Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Polyaniline Nanotubes
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Structural and Morphology Analysis
3.2. Electrochemical Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Han, X.; Du, Y.; Zhang, B.; Xu, P. Heteroatom-doped carbon nanostructures derived from conjugated polymers for energy applications. Polymers 2016, 8, 366. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; He, Y.; Jiang, Y.; Lin, K. Nitrogen doped macroporous carbon as electrode materials for high capacity of supercapacitor. Polymers 2017, 9, 2. [Google Scholar] [CrossRef]
- Miller, J.R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Zhang, T.; Qiao, X.; Li, D.; Yang, J. Li3V2(PO4)3/C nanofiberscomposite as a high performance cathode materialfor lithium-ion battery. J. Power Sources 2013, 234, 197–200. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Zhang, T.; Yin, W.; Yang, J.; Wang, X. Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. Electrochim. Acta 2012, 83, 65–72. [Google Scholar] [CrossRef]
- Xu, J.; Wang, D.; Yuan, Y.; Wei, W.; Duan, L.; Wang, L.; Bao, H.; Xu, W. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org. Electron. 2015, 24, 153–159. [Google Scholar] [CrossRef]
- Su, N. Polyaniline-doped spherical polyelectrolyte brush nanocomposites with enhanced electrical conductivity, thermal stability, and solubility property. Polymers 2015, 7, 1599–1616. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, X.; Liu, D.; Guo, D.; Zhang, J. Effect of microwave treatment of graphite on the electrical conductivity and electrochemical properties of polyaniline/graphene oxide composites. Polymers 2016, 8, 399. [Google Scholar] [CrossRef]
- Dubal, D.P.; Lee, S.H.; Kim, J.G.; Kim, W.B.; Lokhande, C.D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J. Mater. Chem. 2012, 22, 3044–3052. [Google Scholar] [CrossRef]
- Chen, W.; Rakhi, R.B.; Alshareef, H.N. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors. J. Mater. Chem. A 2013, 1, 3315–3324. [Google Scholar] [CrossRef]
- Park, H.W.; Kim, T.; Huh, J.; Kang, M.; Lee, J.E.; Yoon, H. Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics. ACS Nano 2012, 6, 7624–7633. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Zhou, J.; Li, Z.; Li, S.; Si, W.; Zhuo, S. Hierarchical porous and N-doped carbon nanotubes derived from polyaniline for electrode materials in supercapacitors. J. Mater. Chem. A 2014, 2, 12545–12551. [Google Scholar] [CrossRef]
- Wang, K.; Huang, J.; Wei, Z. Conducting polyaniline nanowire arrays for high performance supercapacitors. J. Phys. Chem. C 2010, 114, 8062–8067. [Google Scholar] [CrossRef]
- Guan, H.; Fan, L.Z.; Zhang, H.; Qu, X. Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors. Electrochim. Acta 2010, 56, 964–968. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Wang, G. Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors. J. Power Sources 2015, 294, 16–21. [Google Scholar] [CrossRef]
- Dhawale, D.S.; Vinu, A.; Lokhande, C.D. Stable nanostructured polyaniline electrode for supercapacitor application. Electrochim. Acta 2011, 56, 9482–9487. [Google Scholar] [CrossRef]
- Ran, F.; Tan, Y.T.; Liu, J.; Zhao, L.; Kong, L.B.; Luo, Y.C.; Kang, L. Preparation of hierarchical polyaniline nanotubes based on self-assembly and its electrochemical capacitance. Polym. Adv. Technol. 2012, 23, 1297–1301. [Google Scholar] [CrossRef]
- Rana, U.; Chakrabarti, K.; Malik, S. Benzene tetracarboxylic acid doped polyaniline nanostructures: Morphological, spectroscopic and electrical characterization. J. Mater. Chem. 2012, 22, 15665–15671. [Google Scholar] [CrossRef]
- Chang, C.M.; Weng, C.J.; Chien, C.M.; Chuang, T.L.; Lee, T.Y.; Yeh, J.M.; Wei, Y. Polyaniline/carbon nanotube nanocomposite electrodes with biomimetic hierarchical structure for supercapacitors. J. Mater. Chem. A 2013, 1, 14719–14728. [Google Scholar] [CrossRef]
- Wang, Z.L.; Guo, R.; Li, G.R.; Lu, H.L.; Liu, Z.Q.; Xiao, F.M.; Zhang, M.Q.; Tong, Y.X. Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices. J. Mater. Chem. 2012, 22, 2401–2404. [Google Scholar] [CrossRef]
- Wu, W.; Pan, D.; Li, Y.; Zhao, G.; Jing, L.; Chen, S. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: A mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochim. Acta 2015, 152, 126–134. [Google Scholar] [CrossRef]
