Environmentally-Friendly Synthesis of Carbonate-Type Macrodiols and Preparation of Transparent Self-Healable Thermoplastic Polyurethanes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of OH Titration Value
2.3. Brookfield Viscosity, 1H NMR, GPC, ATR-FTIR and Transmittance
2.4. DSC and TGA
2.5. Tensile and Self-Healing Tests
2.6. Synthesis of Carbonate-Type Macrodiols by Base-Catalyzed Polycondensation of DMC and Co-Diols
2.7. Synthesis of TPUs by a Solution Pre-Polymer Method
3. Results and Discussion
3.1. Carbonate-Type Macrodiols by Base-Catalyzed Polycondensation of DMC and Co-Diols
3.2. Preparation of TPUs Containing a Carbonate-Type Soft Segment
3.3. Transparency of TPUs Related to Microphase Separation
3.4. Thermal and Mechanical Properties
3.5. Self-Healing Properties
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Engels, H.-W.; Pirkl, H.-G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.K.; Hillmyer, M.A. Polymers from renewable resources: A perspective for a special issue of polymer reviews. Polym. Rev. 2008, 48, 1–10. [Google Scholar] [CrossRef]
- Datta, J.; Kasprzyk, P. Thermoplastic polyurethanes derived from petrochemical or renewable resources: A comprehensive review. Polym. Eng. Sci. 2017. [Google Scholar] [CrossRef]
- Pokharkar, V.; Sivaram, S. Poly(alkylene carbonate)s by the carbonate interchange reaction of aliphatic diols with dimethyl carbonate: Synthesis and characterization. Polymer 1995, 36, 4851–4854. [Google Scholar] [CrossRef]
- Tanaka, H.; Kunimura, M. Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures. Polym. Eng. Sci. 2002, 42, 1333–1349. [Google Scholar] [CrossRef]
- Foy, E.; Farrell, J.B.; Higginbotham, C.L. Synthesis of linear aliphatic polycarbonate macroglycols using dimethylcarbonate. J. Appl. Polym. Sci. 2009, 111, 217–227. [Google Scholar] [CrossRef]
- Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Oleic and undecylenic acids as renewable feedstocks in the synthesis of polyols and polyurethanes. Polymers 2010, 2, 440–453. [Google Scholar] [CrossRef]
- Nohra, B.; Candy, L.; Blanco, J.-F.; Guerin, C.; Raoul, Y.; Mouloungui, Z. From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 2013, 46, 3771–3792. [Google Scholar] [CrossRef] [Green Version]
- Langanke, J.; Wolf, A.; Hofmann, J.; Bohm, K.; Subhani, M.A.; Muller, T.E.; Leitner, W.; Gurtler, C. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 2014, 16, 1865–1870. [Google Scholar] [CrossRef]
- Unverferth, M.; Kreye, O.; Prohammer, A.; Meier, M.A.R. Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols. Macromol. Rapid Commun. 2013, 34, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Deng, Y. Green polyurethane from lignin and soybean oil through non-isocyanate reactions. Eur. Polym. J. 2015, 63, 67–73. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Zhang, L.; Tan, T.; Fong, H. Nonisocyanate biobased poly(ester urethanes) with tunable properties synthesized via an environment-friendly route. ACS Sustain. Chem. Eng. 2016, 4, 2762–2770. [Google Scholar] [CrossRef]
- Rokicki, G.; Parzuchowski, P.G.; Mazurek, M. Non-isocyanate polyurethanes: Synthesis, properties, and applications. Polym. Adv. Technol. 2015, 26, 707–761. [Google Scholar] [CrossRef]
