Forensic Engineering of Advanced Polymeric Materials—Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Environments
2.2.1. Abiotic Degradation under Laboratory Conditions
2.2.2. (Bio)degradation under Industrial Composting Conditions
2.3. Measurements
2.3.1. Imaging of Sample Surfaces
2.3.2. Gel Permeation Chromatography (GPC) Analysis
2.3.3. Nuclear Magnetic Resonance 1H (1H NMR) Spectroscopy
2.3.4. Differential Scanning Calorimetry (DSC) Analysis
2.3.5. Thermogravimetric Analysis (TGA)
2.3.6. Electrospray Ionization Mass Spectrometry (ESI-MS) Analysis
3. Results and Discussion
3.1. Abiotic Degradation under Laboratory Conditions
3.2. (Bio)degradation Test under Industrial Composting Conditions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Capra, P.; Briasco, B.; Sorrenti, M.; Catenacci, L.; Sachet, M.; Perugini, P. Preliminary evaluation of packaging-content interactions: Mechanical and physicochemical characterization of polylactide bottles. J. Appl. Polym. Sci. 2014, 131, 40067. [Google Scholar] [CrossRef]
- Rydz, J.; Adamus, G.; Wolna-Stypka, K.; Marcinkowski, A.; Misiurska-Marczak, M.; Kowalczuk, M.M. Degradation of polylactide in paraffin and selected protic media. Polym. Degrad. Stab. 2013, 98, 316–324. [Google Scholar] [CrossRef]
- Rydz, J.; Wolna-Stypka, K.; Musioł, M.; Szeluga, U.; Janeczek, H.; Kowalczuk, M. Further evidence of polylactide degradation in paraffin and in selected protic media. A thermal analysis of eroded polylactide films. Polym. Degrad. Stab. 2013, 98, 1450–1457. [Google Scholar] [CrossRef]
- Rydz, J.; Wolna-Stypka, K.; Adamus, G.; Janeczek, H.; Musioł, M.; Sobota, M.; Marcinkowski, A.; Krzan, A.; Kowalczuk, M. Forensic engineering of advanced polymeric materials. Part 1—Degradation studies of polylactide blends with atactic poly[(R,S)-3-hydroxybutyrate] in paraffin. Chem. Biochem. Eng. Q. 2015, 29, 247–259. [Google Scholar] [CrossRef]
- Sikorska, W.; Adamus, G.; Dobrzynski, P.; Libera, M.; Rychter, P.; Krucinska, I.; Komisarczyk, A.; Cristea, M.; Kowalczuk, M. Forensic engineering of advanced polymeric materials—Part II: The effect of the solvent-free non-woven fabrics formation method on the release rate of lactic and glycolic acids from the tin-free poly(lactide–co–glycolide) nonwovens. Polym. Degrad. Stab. 2014, 110, 518–528. [Google Scholar] [CrossRef]
- Musioł, M.; Sikorska, W.; Adamus, G.; Kowalczuk, M. Forensic engineering of advanced polymeric materials. Part III—Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Manag. 2016, 52, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Musioł, M.; Sikorska, W.; Adamus, G.; Janeczek, H.; Kowalczuk, M.; Rydz, J. (Bio)degradable polymers as a potential material for food packaging: Studies on the (bio)degradation process of PLA/(R,S)–PHB rigid foils under industrial composting conditions. Eur. Food Res. Technol. 2016, 242, 815–823. [Google Scholar] [CrossRef]
- Musioł, M.; Rydz, J.; Janeczek, H.; Radecka, I.; Jiang, G.; Kowalczuk, M. Forensic engineering of advanced polymeric materials Part IV: Case study of oxo-degradable polyethene commercial bags—Aging in biotic and abiotic environment. Waste Manag. 2017, 64, 20–27. [Google Scholar] [CrossRef]
- Rychter, P.; Biczak, R.; Herman, B.; Zawierucha, I.; Musioł, M.; Sobota, M.; Kowalczuk, M. Environmental degradation of aromatic-aliphatic polyester blends. Evaluation of degradation products in soil and their phytotoxicological impact. Pol. J. Environ. Stud. 2011, 20, 293–298. [Google Scholar]
