPACIAGERRYGTCIpYQGRLWA FCC | E. coli, S. aureus, S. epidermis | [2] | |
KYE28 | Human (Homo sapiens) | KYEITTIHNLFRKLTHRLFRRNFGYTLR | E. coli, P. aeruginosa, B. subtilis, S. aureus, C. albicans | [18] | |
HBD-2 | Human (Homo sapiens) | GIGDPVTCLKSGAICHPVFCPRRYKQIGT CGLPGTKCCKKP | P. aeruginosa, E. coli, C. albicans | [2] |
2.2. Anticancer Peptides
ACPs | Source | Sequence | Ref. |
---|---|---|---|
ZXR-2 | Fattail scorpion (Androctonus mauritanicus) | MNKKTLLVIFFITMLIVDEVNSFKIGGFIKKLWRSKLAKKLRAKGRELLKDYANRVINGGP EEEAAVPAERRR | [18] |
TAT | HIV | GRKKRRQRRRPQ | [18] |
AP | synthetic construct | CRKRLDRN | [18] |
Lactoferrin, partial | Domestic cattle (Bos taurus) | YTRVVWXAVGPEEQKKXQ | [18] |
ChMAP-28 | Domestic goat (Capra hircus) | GRFKRFRKKLKRLWHKVGPFVGPILHY | [18] |
LFchimera | synthetic construct | MDLIRKLLSKAQEKFGKNKSRKGLKKMRWQWRRCKFHHHHHHKDEL | [18] |
TH2-3 | synthetic construct | QSHLSLCRWCCNCCRSNKGC-NH2 | [18] |
HX-12C | synthetic construct | FFRKVLKLIRKIWR | [18] |
2.3. Anti-Inflammatory Peptides
AIP | Source | Sequence | Ref. |
---|---|---|---|
Kalata B1 | Synthetic construct | AGETCVGGTCNTPGATCSWPVCTRNGLPV | [18] |
FGL | Human (Homo sapiens) | EVYVVAENQQGKSKA | [18] |
MHP1 | Synthetic construct | LMVYVVKTSIKIPSSHNLMKGGSTKNWSGN | [18] |
Casein | Buffalo milk | YQEPVLGPVR | [29] |
Cliotide T28 | Asian pigeonwings (Clitoria ternatea L.) | GGSIPCGESCVFLPCFLPGCSCKSSVCYLN | [29] |
Labatidin | Coral plant (Jatropha multifida L.) | AGVWTVWGTI | [29] |
LR13 | Rice (Oryza sativa L.) | LLPPFHQASSLLR | [29] |
2.4. Immuno-Modulatory Peptides
IMP | Source | Sequence | Ref. |
---|---|---|---|
PEP1 | Rice (Oryza sativa L.) | GIAASPFLQSAAFQLR | [18] |
cliotide T32 | Asian pigeonwings (Clitoria ternatea) | GDLFKCGETCFGGTCYTPGCSCDYPICKNN | [18] |
TK17 | Rice (Oryza sativa L.) | TPMGGFLGALSSLSATK | [29] |
cycloviolacin O2 | Common violet (Viola odorata L.) | GIPCGESCVWIPCISSAIGCSCKSKVCYRN | [29] |
Viphi A | Chinese violet (Viola philippica) | GSIPCGESCVFIPCISSVIGCACKSKVCYKN | [29] |
Limyin | Lima bean (Phaseolus limensis) | KTCENLATYYRGPCF | [29] |
2.5. Regenerative Peptides
2.6. Dermal Peptides
2.7. Anti-Diabetic Peptides
AMP | Source | Sequence | Ref. | |
---|---|---|---|---|
Regenerative | GHK | Human plasma, saliva, and urine | GHK | [18] |
Thymosin β4 | Human (Homo sapiens) | MSDKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQEKQAGES | [18] | |
Bepecin | Synthetic | GEPPPGKPADDAGLV | [18] | |
Dermal | Lipospondin | Synthetic | Elaidyl-KFK-OH | [35] |
GEKG | Synthetic | GEKG | [35] | |
PKEK | Synthetic | PKEK | [35] | |
Anti-diabetic | CSP4 | Cumin seed (Cuminum cyminum) | RCMAFLLSDGAAAAQQLLPQYW | [36] |
KLPGF | Albumin | KLPGF | [36] | |
Vglycin | Pea seeds (Pisum sativum) | VSCNGVCSPFEMPPCGSSACRCIPYGLVVGNCRHPSG | [36] |
3. Polymer Micelles—Types, Properties, and Methods for Characterization
3.1. Types of Polymer Micelles
3.1.1. Natural Polymer Micelles
3.1.2. Synthetic Polymer Micelles
3.2. Key Properties of Polymer Micelles
Property | Description | References |
---|---|---|
Amphiphilic Nature | Self-assembly into a core–shell structure with a hydrophobic core and a hydrophilic shell | [52,58] |
Chemical Versatility | Tunable segments for peptide immobilization and maintaining biological activity | [58] |
Stimuli-Responsiveness | Controlled release in response to specific stimuli | [53,58,59] |
Protection from Degradation | Protects peptides from enzymatic degradation and environmental factors | [54,55,56] |
Cross-Linking for Stability | Enhances stability against environmental changes | [57] |