- Sardon, H.; Pascual, A.; Mecerreyes, D.; Taton, D.; Cramail, H.; Hedrick, J.L. Synthesis of polyurethanes using organocatalysis: A perspective. Macromolecules 2015, 48, 3153–3165. [Google Scholar] [CrossRef]
- Haniffa, M.A.C.M.; Ching, Y.C.; Chuah, C.H.; Kuan, Y.C.; Liu, D.-S.; Liou, N.-S. Synthesis, characterization and the solvent effects on interfacial phenomena of jatropha curcas oil based non-isocyanate polyurethane. Polymers 2017, 9, 162. [Google Scholar] [CrossRef]
- Sardon, H.; Engler, A.C.; Chan, J.M.W.; Coady, D.J.; O’Brien, J.M.; Mecerreyes, D.; Yang, Y.Y.; Hedrick, J.L. Homogeneous isocyanate- and catalyst-free synthesis of polyurethanes in aqueous media. Green Chem. 2013, 15, 1121–1126. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y.; Fang, C.; Li, S.; Cheng, Y.; Lei, W.; Meng, X. Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: A review. J. Mater. Sci. Technol. 2015, 31, 708–722. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, Y.; Kang, M.; Wang, J.; Wang, X.; Feng, Y.; Yin, N.; Li, Q. The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes. Prog. Org. Coat. 2015, 82, 46–56. [Google Scholar] [CrossRef]
- Kim, S.-M.; Jeon, H.; Shin, S.-H.; Park, S.-A.; Jegal, J.; Hwang, S.Y.; Oh, D.X.; Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2017. [Google Scholar] [CrossRef] [PubMed]
- Feula, A.; Pethybridge, A.; Giannakopoulos, I.; Tang, X.; Chippindale, A.; Siviour, C.R.; Buckley, C.P.; Hamley, I.W.; Hayes, W. A thermoreversible supramolecular polyurethane with excellent healing ability at 45 °C. Macromolecules 2015, 48, 6132–6141. [Google Scholar] [CrossRef]
- Tian, Q.; Takács, E.; Krakovský, I.; Horváth, Z.; Rosta, L.; Almásy, L. Study on the microstructure of polyester polyurethane irradiated in air and water. Polymers 2015, 7, 1755–1766. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Wei, R.; Oeser, T.; Dedavid e Silva, L.; Breite, D.; Schulze, A.; Zimmermann, W. Degradation of polyester polyurethane by bacterial polyester hydrolases. Polymers 2017, 9, 65. [Google Scholar] [CrossRef]
- Gunatillake, P.A.; Meijs, G.F.; McCarthy, S.J.; Adhikari, R.; Sherriff, N. Synthesis and characterization of a series of poly(alkylene carbonate) macrodiols and the effect of their structure on the properties of polyurethanes. J. Appl. Polym. Sci. 1998, 69, 1621–1633. [Google Scholar] [CrossRef]
- Kojio, K.; Nonaka, Y.; Masubuchi, T.; Furukawa, M. Effect of the composition ratio of copolymerized poly(carbonate) glycol on the microphase-separated structures and mechanical properties of polyurethane elastomers. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 4448–4458. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, M.; Ti, Y.; Wang, B. Study on structure and performance of polycarbonate urethane synthesized via different copolymerization methods. J. Mater. Sci. 2007, 42, 5508–5515. [Google Scholar] [CrossRef]
- Eceiza, A.; Larrañaga, M.; de la Caba, K.; Kortaberria, G.; Marieta, C.; Corcuera, M.A.; Mondragon, I. Structure-property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols. J. Appl. Polym. Sci. 2008, 108, 3092–3103. [Google Scholar] [CrossRef]
- Eceiza, A.; Martin, M.D.; de la Caba, K.; Kortaberria, G.; Gabilondo, N.; Corcuera, M.A.; Mondragon, I. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties. Polym. Eng. Sci. 2008, 48, 297–306. [Google Scholar] [CrossRef]
