Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Membrane Preparation [15]
2.3. Sulfonation
2.4. Fourier Transform Infrared (FTIR) and Scanning Electron Microscope( SEM)
2.5. Property Characterization
2.6. Dimensional Stability [17]
2.7. Tests in the Electrodialyser
3. Results and Discussion
3.1. Sulfonation
3.2. Membrane Morphology
DVB (wt%) | RSt-DVB/PVDF (−) | ||||||
---|---|---|---|---|---|---|---|
0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | |
1.0 | + | + | + | + | + | + | + |
2.0 | + | + | + | + | + | + | + |
3.0 | + | + | + | + | + | + | + |
4.0 | + | + | + | + | + | + | − |
5.0 | + | + | + | + | + | + | − |
6.0 | + | + | + | + | − | − | − |
7.0 | + | + | − | − | − | − | − |
8.0 | + | − | − | − | − | − | − |
3.3. Dimensional Stability
3.4. Physical and Electrochemical Properties
Membrane | Thickness (mm) | P(MPa) | Wc(wt%) | IEC(mmol/g) | r (Ω·cm2 ) | t+(-) |
---|---|---|---|---|---|---|
QHC a | 0.43 | 0.65 | 50.2 | 2.06 | 10.12 | 0.908 |
CAM b | 0.38 | 0.51 | 35.5 | 2.18 | 4.75 | 0.962 |
CMX c | 0.19 | 0.42 | 28.9 | 1.73 | 2.78 | 0.987 |
3.5. Desalination Effect
Membrane | QHC | CAM | CMX |
---|---|---|---|
Limiting conductivity (ms/cm) | 3.01 | 1.10 | 0.17 |
Desalination degree (%) | 91.3 | 96.8 | 99.5 |
Equilibrium time (min) | 28 | 16 | 21 |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hickner, M.A.; Ghassemi, H.; Kim, Y.S.; Einsla, B.R.; McGrath, J.E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 2004, 104, 4587–4612. [Google Scholar] [CrossRef]
- Kariduraganavar, M.Y.; Nagarale, R.K.; Kittur, A.A.; Kulkarni, S.S. Ion-exchange membranes: Preparative methods for electrodialysis and fuel cell applications. Desalination 2006, 197, 225–246. [Google Scholar] [CrossRef]
- Nagarale, R.K.; Gohil, G.S.; Shahi, V.K. Recent developments on ion-exchange membranes and electro-membrane processes. Adv. Colloid Interface Sci. 2006, 119, 97–130. [Google Scholar] [CrossRef]
- Xu, T.W. Ion exchange membranes: State of their development and perspective. J. Membr. Sci. 2005, 263, 1–29. [Google Scholar] [CrossRef]
- Mark, H.F.; Gaylord, N.G. Encyclopedia of Polymer Science and Technology; Wiley: New York, NY, USA, 1968. [Google Scholar]
- Schauer, J.; Brožová, L. Heterogeneous ion-exchange membranes based on sulfonated poly (1,4-phenylene sulfide) and linear polyethylene: preparation, oxidation stability, methanol permeability and electrochemical properties. J. Membr. Sci. 2005, 250, 151–157. [Google Scholar] [CrossRef]
- Vyas, P.V.; Shah, B.G.; Trivedi, G.S.; Ray, P.; Adhikary, S.K.; Rangarajan, R. Studies on heterogeneous cation-exchange membranes. React. Funct. Polym. 2000, 44, 101–110. [Google Scholar] [CrossRef]
- Schauer, J.; Llanos, J.; Zitka, J.; Hnat, J.; Bouzek, K. Cation-exchange membranes: Comparison of homopolymer, block copolymer, and heterogeneous membranes. J. Appl. Polym. Sci. 2012, 124, E66–E72. [Google Scholar] [CrossRef]
- Gasa, J.V.; Boob, S.; Weiss, R.A.; Shaw, M.T. Proton-exchange membranes composed of slightly sulfonated poly (ether ketone ketone) and highly sulfonated crosslinked polystyrene particles. J. Membr. Sci. 2006, 269, 177–186. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Madaeni, S.S.; Khodabakhshi, A.R. Preparation and characterization of ABS/HIPS heterogeneous cation exchange membranes with various blend ratios of polymer binder. J. Membr. Sci. 2010, 351, 178–188. [Google Scholar] [CrossRef]
- Lei, Y.L.; Luo, Y.J.; Jin, Y.; Mo, J.X.; Tang, F.Y. Method for Manufacturing High-Selective Permeability Heterogeneous ion Exchange Membrane. CN Patent 102,512,974 A, 14 December 2011. [Google Scholar]