Improved Solubility | Enhances the solubility and bioavailability of peptides | [52] |
Targeted Delivery | Engineered for specific tissue or cell targeting | [59,60] |
Simple Preparation | Easy and scalable preparation methods | [56] |
Low toxicity | Made from safe, biocompatible, and biodegradable materials | [56] |
Aspect | Details | References |
---|---|---|
Biocompatibility | Good compatibility, biodegradability, and non-toxicity | [4] |
Stability | Stable under physiological conditions, controlled release | [12,13] |
Functionalization | Surface modification with CPPs and CTPs for targeting | [14] |
Applications | Targeted drug delivery, cancer therapeutics, and diagnostic applications | [7,12] |
Challenges | Environmental sensitivity and controlled release mechanisms | [57] |
3.3. Methods for Characterization of Polymer Micelles
4. Applications of Polymer Micelles as Carriers of Bioactive Peptides
4.1. Antibacterial and Antifungal Activity
4.2. Antiviral Activity
4.3. Antitumor Activity
4.4. Anti-Inflammatory Activity
4.5. Immunomodulatory Activity
4.6. Anti-Diabetic Activity
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hetta, H.F.; Sirag, N.; Alsharif, S.M.; Alharbi, A.A.; Alkindy, T.T.; Alkhamali, A.; Albalawi, A.S.; Ramadan, Y.N.; Rashed, Z.I.; Alanazi, F.E. Antimicrobial peptides: The game-changer in the epic battle against multidrug-resistant bacteria. Pharmaceuticals 2024, 17, 1555. [Google Scholar] [CrossRef] [PubMed]
- Satchanska, G.; Davidova, S.; Gergova, A. Diversity and Mechanisms of Action of Plant, Animal, and Human Antimicrobial Peptides. Antibiotics 2024, 13, 202. [Google Scholar] [CrossRef]
- Tajer, L.; Paillart, J.C.; Dib, H.; Sabatier, J.M.; Fajloun, Z.; Abi Khattar, Z. Molecular mechanisms of bacterial resistance to antimicrobial peptides in the modern era: An Updated Review. Microorganisms 2024, 12, 1259. [Google Scholar] [CrossRef]
- Atanase, L.I. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers 2021, 13, 477. [Google Scholar] [CrossRef] [PubMed]
- Stancheva, R.; Haladjova, E.; Petrova, M.; Ugrinova, I.; Dimitrov, I.; Rangelov, S. Polypiperazine-Based Micelles of Mixed Composition for Gene Delivery. Polymers 2024, 16, 3100. [Google Scholar] [CrossRef] [PubMed]
- Haladjova, E.; Rangelov, S. Application of Polymeric Micelles for Drug and Gene Delivery. Pharmaceutics 2024, 16, 646. [Google Scholar] [CrossRef]
- Wang, C.; Hong, T.; Cui, P.; Wang, J.; Xia, J. Antimicrobial Peptides towards Clinical Application: Delivery and Formulation. Adv. Drug Deliv. Rev. 2021, 175, 113818. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H. Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents. Pharmaceutics 2021, 13, 2108. [Google Scholar] [CrossRef]
- Farhoudi, L.; Maryam Hosseinikhah, S.; Vahdat-Lasemi, F.; Sukhorukov, V.N.; Kesharwani, P.; Sahebkar, A. Polymeric Micelles Paving the Way: Recent Breakthroughs in Camptothecin Delivery for Enhanced Chemotherapy. Int. J. Pharm. 2024, 659, 124292. [Google Scholar] [CrossRef]
- Yokoyama, M. Polymeric Micelle Drug Carriers for Tumor Targeting. In Polymeric Drug Delivery I; ACS Publications: Washington, DC, USA, 2006; pp. 27–39. [Google Scholar] [CrossRef]
- Deshmukh, A.S.; Chauhan, P.N.; Noolvi, M.N.; Chaturvedi, K.; Ganguly, K.; Shukla, S.S.; Nadagouda, M.N.; Aminabhavi, T.M. Polymeric Micelles: Basic Research to Clinical Practice. Int. J. Pharm. 2017, 532, 249–268. [Google Scholar] [CrossRef]
- Trent, A.; Marullo, R.; Lin, B.; Black, M.; Tirrell, M. Structural Properties of Soluble Peptide Amphiphile Micelles. Soft Matter 2011, 7, 9572. [Google Scholar] [CrossRef]
