Needleless Melt-Electrospinning of Biodegradable Poly(Lactic Acid) Ultrafine Fibers for the Removal of Oil from Water
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Melt Differential Electrospinning Eechnique
2.3. Characterization
2.4. Oil Sorption Test
2.5. Test of Reusability and Recoverability
3. Results and Discussion
3.1. Morphology Analysis
3.2. Contact Angle Analysis
3.3. DSC and XRD Investigations
3.4. Oil Sorption Test in Pure Oil System
3.4.1. Oil Sorption Experiments
3.4.2. Reusability and Recoverability
3.5. Removal of Oil from Oil/Water Mixture System
3.5.1. Oil Sorption Kinetics
3.5.2. Oil Sorption Thermodynamics
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wei, Q.; Mather, R.; Fotheringham, A.; Yang, R. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar. Pollut. Bull. 2003, 46, 780–783. [Google Scholar] [CrossRef]
- Adebajo, M.O.; Frost, R.L.; Kloprogge, J.T.; Carmody, O.; Kokot, S. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J. Porous Mater. 2003, 10, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.T.; Huang, X. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 2007, 66, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.M.; Cloud, R.M. Natural sorbents in oil spill cleanup. Environ. Sci. Technol. 1992, 26, 772–776. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Klerks, P.; Nyman, J. Toxicity to freshwater organisms from oils and oil spill chemical treatments in laboratory microcosms. Environ. Pollut. 2003, 122, 205–215. [Google Scholar] [CrossRef]
- Bragg, J.R.; Prince, R.C.; Harner, E.J.; Atlas, R.M. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 1994, 368, 413–418. [Google Scholar] [CrossRef]
- Field, J.H.; Hicks, R.W. Hydrophobic Oleophilic Wood Pulp. U.S. Patent 4,343,680, 10 August 1982. [Google Scholar]
- Toyoda, M.; Nishi, Y.; Iwashita, N.; Inagaki, M. Sorption and recovery of heavy oils using exfoliated graphite Part IV: Discussion of high oil sorption of exfoliated graphite. Desalination 2003, 151, 139–144. [Google Scholar] [CrossRef]
- Qishan, H.; Zhiming, H.; Shijiang, F.; Zhixue, W. The structure of high oil adsorption resin and its characteristics. China Synth. Resin Plast. 1996, 4, 14. [Google Scholar]
- Robeson, L.M.; Axelrod, R.J.; Manuel, T.A. Fibrous Material for Oil Spill Clean-up. U.S. Patent 5,120,598, 9 June 1992. [Google Scholar]
- Wang, J.; Zheng, Y.; Wang, A. Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chem. Eng. J. 2012, 213, 1–7. [Google Scholar] [CrossRef]
- Wahi, R.; Chuah, L.A.; Choong, T.S.Y.; Ngaini, Z.; Nourouzi, M.M. Oil removal from aqueous state by natural fibrous sorbent: An overview. Sep. Purif. Technol. 2013, 113, 51–63. [Google Scholar] [CrossRef]
- Qin, X.H.; Wang, S.Y. Filtration properties of electrospinning nanofibers. J. Appl. Polym. Sci. 2006, 102, 1285–1290. [Google Scholar] [CrossRef]
- Singh, G.; Rana, D.; Matsuura, T.; Ramakrishna, S.; Narbaitz, R.M.; Tabe, S. Removal of disinfection byproducts from water by carbonized electrospun nanofibrous membranes. Sep. Purif. Technol. 2010, 74, 202–212. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S.L.; Kong, J.; Stellacci, F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008, 3, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Sarbatly, R.; Krishnaiah, D.; Kamin, Z. A review of polymer nanofibres by electrospinning and their application in oil-water separation for cleaning up marine oil spills. Mar. Pollut. Bull. 2016, 106, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Qiu, S.; Jiang, W.; Wu, D.; Zhang, C. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environ. Sci. Technol. 2011, 45, 4527–4531. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl. Mater. Interfaces 2012, 4, 3207–3212. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Shang, Y.; Ding, B.; Yang, J.; Yu, J.; Al-Deyab, S.S. Nanoporous polystyrene fibers for oil spill cleanup. Mar. Pollut. Bull. 2012, 64, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Tian, F.; Shang, Y.; Wang, F.; Ding, B.; Yu, J. Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale 2012, 4, 5316–5320. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Tian, F.; Shang, Y.; Wang, F.; Ding, B.; Yu, J.; Guo, Z. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale 2013, 5, 2745–2755. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.D.; Dalton, P.D.; Hutmacher, D.W. Melt electrospinning today: An opportune time for an emerging polymer process. Prog. Polym. Sci. 2016, 56, 116–166. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Dalton, P.D. Melt Electrospinning. Chemistry 2011, 6, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Baena, I.; Sessini, V.; Dominici, F.; Torre, L.; Kenny, J.M.; Peponi, L. Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stabil. 2016, 132, 97–108. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Standard Test Method for Water in Petroleum Products and Bituminous Materials by Distillation; ASTM D95-05; ASTM: West Conshohocken, PA, USA, 2010. [Google Scholar]
- Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem. 2008, 18, 621–633. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Zhong, X.; Wu, W.; Ding, Y.; Yang, W. Interjet distance in needleless melt differential electrospinning with umbellate nozzles. J. Appl. Polym. Sci. 2014, 131, 338–347. [Google Scholar] [CrossRef]
- Rengasamy, R.; Das, D.; Karan, C.P. Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J. Hazard. Mater. 2011, 186, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Gui, X.; Li, H.; Wang, K.; Wei, J.; Jia, Y.; Li, Z.; Fan, L.; Cao, A.; Zhu, H.; Wu, D. Recyclable carbon nanotube sponges for oil absorption. Acta Mater. 2011, 59, 4798–4804. [Google Scholar] [CrossRef]
- Ozcan, A.S.; Erdem, B.; Ozcan, A. Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. J. Colloid Interfaces Sci. 2005, 280, 44–54. [Google Scholar] [CrossRef] [PubMed]
Additive type | Hydroxy group number | Hydroxy value (mg·KOH/g) | Molecular weight distribution from GPC | Experimental molecular weight |
---|---|---|---|---|
H201 | 6 | 370 | 1.15 | 920 |
H202 | 12 | 260 | 1.09 | 2500 |
H203 | 24 | 240 | 1.18 | 5500 |
Oil type | Density (g/cm3) | Viscosity (mPa·s) | Manufacturer |
---|---|---|---|
Motor oil | 0.883 | 209.36 | China National Petroleum Corporation (Beijing, China) |
Crude oil | 0.862 | 131.41 | Petrochina Daqing Oilfield (Daqing, China) |
Diesel | 0.801 | 9.54 | China National Petroleum Corporation |
Fiber type | Oil type | Fitting equation | Experimental sorption capacity (g/g) | Theoretical sorption capacity (g/g) | Sorption rate constant K1 (g/(g·min)) | Correlation coefficient R12 |
---|---|---|---|---|---|---|
Raw PLA fiber | Motor oil | 105.0 | 27.1 | 0.0500 | 0.6859 | |
Diesel | 61.5 | 15.6 | 0.0405 | 0.4204 | ||
(8% H203)/PLA fiber | Motor oil | 159.0 | 54.2 | 0.0568 | 0.7148 | |
Diesel | 95.5 | 31.6 | 0.0512 | 0.6630 |
Fiber sample | Oil type | Fitting equation | Experimental sorption capacity (g/g) | Theoretical sorption capacity (g/g) | Sorption Rate constant K2 (g/(g·min)) | Correlation coefficient R22 |
---|---|---|---|---|---|---|
Raw PLA fiber | Motor oil | 105.0 | 105.8 | 0.0118 | 0.9997 | |
Diesel | 61.5 | 63.7 | 0.0156 | 0.9994 | ||
(8% H203)/PLA fiber | Motor oil | 159.0 | 165.2 | 0.0046 | 0.9994 | |
Diesel | 95.5 | 99.5 | 0.0077 | 0.9992 |
Fiber sample | Oil type | Temperature T (K) | Oil sorption capacity Q (g/g) | Standard free energy ΔG0 (kJ/mol) | Enthalpy ΔH0 (kJ/mol) | Entropy ΔS0 (kJ/mol/K) |
---|---|---|---|---|---|---|
Raw PLA fiber | Motor oil diesel | 293 | 114 | −17.5 | −58.7 | −0.141 |
303 | 105 | −16.0 | ||||
313 | 101 | −14.6 | ||||
293 | 70 | −12.8 | −46.3 | −0.114 | ||
303 | 62 | −11.8 | ||||
313 | 59 | −10.6 | ||||
8% H203/PLA fiber | Motor oil diesel | 293 | 167 | −20.3 | −59.2 | −0.133 |
303 | 159 | −18.9 | ||||
313 | 155 | −17.6 | ||||
293 | 104 | −14.8 | −47.1 | −0.110 | ||
303 | 96 | −13.6 | ||||
313 | 94 | −12.9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, Y.; Yang, W.; Cheng, L.; Tan, J. Needleless Melt-Electrospinning of Biodegradable Poly(Lactic Acid) Ultrafine Fibers for the Removal of Oil from Water. Polymers 2017, 9, 3. https://doi.org/10.3390/polym9020003
Li H, Li Y, Yang W, Cheng L, Tan J. Needleless Melt-Electrospinning of Biodegradable Poly(Lactic Acid) Ultrafine Fibers for the Removal of Oil from Water. Polymers. 2017; 9(2):3. https://doi.org/10.3390/polym9020003
Chicago/Turabian StyleLi, Haoyi, Yi Li, Weimin Yang, Lisheng Cheng, and Jing Tan. 2017. "Needleless Melt-Electrospinning of Biodegradable Poly(Lactic Acid) Ultrafine Fibers for the Removal of Oil from Water" Polymers 9, no. 2: 3. https://doi.org/10.3390/polym9020003
APA StyleLi, H., Li, Y., Yang, W., Cheng, L., & Tan, J. (2017). Needleless Melt-Electrospinning of Biodegradable Poly(Lactic Acid) Ultrafine Fibers for the Removal of Oil from Water. Polymers, 9(2), 3. https://doi.org/10.3390/polym9020003