- Lang, X.Y.; Hirata, A.; Fujita, T.; Chen, M.W. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Kuila, T.; Mishra, A.K.; Rajasekar, R.; Kimc, N.H.; Lee, J.H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 767–784. [Google Scholar] [CrossRef]
- Huang, Y.F.; Lin, C.W. Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer 2009, 50, 775–782. [Google Scholar] [CrossRef]
- Sk, M.M.; Yue, C.Y. Synthesis of polyaniline nanotubes using the self-assembly behavior of vitamin C: A mechanistic study and application in electrochemical supercapacitors. J. Mater. Chem. A 2014, 2, 2830–2838. [Google Scholar] [CrossRef]
- Zhou, C.Q.; Han, J.; Guo, R. Synthesis of polyaniline hierarchical structures in a dilute sds/hcl solution: Nanostructure-covered rectangular tubes. Macromolecules 2009, 42, 1252–1257. [Google Scholar] [CrossRef]
- Han, J.; Song, G.P.; Guo, R. Nanostructure-based leaf-like polyaniline in the presence of an amphiphilic triblock copolymer. Adv. Mater. 2007, 19, 2993–2999. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Wan, M.X.; Wei, Y. Highly crystalline polyaniline nanostructures doped with dicarboxylic acids. Adv. Funct. Mater. 2006, 16, 1100–1104. [Google Scholar] [CrossRef]
- Xu, J.; Wang, K.; Wu, S.Z.; Han, B.H.; Wei, Z. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 2010, 4, 5019–5026. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Onishi, K.; Locklin, J.; Caruso, F.; Advincula, R.C. Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells. Langmuir 2003, 19, 8550–8554. [Google Scholar] [CrossRef]
- Wang, D.W.; Li, F.; Zhao, J.; Ren, W.; Chen, Z.G.; Tan, J.; Wu, Z.S.; Gentle, I.; Lu, G.Q.; Cheng, H.M. Fabrication of graphene/polyaniline composite paper viain situanodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Qin, Z.; Zhao, J.; Zhang, Y.; Zhou, Z.; Lu, Y. Controlled synthesis, core-shell structures and electrochemical properties of polyaniline/polypyrrole composite nanofibers. J. Mater. Chem. A 2014, 2, 2129–2135. [Google Scholar] [CrossRef]
- Wang, X.; Liu, D.; Deng, J.; Duan, X.; Guo, J.; Liu, P. Improving cyclic stability of polyaniline by thermal crosslinking as electrode material for supercapacitors. RSC Adv. 2015, 5, 78545–78552. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, C.; Chen, G.; Liu, Z.; Ma, M.; Xie, Q.; Zheng, N.; Yao, S. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 2013, 5, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zhang, C.; Tjiu, W.W.; Pramoda, K.P.; He, C.; Liu, T. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 3382–3391. [Google Scholar] [CrossRef] [PubMed]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.Q.; Zhai, Y.; Liu, H.; Xia, Y.; Tu, B.; Zhao, D.; Liu, X.X. Syntheses of polyaniline/ordered mesoporous carbon composites with interpenetrating framework and their electrochemical capacitive performance in alkaline solution. J. Power Sources 2011, 196, 1608–1614. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.L.; Zhao, X.; Wu, J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 2010, 22, 1392–1401. [Google Scholar] [CrossRef]
- Kotal, M.; Thakur, A.K.; Bhowmick, A.K. Polyaniline-carbon nanofiber composite by a chemical grafting approach and its supercapacitor application. ACS Appl. Mater. Interfaces 2013, 5, 8374–8386. [Google Scholar] [CrossRef] [PubMed]
Sample | PANI | PANI-0.25 | PANI-1 | PANI-2 | PANI-3 | PANI-4 |
---|---|---|---|---|---|---|
Specific capacitance (F/g) | 263 | 276 | 292 | 322 | 405 | 278 |
Current Density (A/g) | 0.2 | 0.5 | 0.7 | 1.0 |
---|---|---|---|---|
Specific capacitance (F/g) | 405 | 313 | 295 | 263 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, S.; Chen, W.; Yang, Z.; Liu, Z.; Fan, X.; Fang, D. Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template. Polymers 2017, 9, 510. https://doi.org/10.3390/polym9100510
Pang S, Chen W, Yang Z, Liu Z, Fan X, Fang D. Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template. Polymers. 2017; 9(10):510. https://doi.org/10.3390/polym9100510
Chicago/Turabian StylePang, Shuhua, Weiliang Chen, Zhewei Yang, Zheng Liu, Xin Fan, and Dong Fang. 2017. "Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template" Polymers 9, no. 10: 510. https://doi.org/10.3390/polym9100510
APA StylePang, S., Chen, W., Yang, Z., Liu, Z., Fan, X., & Fang, D. (2017). Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template. Polymers, 9(10), 510. https://doi.org/10.3390/polym9100510