- Jiang, E.Y.; Desroches, S.T.; Mikos, A.G. Particle Carriers for Controlled Release of Peptides. J. Control. Release 2023, 360, 953–968. [Google Scholar] [CrossRef]
- Aschmann, D.; Knol, R.A.; Kros, A. Lipid-Based Nanoparticle Functionalization with Coiled-Coil Peptides for in Vitro and in Vivo Drug Delivery. Acc. Chem. Res. 2024, 57, 1098–1110. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-R.; Cao, Y.; Zhang, Q.; Tian, X.-B.; Dong, H.; Chen, L.; Luo, S.-Z. Self-Assembly Nanostructure Controlled Sustained Release, Activity, and Stability of Peptide Drugs. Int. J. Pharm. 2017, 528, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef]
- Mabrouk, D.M. Antimicrobial Peptides: Features, Applications and the Potential Use against COVID-19. Mol. Biol. Rep. 2022, 49, 10039–10050. [Google Scholar] [CrossRef]
- National Library of Medicine. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 10 April 2025).
- Haney, E.F.; Nathoo, S.; Vogel, H.J.; Prenner, E.J. Induction of Non-Lamellar Lipid Phases by Antimicrobial Peptides: A Potential Link to Mode of Action. Chem. Phys. Lipids 2009, 163, 82–93. [Google Scholar] [CrossRef]
- Campagna, S.; Saint, N.; Molle, G.; Aumelas, A. Structure and Mechanism of Action of the Antimicrobial Peptide Piscidin. Biochemistry 2007, 46, 1771–1778. [Google Scholar] [CrossRef]
- Le, C.-F.; Fang, C.-M.; Sekaran, S.D. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob. Agents Chemother. 2017, 61, e02340-16. [Google Scholar] [CrossRef]
- Mihaylova-Garnizova, R.; Davidova, S.; Hodzhev, Y.; Satchanska, G. Antimicrobial Peptides Derived from Bacteria: Classification, Sources, and Mechanism of Action against Multidrug-Resistant Bacteria. Int. J. Mol. Sci. 2024, 25, 10788. [Google Scholar] [CrossRef]
- Chinnadurai, R.K.; Khan, N.; Meghwanshi, G.K.; Ponne, S.; Althobiti, M.; Kumar, R. Current Research Status of Anti-Cancer Peptides: Mechanism of Action, Production, and Clinical Applications. Biomed. Pharmacother. 2023, 164, 114996. [Google Scholar] [CrossRef] [PubMed]
- Kedar, U.; Phutane, P.; Shidhaye, S.; Kadam, V. Advances in Polymeric Micelles for Drug Delivery and Tumor Targeting. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 714–729. [Google Scholar] [CrossRef]
- Qu, Y.; Chu, B.; Shi, K.; Peng, J.; Qian, Z. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery. J. Biomed. Nanotechnol. 2017, 13, 1598–1618. [Google Scholar] [CrossRef] [PubMed]
- Diwan, A.; Tatake, J.; Chakraborty, A. Therapeutic Uses of TheraCourTM Polymeric Nanomicelles against Cancer, Infectious Diseases, and More. In Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 473–506. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Li, H.; Zhang, J.; An, J.; Liu, X. Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022, 11, 2361. [Google Scholar] [CrossRef]
- La Manna, S.; Di Natale, C.; Florio, D.; Marasco, D. Peptides as Therapeutic Agents for Inflammatory-Related Diseases. Int. J. Mol. Sci. 2018, 19, 2714. [Google Scholar] [CrossRef] [PubMed]
- Pavlicevic, M.; Marmiroli, N.; Maestri, E. Immunomodulatory Peptides—A Promising Source for Novel Functional Food Production and Drug Discovery. Peptides 2022, 148, 170696. [Google Scholar] [CrossRef]
- Gokhale, A.S.; Satyanarayanajois, S. Peptides and Peptidomimetics as Immunomodulators. Immunotherapy 2014, 6, 755–774. [Google Scholar] [CrossRef]
- Cushman, C.J.; Ibrahim, A.F.; Smith, A.D.; Hernandez, E.J.; MacKay, B.; Zumwalt, M. Local and Systemic Peptide Therapies for Soft Tissue Regeneration: A Narrative Review. Yale J. Biol. Med. 2024, 97, 399–413. [Google Scholar] [CrossRef]