- Hosseini, S.M.; Madaeni, S.S.; Khodabakhshi, A.R. Preparation and characterization of PC/SBR heterogeneous cation exchange membrane filled with carbon nano-tubes. J. Membr. Sci. 2010, 362, 550–559. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Madaeni, S.S.; Asiani, H.; Heidari, A.R. Preparation and electrochemical characterization of monovalent ion selective poly (vinyl chloride)-blend-poly (styrene-co-butadiene) heterogeneous cation exchange membrane coated with poly (methyl methacrylate). Sep. Sci. Technol. 2012, 47, 1443–1454. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Z.X.; Han, Q.Q.; Cao, S.A. Present situation and prospect of production and application of domestic ion exchange resin. Water Purif. Technol. 2012, 29, 11–26. (In Chinese) [Google Scholar]
- Lei, Y.L.; Mo, J.X.; Sun, X.C.; Chen, F.; Luo, Y.J.; Liu, F.; Shen, L.Q.; Ye, J.R. Proudction of Polystyrene and Polyvinylidene Fluoride Composite Cation Exchange Membranes. CN Patent 102,814,125A, 25 July 2012. [Google Scholar]
- Khodabakhshi, A.R.; Madaeni, S.S.; Hosseini, S.M. Effect of polymers blend ratio binder on electrochemical and morphological properties of PC/S-PVC-based heterogeneous cation-exchange membranes. J. Appl. Polym. Sci. 2011, 120, 644–656. [Google Scholar] [CrossRef]
- Tanaka, Y. Ion Exchange Membranes Fundamentals and Applications, Membrane Science and Technology Series; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Hosseini, S.M.; Madaeni, S.S.; Khodabakhshi, A.R. Preparation and characterization of ABS/HIPS heterogeneous anion exchange membrane filled with activated carbon. J. Appl. Polym. Sci. 2010, 118, 3371–3383. [Google Scholar] [CrossRef]
- Xu, T.W.; Yang, W.H. Fundamental studies of a new series of anion exchange membranes: Membrane preparation and characterization. J. Membr. Sci. 2001, 190, 159–166. [Google Scholar] [CrossRef]
- JeřáBek, K. Distribution and catalytic activity of sulfonic acid groups in organic ion exchangers. J. Polym. Sci. Polym. Chem. Editor. 1980, 18, 65–67. [Google Scholar] [CrossRef]
- Li, G.; Xi, S.P.; Liu, Z.X.; Huang, Y.E. FTIR and fluorescence emission spectra of sulfonated PS and its Ionomers. Spectrosc. Spect. Anal. 1999, 19, 289–292. (In Chinese) [Google Scholar]
- Zhou, R.; Wei, R.Q.; Liu, X.N.; Lin, X. Poly(styrene-co-divinylbenzene)resins sulfonated by chlorosulfonic acid. J. Chem. Ind. Eng 2010, 61, 1047–1051. (In Chinese) [Google Scholar]
- Zhang, W.R. Electrodialysis Engineering; Science Press: Beijing ,China, 1995. (In Chinese) [Google Scholar]
- Singare, P.U.; Lokhande, R.S.; Madyal, R.S. Thermal degradation studies of some strongly acidic cation exchange resins. Open J. Phys. Chem. 2011, 1, 45–54. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lei, Y.-l.; Luo, Y.-j.; Chen, F.; Mei, L.-h. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane. Polymers 2014, 6, 1914-1928. https://doi.org/10.3390/polym6071914
Lei Y-l, Luo Y-j, Chen F, Mei L-h. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane. Polymers. 2014; 6(7):1914-1928. https://doi.org/10.3390/polym6071914
Chicago/Turabian StyleLei, Yin-lin, Yun-jie Luo, Fei Chen, and Le-he Mei. 2014. "Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane" Polymers 6, no. 7: 1914-1928. https://doi.org/10.3390/polym6071914
APA StyleLei, Y. -l., Luo, Y. -j., Chen, F., & Mei, L. -h. (2014). Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane. Polymers, 6(7), 1914-1928. https://doi.org/10.3390/polym6071914