- Kojio, K.; Furukawa, M.; Motokucho, S.; Shimada, M.; Sakai, M. Structure-mechanical property relationships for poly(carbonate urethane) elastomers with novel soft segments. Macromolecules 2009, 42, 8322–8327. [Google Scholar] [CrossRef]
- Kultys, A.; Rogulska, M.; Pikus, S.; Skrzypiec, K. The synthesis and characterization of new thermoplastic poly(carbonate-urethane) elastomers derived from hdi and aliphatic–aromatic chain extenders. Eur. Polym. J. 2009, 45, 2629–2643. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, Y.; Zhang, Z.; Ma, D.; Wang, X. Synthesis of polycarbonate urethane elastomers and effects of the chemical structures on their thermal, mechanical and biocompatibility properties. Heliyon 2016, 2, e00125. [Google Scholar] [CrossRef] [PubMed]
- Vogels, R.R.M.; Lambertz, A.; Schuster, P.; Jockenhoevel, S.; Bouvy, N.D.; Disselhorst-Klug, C.; Neumann, U.P.; Klinge, U.; Klink, C.D. Biocompatibility and biomechanical analysis of elastic tpu threads as new suture material. J. Biomed. Mater. Res. Part B 2017, 105, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-K.; Tsai, H.-B.; Tsai, R.-S.; Chen, P.H. Preparation and properties of transparent thermoplastic segmented polyurethanes derived from different polyols. Polym. Eng. Sci. 2007, 47, 695–701. [Google Scholar] [CrossRef]
- Rogulska, M.; Kultys, A.; Pikus, S. The effect of chain extender structure on the properties of new thermoplastic poly(carbonate–urethane)s derived from mdi. J. Therm. Anal. Calorim. 2017, 127, 2325–2339. [Google Scholar] [CrossRef]
- Kull, K.L.; Bass, R.W.; Craft, G.; Julien, T.; Marangon, E.; Marrouat, C.; Harmon, J.P. Synthesis and characterization of an ultra-soft poly(carbonate urethane). Eur. Polym. J. 2015, 71, 510–522. [Google Scholar] [CrossRef]
- Qi, X.; Yang, G.; Jing, M.; Fu, Q.; Chiu, F.-C. Microfibrillated cellulose-reinforced bio-based poly(propylene carbonate) with dual shape memory and self-healing properties. J. Mater. Chem. A 2014, 2, 20393–20401. [Google Scholar] [CrossRef]
- Brunelle, D.J. Polycarbonates. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem. 2003, 5, 497–507. [Google Scholar] [CrossRef]
- Park, S.-A.; Choi, J.; Ju, S.; Jegal, J.; Lee, K.M.; Hwang, S.Y.; Oh, D.X.; Park, J. Copolycarbonates of bio-based rigid isosorbide and flexible 1,4-cyclohexanedimethanol: Merits over bisphenol-a based polycarbonates. Polymer 2017, 116, 153–159. [Google Scholar] [CrossRef]
- Hofacker, S.; Gurtler, C.; Tillack, J. Aliphatic Oligocarbonate Polyols Prepared in the Presence of a Catalyst and a Process for Preparing the Same. U.S. Patent 6894182 B2, 18 November 2002. [Google Scholar]
- Shaikh, A.G.; Sivaram, S.; Puglisi, C.; Samperi, F.; Montaudo, G. Poly(arylenecarbonate)s oligomers by carbonate interchange reaction of dimethyl carbonate with bisphenol-a. Polym. Bull. 1994, 32, 427–432. [Google Scholar] [CrossRef]