- Ash, M.; Zibitt, M.; Shauly, O.; Menon, A.; Losken, A.; Gould, D. The Innovative and Evolving Landscape of Topical Exosome and Peptide Therapies: A Systematic Review of the Available Literature. Aesthetic Surg. J. Open Forum 2024, 6, ojae017. [Google Scholar] [CrossRef]
- Waszkielewicz, A.M.; Mirosław, K. Peptides and Their Mechanisms of Action in the Skin. Appl. Sci. 2024, 14, 11495. [Google Scholar] [CrossRef]
- Elam, E.; Feng, J.; Lv, Y.-M.; Ni, Z.-J.; Sun, P.; Thakur, K.; Zhang, J.-G.; Ma, Y.-L.; Wei, Z.-J. Recent Advances on Bioactive Food Derived Anti-Diabetic Hydrolysates and Peptides from Natural Resources. J. Funct. Foods 2021, 86, 104674. [Google Scholar] [CrossRef]
- Pintea, A.; Manea, A.; Pintea, C.; Vlad, R.-A.; Bîrsan, M.; Antonoaea, P.; Rédai, E.M.; Ciurba, A. Peptides: Emerging Candidates for the Prevention and Treatment of Skin Senescence: A Review. Biomolecules 2025, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhao, J.; Yang, R.; Zhao, W. Bioactive Peptides with Antidiabetic Properties: A Review. Int. J. Food Sci. Technol. 2019, 54, 1909–1919. [Google Scholar] [CrossRef]
- Kataoka, K.; Harada, A.; Nagasaki, Y. Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance. Adv. Drug Deliv. Rev. 2012, 64, 37–48. [Google Scholar] [CrossRef]
- Pérez, S.E.; Haidar, Z.S. Polymeric Micelles: Précis for Past, Present and Future. In Polymeric Micelles for Drug Delivery; Woodhead Publishing: Cambridge, MA, USA; Kidlington, UK, 2022; pp. 3–14. [Google Scholar] [CrossRef]
- Shimada, T.; Sakamoto, N.; Motokawa, R.; Koizumi, S.; Tirrell, M. Self-Assembly Process of Peptide Amphiphile Worm-like Micelles. J. Phys. Chem. B 2011, 116, 240–243. [Google Scholar] [CrossRef]
- De, R.; Mahata, M.K.; Kim, K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. Adv. Sci. 2022, 9, 2105373. [Google Scholar] [CrossRef]
- Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block Copolymer Micelles in Nanomedicine Applications. Chem. Rev. 2018, 118, 6844–6892. [Google Scholar] [CrossRef]
- Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Nair, A.B.; YT, K. Progress in Polymeric Micelles for Drug Delivery Applications. Pharmaceutics 2022, 14, 1636. [Google Scholar] [CrossRef]
- Ramamurthy, R.; Mehta, C.H.; Nayak, U.Y. Structurally Nanoengineered Antimicrobial Peptide Polymers: Design, Synthesis and Biomedical Applications. World J. Microbiol. Biotechnol. 2021, 37, 139. [Google Scholar] [CrossRef]
- Perumal, S.; Atchudan, R.; Lee, W. A Review of Polymeric Micelles and Their Applications. Polymers 2022, 14, 2510. [Google Scholar] [CrossRef]
- Mahajan, D.; Suares, D.; Rachana, R.; Shetty, S. Types of Polymeric Micelles for Controlled Drug Release. In Polymeric Micelles: Principles, Perspectives and Practices; Singh, S.K., Gulati, M., Mutalik, S., Dhanasekaran, M., Dua, K., Eds.; Springer: Singapore, 2023; pp. 69–86. [Google Scholar] [CrossRef]
- Mahmud, A.; Xiong, X.-B.; Aliabadi, H.M.; Lavasanifar, A. Polymeric Micelles for Drug Targeting. J. Drug Target. 2007, 15, 553–584. [Google Scholar] [CrossRef]
- Negut, I.; Bita, B. Polymeric Micellar Systems—A Special Emphasis on “Smart” Drug Delivery. Pharmaceutics 2023, 15, 976. [Google Scholar] [CrossRef]
- Polat, O.K.; Polat, H.; Eren, M.C.; Polat, M.; Zeybek, N.; Koss, K.M. Intactness of Synthetic vs. Natural Polymeric Micelles in Physiological Conditions: A Comparative Review. ChemRxiv 2025, 1–45. [Google Scholar] [CrossRef]
- Figueiras, A.; Domingues, C.; Jarak, I.; Santos, A.I.; Parra, A.; Pais, A.; Alvarez-Lorenzo, C.; Concheiro, A.; Kabanov, A.; Cabral, H.; et al. New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022, 14, 1700. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.; Misba, L.; Khan, A.U. Nano-Therapeutics: A Revolution in Infection Control in Post Antibiotic Era. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2281–2301. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jiang, S.; Simon, J.; Paßlick, D.; Frey, M.-L.; Wagner, M.; Mailänder, V.; Crespy, D.; Landfester, K. Brush Conformation of Polyethylene Glycol Determines the Stealth Effect of Nanocarriers in the Low Protein Adsorption Regime. Nano Lett. 2021, 21, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Kenguva, G.; Rout, S.R.; Fatima, M.; Dubey, S.K.; Alexander, A.; Abourehab, M.A.S.; Kesharwani, P.; Dandela, R. Solubility Enhancement and Drug Release Mechanism of Polymeric Micelles. In Polymeric Micelles for Drug Delivery; Woodhead Publishing: Sawston, UK, 2022; pp. 41–64. [Google Scholar] [CrossRef]
- Castelletto, V.; McKendrick, J.E.; Hamley, I.W.; Olsson, U.; Cenker, C. PEGylated Amyloid Peptide Nanocontainer Delivery and Release System. Langmuir 2010, 26, 11624–11627. [Google Scholar] [CrossRef]
- Haddadzadegan, S.; Dorkoosh, F.; Bernkop-Schnürch, A. Oral Delivery of Therapeutic Peptides and Proteins: Technology Landscape of Lipid-Based Nanocarriers. Adv. Drug Deliv. Rev. 2022, 182, 114097. [Google Scholar] [CrossRef]
- Mehrdadi, S. Lipid-Based Nanoparticles as Oral Drug Delivery Systems: Overcoming Poor Gastrointestinal Absorption and Enhancing Bioavailability of Peptide and Protein Therapeutics. Adv. Pharm. Bull. 2024, 14, 48–66. [Google Scholar] [CrossRef]
- Esparza, K.; Jayawardena, D.; Onyuksel, H. Phospholipid Micelles for Peptide Drug Delivery. Methods Mol. Biol. 2019, 2000, 43–57. [Google Scholar] [CrossRef]
- Jaturanpinyo, M.; Harada, A.; Yuan, X.; Kataoka, K. Preparation of Bionanoreactor Based on Core−Shell Structured Polyion Complex Micelles Entrapping Trypsin in the Core Cross-Linked with Glutaraldehyde. Bioconjugate Chem. 2004, 15, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Trimaille, T.; Verrier, B. Copolymer Micelles: A Focus on Recent Advances for Stimulus-Responsive Delivery of Proteins and Peptides. Pharmaceutics 2023, 15, 2481. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh-Holagh, S.; Hashemi-Najafabadi, S.; Shaki, H.; Vasheghani-Farahani, E. Self-Assembled and PH-Sensitive Mixed Micelles as an Intracellular Doxorubicin Delivery System. J. Colloid Interface Sci. 2018, 523, 179–190. [Google Scholar] [CrossRef]
- Buddhiraju, H.S.; Yadav, D.N.; Dey, S.; Eswar, K.; Padmakumar, A.; Rengan, A.K. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS Appl. Bio Mater. 2023, 7, 4879–4893. [Google Scholar] [CrossRef]
- Matougui, N.; Groo, A.-C.; Umerska, A.; Cassisa, V.; Saulnier, P. A Comparison of Different Strategies for Antimicrobial Peptides Incorporation Onto/into Lipid Nanocapsules. Nanomedicine 2019, 14, 1647–1662. [Google Scholar] [CrossRef]
- Jafari, M.; Doustdar, F.; Mehrnejad, F. Molecular Self-Assembly Strategy for Encapsulation of an Amphipathic α-Helical Antimicrobial Peptide into the Different Polymeric and Copolymeric Nanoparticles. J. Chem. Inf. Model. 2018, 59, 550–563. [Google Scholar] [CrossRef] [PubMed]
- Mustafai, A.; Zubair, M.; Hussain, A.; Ullah, A. Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers 2023, 15, 836. [Google Scholar] [CrossRef]