- Haba, O.; Itakura, I.; Ueda, M.; Kuze, S. Synthesis of polycarbonate from dimethyl carbonate and bisphenol-a through a non-phosgene process. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 2087–2093. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, X.; Li, C.; Xiao, Y.; Zhang, D.; Guan, G. High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: Synthesis and characterization. Polym. Int. 2011, 60, 1060–1067. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, W.; Li, C.; Guan, G.; Zhang, D.; Xiao, Y.; Zheng, L. A non-phosgene process to homopolycarbonate and copolycarbonates of isosorbide using dimethyl carbonate: Synthesis, characterization, and properties. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 1387–1397. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, J.Y.; Lee, J.J.; Jang, Y.; Varghese, J.K.; Lee, B.Y. Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules 2013, 46, 3301–3308. [Google Scholar] [CrossRef]
- Lee, J.J.; Jeon, J.Y.; Park, J.H.; Jang, Y.; Hwang, E.Y.; Lee, B.Y. Preparation of high-molecular-weight poly(1,4-butylene carbonate-co-terephthalate) and its thermal properties. RSC Adv. 2013, 3, 25823–25829. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Hwang, E.Y.; Eo, S.C.; Lee, B.Y. Preparation of macrodiols and polyols by chopping high-molecular-weight aliphatic polycarbonates. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 1570–1580. [Google Scholar] [CrossRef]
- Park, G.H.; Lee, S.; Park, S.H.; Eo, S.C.; Kim, J.G.; Lee, B.Y. Chopping high-molecular weight poly(1,4-butylene carbonate-co-aromatic ester)s for macropolyol synthesis. J. Appl. Polym. Sci. 2016, 133, 43754. [Google Scholar] [CrossRef]
- Gedde, U.W. The glassy amorphous state. In Polymer Physics; Springer: New York, NY, USA, 2013; pp. 77–98. ISBN 978-0-412-62640-1. [Google Scholar]
- Rahman, M.S.; Yoo, H.-S.; Changez, M.; Lee, J.-S. Living anionic polymerization of isocyanate containing a reactive carbamate group. Macromolecules 2009, 42, 3927–3932. [Google Scholar] [CrossRef]
- Park, J.; Seo, M.; Choi, H.; Kim, S.Y. Synthesis and physical gelation induced by self-assembly of well-defined poly(arylene ether sulfone)s with various numbers of arms. Polym. Chem. 2011, 2, 1174–1179. [Google Scholar] [CrossRef]
- Chen, W.-P.; Frisch, K.C.; Kenney, D.J.; Wong, S.-W.; Moore, R. Effect of soft segment molecular weight and 3-methyl side group on microstructural separation in polyurethane elastomers. J. Macromol. Sci. Part A 1992, 29, 567–587. [Google Scholar] [CrossRef]
- Kojio, K.; Nakamura, S.; Furukawa, M. Effect of side groups of polymer glycol on microphase-separated structure and mechanical properties of polyurethane elastomers. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 2054–2063. [Google Scholar] [CrossRef]
- Van Krevelen, D.W.; te Nijenhuis, K. Properties of Polymers, 4th ed.; Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 9780080548197. [Google Scholar]
- Madorsicy, S.L.; Straus, S. Thermal degradation of polyethylene oxide and polypropylene oxide. J. Polym. Sci. 1959, 36, 183–194. [Google Scholar] [CrossRef]
- Wang, T.-L.; Hsieh, T.-H. Effect of polyol structure and molecular weight on the thermal stability of segmented poly(urethaneureas). Polym. Degrad. Stab. 1997, 55, 95–102. [Google Scholar] [CrossRef]
- Herrera, M.; Matuschek, G.; Kettrup, A. Thermal degradation of thermoplastic polyurethane elastomers (tpu) based on mdi. Polym. Degrad. Stab. 2002, 78, 323–331. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Webster, D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