- Wang, S.; Lin, Q.; Liang, Y. Recent Advances in the Application of Novel Carriers for Peptide Delivery. J. Agric. Food Res. 2024, 19, 101628. [Google Scholar] [CrossRef]
- Pola, R.; Vícha, M.; Trousil, J.; Grosmanová, E.; Pechar, M.; Rumlerová, A.; Studenovský, M.; Kučerová, E.; Ulbrich, P.; Vokatá, B.; et al. Polymer-Antimicrobial Peptide Constructs with Tailored Drug-Release Behavior. Pharmaceutics 2023, 15, 406. [Google Scholar] [CrossRef]
- Mori, T.; Yoshida, M.; Hazekawa, M.; Ishibashi, D.; Hatanaka, Y.; Kakehashi, R.; Nakagawa, M.; Nagao, T.; Yoshii, M.; Kojima, H.; et al. Targeted Delivery of Miconazole Employing LL37 Fragment Mutant Peptide CKR12-Poly (Lactic-Co-Glycolic) Acid Polymeric Micelles. Int. J. Mol. Sci. 2021, 22, 12056. [Google Scholar] [CrossRef]
- Dong, P.; Zhou, Y.; He, W.; Hua, D. A Strategy for Enhanced Antibacterial Activity against Staphylococcus Aureus by the Assembly of Alamethicin with a Thermo-Sensitive Polymeric Carrier. Chem. Commun. 2015, 52, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, F.; Wu, L.; Tian, Y.; Zhou, B.; Zhang, X.; Huang, R.; Yu, C.; He, G.; Yang, L. Novel Self-Assembled Micelles Based on Cholesterol-Modified Antimicrobial Peptide (DP7) for Safe and Effective Systemic Administration in Animal Models of Bacterial Infection. Antimicrob. Agents Chemother. 2018, 62, e00368-18. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.; Gama, M.; Martins, J.A. Development of a Dextrin–Vitamin D3 Micelle Nanocarrier for the Antimicrobial Peptide LLKKK18 as a Potential Therapeutic Agent for Bone Infections. J. Mater. Chem. B 2024, 12, 11464–11476. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Guk, T.; Jang, M.-K.; Park, S.-C.; Lee, J.R. Targeted Delivery of Amphotericin B-Loaded PLGA Micelles Displaying Lipopeptides to Drug-Resistant Candida-Infected Skin. Int. J. Biol. Macromol. 2024, 279, 135402. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wu, Y.; Zhou, M.; Song, G.; Liu, R. Advance and Designing Strategies in Polymeric Antifungal Agents Inspired by Membrane-Active Peptides. Chem. A Eur. J. 2022, 28, e202202226. [Google Scholar] [CrossRef]
- Shao, K.; Huang, R.; Li, J.; Han, L.; Ye, L.; Lou, J.; Jiang, C. Angiopep-2 Modified PE-PEG Based Polymeric Micelles for Amphotericin B Delivery Targeted to the Brain. J. Control. Release 2010, 147, 118–126. [Google Scholar] [CrossRef]
- Albayaty, Y.N.; Thomas, N.; Ramírez-García, P.D.; Davis, T.P.; Quinn, J.F.; Whittaker, M.R.; Prestidge, C.A. PH-Responsive Copolymer Micelles to Enhance Itraconazole Efficacy against Candida Albicans Biofilms. J. Mater. Chem. B 2020, 8, 1672–1681. [Google Scholar] [CrossRef]
- Schaefer, S.; Melodia, D.; Corrigan, N.; Lenardon, M.D.; Boyer, C. Effect of Star Topology versus Linear Polymers on Antifungal Activity and Mammalian Cell Toxicity. Macromol. Biosci. 2023, 24, 2300452. [Google Scholar] [CrossRef] [PubMed]
- Villamil, J.C.; Parra-Giraldo, C.M.; Pérez, L.D. Enhancing the Performance of PEG-b-PCL Copolymers as Precursors of Micellar Vehicles for Amphotericin B through Its Conjugation with Cholesterol. Colloids Surf. A Physicochem. Eng. Asp. 2019, 572, 79–87. [Google Scholar] [CrossRef]
- Wang, Y.; Ke, X.; Voo, Z.X.; Yap, S.S.L.; Yang, C.; Gao, S.; Liu, S.; Venkataraman, S.; Obuobi, S.A.O.; Khara, J.S.; et al. Biodegradable Functional Polycarbonate Micelles for Controlled Release of Amphotericin B. Acta Biomater. 2016, 46, 211–220. [Google Scholar] [CrossRef]