- Yoon, J.A.; Kamada, J.; Koynov, K.; Mohin, J.; Nicolaÿ, R.; Zhang, Y.; Balazs, A.C.; Kowalewski, T.; Matyjaszewski, K. Self-Healing Polymer Films Based on Thiol–Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. Macromolecules 2012, 45, 142–149. [Google Scholar] [CrossRef]
- An, S.Y.; Noh, S.M.; Nam, J.H.; Oh, J.K. Dual Sulfide–Disulfide Crosslinked Networks with Rapid and Room Temperature Self-Healability. Macromol. Rapid Commun. 2015, 36, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
Sample | Feed Ratio 1 (HD:BD:PD) | [DMC]/[co-diols] 2 | Mn (NMR) 3 (g mol−1) | OH Value (mg KOH g−1) | Mn (titr) 4 (g mol−1) | State 5 | Viscosity 6 (cP) |
---|---|---|---|---|---|---|---|
M1-1K | 1:0:0 | 1.10 | 1180 | 104 | 1080 | Wax | - |
M2-1K | 1:1:0 | 1.15 | 940 | 122 | 920 | Clear oil | 3700 |
M3-1K | 2:2:1 | 1.15 | 1010 | 113 | 990 | Clear oil | 6800 |
M3-1.5K | 2:2:1 | 1.20 | 1720 | 70 | 1610 | Clear oil | 12,200 |
PTMG-1K | - | - | 1000 | 117 | 960 | Wax | - |
Sample | Mw 3 (g mol−1) | PDI | Tg 4 (°C) | Tm2 (°C) | △Hm2 (J g−1) | Tm3 (°C) | △Hm3 (J g−1) | Td5 5 (°C) | Tmax (°C) |
---|---|---|---|---|---|---|---|---|---|
M1-1K-TPU 1 | 153,400 | 2.29 | −12 | 77 | 1.6 | 123 | 3.4 | 314 | 368 |
M2-1K-TPU | 152,300 | 2.64 | 0.7 | 77 | 2.5 | 127 | 4.2 | 306 | 346 |
M3-1K-TPU | 73,600 | 2.79 | −2.9 | 77 | 1.8 | 117 | 3.9 | 301 | 338 |
M3-1.5K-TPU 2 | 121,400 | 2.20 | −16 | 79 | 0.5 | 132 | 6.4 | 299 | 342 |
PTMG-1K-TPU | 95,400 | 2.68 | −51 | 79 | 1.6 | 144 | 5.2 | 306 | 346, 423 |
Sample | Young’s Modulus 1 (MPa) | Modulus at 100% Strain (MPa) | UTS (MPa) | Elongation at break (%) | Toughness 2 (MJ m−3) |
---|---|---|---|---|---|
M1-1K-TPU | 14 (±0.3) | 6.9 (±0.1) | 56 (±4.2) | 580 (±40) | 140 (±20) |
M2-1K-TPU | 16 (±2.3) | 14 (±1.4) | 65 (±5.0) | 440 (±8) | 140 (±8) |
M3-1K-TPU | 12 (±0.5) | 9.1 (±0.01) | 46 (±2.4) | 470 (±10) | 100 (±2) |
M3-1.5K-TPU | 11 (±0.3) | 5.7 (±0.02) | 44 (±2.1) | 680 (±18) | 130 (±9) |
PTMG-1K-TPU | 6.5 (±1.3) | 3.3 (±0.2) | 9.9 (±2.9) | 650 (±140) | 40 (±17) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-M.; Park, S.-A.; Hwang, S.Y.; Kim, E.S.; Jegal, J.; Im, C.; Jeon, H.; Oh, D.X.; Park, J. Environmentally-Friendly Synthesis of Carbonate-Type Macrodiols and Preparation of Transparent Self-Healable Thermoplastic Polyurethanes. Polymers 2017, 9, 663. https://doi.org/10.3390/polym9120663
Kim S-M, Park S-A, Hwang SY, Kim ES, Jegal J, Im C, Jeon H, Oh DX, Park J. Environmentally-Friendly Synthesis of Carbonate-Type Macrodiols and Preparation of Transparent Self-Healable Thermoplastic Polyurethanes. Polymers. 2017; 9(12):663. https://doi.org/10.3390/polym9120663
Chicago/Turabian StyleKim, Seon-Mi, Seul-A Park, Sung Yeon Hwang, Eun Seon Kim, Jonggeon Jegal, Changgyu Im, Hyeonyeol Jeon, Dongyeop X. Oh, and Jeyoung Park. 2017. "Environmentally-Friendly Synthesis of Carbonate-Type Macrodiols and Preparation of Transparent Self-Healable Thermoplastic Polyurethanes" Polymers 9, no. 12: 663. https://doi.org/10.3390/polym9120663
APA StyleKim, S.-M., Park, S.-A., Hwang, S. Y., Kim, E. S., Jegal, J., Im, C., Jeon, H., Oh, D. X., & Park, J. (2017). Environmentally-Friendly Synthesis of Carbonate-Type Macrodiols and Preparation of Transparent Self-Healable Thermoplastic Polyurethanes. Polymers, 9(12), 663. https://doi.org/10.3390/polym9120663