- Briceño Fernández, V.; Hermida Alava, K.; Bernabeu, E.; Fuentes, P.; Brito Devoto, T.; Höcht, C.; Chiappetta, D.A.; Cuestas, M.L.; Moretton, M.A. Highly Effective Inhalable Voriconazole-Loaded Nanomicelles for Fungal Infections in Cystic Fibrosis Patients: A Promising Therapeutic Strategy for Allergic Bronchopulmonary Aspergillosis. J. Drug Deliv. Sci. Technol. 2024, 100, 106126. [Google Scholar] [CrossRef]
- Essa, R.Z.; Wu, Y.-S.; Batumalaie, K.; Sekar, M.; Poh, C.-L. Antiviral Peptides against SARS-CoV-2: Therapeutic Targets, Mechanistic Antiviral Activity, and Efficient Delivery. Pharmacol. Rep. 2022, 74, 1166–1181. [Google Scholar] [CrossRef] [PubMed]
- Homaeigohar, S.; Liu, X.; Elbahri, M. Antiviral Polysaccharide and Antiviral Peptide Delivering Nanomaterials for Prevention and Treatment of SARS-CoV-2 Caused COVID-19 and Other Viral Diseases. J. Control. Release 2023, 358, 476–497. [Google Scholar] [CrossRef]
- Monroe, M.K.; Wang, H.; Anderson, C.F.; Jia, H.; Flexner, C.; Cui, H. Leveraging the Therapeutic, Biological, and Self-Assembling Potential of Peptides for the Treatment of Viral Infections. J. Control. Release 2022, 348, 1028–1049. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Yari Kalashgrani, M.; Zare, I.; Rahmanian, V.; Chiang, W.-H.; Mostafavi, E. Synthetic Polymers as Antibacterial and Antiviral Agents. ACS Symp. Ser. 2024, 1472, 1–46. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, S.; Zhang, Y.; Ding, Y.; Chong, H.; Xing, H.; Jiang, S.; Li, X.; Ma, L. Long-Acting HIV-1 Fusion Inhibitory Peptides and their Mechanisms of Action. Viruses 2019, 11, 811. [Google Scholar] [CrossRef] [PubMed]
- Giacon, N.; Lo Cascio, E.; Pennacchietti, V.; De Maio, F.; Santarelli, G.; Sibilia, D.; Tiberio, F.; Sanguinetti, M.; Lattanzi, W.; Toto, A.; et al. PDZ2-Conjugated-PLGA Nanoparticles Are Tiny Heroes in the Battle against SARS-CoV-2. Sci. Rep. 2024, 14, 13059. [Google Scholar] [CrossRef]
- Sweed, N.M.; Dawoud, M.H.S.; Aborehab, N.M.; Ezzat, S.M. An Approach for an Enhanced Anticancer Activity of Ferulic Acid-Loaded Polymeric Micelles via MicroRNA-221 Mediated Activation of TP53INP1 in Caco-2 Cell Line. Sci. Rep. 2024, 14, 2073. [Google Scholar] [CrossRef]
- Shuai, Q.; Cai, Y.; Zhao, G.; Sun, X. Cell-Penetrating Peptide Modified PEG-PLA Micelles for Efficient PTX Delivery. Int. J. Mol. Sci. 2020, 21, 1856. [Google Scholar] [CrossRef]
- Kim, K.S.; Hong, S.W.; Kim, H.; Cho, M.; Kim, S.; Hur, W.; Yun, S.H.; Yoon, S.K.; Hahn, S.K. Hyaluronate–Flt1 Peptide Conjugate/Epirubicin Micelles for Theranostic Application to Liver Cancers. RSC Adv. 2015, 5, 48615–48618. [Google Scholar] [CrossRef]
- Sun, Y.; Liang, Y.; Hao, N.; Fu, X.; He, B.; Han, S.; Cao, J.; Ma, Q.; Xu, W.; Sun, Y. Novel Polymeric Micelles as Enzyme-Sensitive Nuclear-Targeted Dual-Functional Drug Delivery Vehicles for Enhanced 9-Nitro-20(S)-Camptothecin Delivery and Antitumor Efficacy. Nanoscale 2020, 12, 5380–5396. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Kim, J.H.; Koo, H.; Bae, S.M.; Shin, H.; Kim, M.S.; Lee, B.H.; Park, R.W.; Kim, I.S.; Choi, K.; et al. Tumor-Targeting Peptide Conjugated pH-Responsive Micelles as a Potential Drug Carrier for Cancer Therapy. Bioconjugate Chem. 2010, 21, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Quader, S.; Liu, X.; Chen, Y.; Mi, P.; Chida, T.; Ishii, T.; Miura, Y.; Nishiyama, N.; Cabral, H.; Kataoka, K. cRGD peptide-installed epirubicin-loaded polymeric micelles for effective targeted therapy against brain tumors. J. Control. Release 2017, 258, 56–66. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Li, H.M.; Dong, Z.P.; Li, B.X.; Huo, M.; Lu, T.; Wang, Y. Peptide-Mediated Cationic Micelles Drug-Delivery System Applied on a VEGFR3-Overexpressed Tumor. J. Mater. Chem. B 2019, 7, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.; Poon, C.; Yoo, S.P.; Chung, E.J. Shape Effects of Peptide Amphiphile Micelles for Targeting Monocytes. Molecules 2018, 23, 2786. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Lindaman, B.D.; Leeper, C.N.; Schrum, A.G.; Ulery, B.D. Vasoactive Intestinal Peptide Amphiphile Micelle Chemical Structure and Hydrophobic Domain Influence Immunomodulatory Potentiation. ACS Appl. Bio Mater. 2022, 5, 1464–1475. [Google Scholar] [CrossRef]
- Marya; Khan, H.; Nabavi, S.M.; Habtemariam, S. Anti-Diabetic Potential of Peptides: Future Prospects as Therapeutic Agents. Life Sci. 2018, 193, 153–158. [Google Scholar] [CrossRef]
- Antony, P.; Vijayan, R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 9059. [Google Scholar] [CrossRef]
- Alai, M.S.; Lin, W.J.; Pingale, S.S. Application of Polymeric Nanoparticles and Micelles in Insulin Oral Delivery. J. Food Drug Anal. 2015, 23, 351–358. [Google Scholar] [CrossRef]
- Pippa, N.; Karayianni, M.; Pispas, S.; Demetzos, C. Complexation of Cationic-Neutral Block Polyelectrolyte with Insulin and in Vitro Release Studies. Int. J. Pharm. 2015, 491, 136–143. [Google Scholar] [CrossRef]
- Yang, H.; Sun, X.; Liu, G.; Ma, R.; Li, Z.; An, Y.; Shi, L. Glucose-Responsive Complex Micelles for Self-Regulated Release of Insulin under Physiological Conditions. Soft Matter 2013, 9, 8589. [Google Scholar] [CrossRef]
- Kamenova, K.; Haladjova, E.; Grancharov, G.; Kyulavska, M.; Tzankova, V.; Aluani, D.; Yoncheva, K.; Pispas, S.; Petrov, P. Co-Assembly of Block Copolymers as a Tool for Developing Novel Micellar Carriers of Insulin for Controlled Drug Delivery. Eur. Polym. J. 2018, 104, 1–9. [Google Scholar] [CrossRef]
Characterization Technique | Characteristic |
---|---|
Dynamic and static light scattering (DLS and SLS) | Size (hydrodynamic radius; radius of giration) Particle size distribution (dispersity) Aggregation number (Nagg) |
Atomic force microscopy (AFM), scanning and transmission electronic microscopy (SEM and TEM, cryo-TEM) | Morphology Size |
Fluorescence and surface tension | Critical micellar and association concentrations (CAC and CMC) |
Electrophoretic Light Scattering (ELS) | Surface charge (zeta potential) |
Differential scanning calorimetry (DSC), X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) | Critical micellization temperature (CMT) Degree of crystallinity; drug/polymer interactions |
UV spectroscopy, high-performance liquid chromatography (HPLC), liquid chromatography–mass spectroscopy analysis | Drug loading efficiency (DLE), drug encapsulation efficiency (DEE), release kinetics |
Small-angle X-ray and neutron scattering (SAXS) (SANS) | Size Structural properties |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, P.D.; Davidova, S.; Satchanska, G. Polymer Micelles as Nanocarriers of Bioactive Peptides. Polymers 2025, 17, 1174. https://doi.org/10.3390/polym17091174
Petrov PD, Davidova S, Satchanska G. Polymer Micelles as Nanocarriers of Bioactive Peptides. Polymers. 2025; 17(9):1174. https://doi.org/10.3390/polym17091174
Chicago/Turabian StylePetrov, Petar D., Slavena Davidova, and Galina Satchanska. 2025. "Polymer Micelles as Nanocarriers of Bioactive Peptides" Polymers 17, no. 9: 1174. https://doi.org/10.3390/polym17091174
APA StylePetrov, P. D., Davidova, S., & Satchanska, G. (2025). Polymer Micelles as Nanocarriers of Bioactive Peptides. Polymers, 17(9), 1174. https://doi.org/10.3390/polym17091174