- Vroman, I.; Tighzert, L. Biodegradable Polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Siegenthaler, K.; Kunkel, A.; Skupin, G.; Yamamoto, M. Ecoflex® and Ecovio®: Biodegradable, performance-enabling plastics. Adv. Polym. Sci. 2012, 245, 91–136. [Google Scholar]
- Song, J.; Šišková, A.; Simons, M.G.; Kowalski, W.J.; Kowalczuk, M.M.; van den Brink, O.F. LC-Multistage Mass Spectrometry for the characterization of poly(butylene adipate–co–butylene terephthalate) copolyester. J. Am. Soc. Mass Spectrom. 2011, 22, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Rychter, P.; Kawalec, M.; Sobota, M.; Kurcok, P.; Kowalczuk, M. Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact. Biomacromolecules 2010, 11, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Georgiopoulos, P.; Kontou, E.; Niaounakis, M. Thermomechanical properties and rheological behavior of biodegradable composites. Polym. Compos. 2014, 35, 1140–1149. [Google Scholar] [CrossRef]
- Kontou, E.; Spathis, G.; Georgiopoulos, P. Modeling of nonlinear viscoelasticity–viscoplasticity of bio-based polymer composites. Polym. Degrad. Stab. 2014, 110, 203–207. [Google Scholar] [CrossRef]
- Georgiopoulos, P.; Kontou, E. The effect of wood-fiber type on the thermomechanical performance of a biodegradable polymer matrix. J. Appl. Polym. Sci. 2015, 111, 42185. [Google Scholar] [CrossRef]
- Gan, Z.; Kuwabara, K.; Yamamoto, M.; Abe, H.; Doi, Y. Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate–co–butylene terephthalate) copolyesters. Polym. Degrad. Stab. 2004, 83, 289–300. [Google Scholar] [CrossRef]
- Tachibana, Y.; Maeda, T.; Ito, O.; Maeda, Y.; Kunioka, M. Utilization of a biodegradable mulch sheet produced from poly(lactic acid)/Ecoflex®/modified starch in mandarin orange groves. Int. J. Mol. Sci. 2009, 10, 3599–3615. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. EN ISO 527-2: Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- International Organization for Standardization. ISO 15814: Implants for Surgery—Copolymers and Blends Based on Polylactide—In Vitro Degradation Testing; ISO: Geneva, Switzerland, 1999. [Google Scholar]
- Musioł, M.T.; Rydz, J.; Sikorska, W.J.; Rychter, P.R.; Kowalczuk, M.M. A preliminary study of the degradation of selected commercial packaging materials in compost and aqueous environments. Pol. J. Chem. Technol. 2011, 13, 55–57. [Google Scholar] [CrossRef]
- ASTM. ASTM E 1356: Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry; ASTM: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Andersson, S.-R.; Hakkarainen, M.; Albertsson, A.-C. Tuning the polylactide hydrolysis rate by plasticizer architecture and hydrophilicity without introducing new migrants. Biomacromolecules 2010, 11, 3617–3623. [Google Scholar] [CrossRef] [PubMed]
- Cam, D.; Suong-Hyu, H.; Ikada, Y. Degradation of high molecular weight poly(lactide) in alkaline medium. Biomaterials 1995, 16, 833–843. [Google Scholar] [CrossRef]
- Zbik, M.; Horn, R.G.; Shaw, N. AFM study of paraffin wax surfaces. Colloids Surf. A 2006, 287, 139–146. [Google Scholar] [CrossRef]
- Wu, T.M.; Hsu, S.F.; Shih, Y.F.; Liao, C.S. Thermal degradation kinetics of biodegradable poly(3-hydroxybutyrate)/layered double hydroxide nanocomposites. J. Polym. Sci. A 2008, 46, 1207–1213. [Google Scholar] [CrossRef]
- Ahn, B.D.; Kim, S.H.; Kim, Y.H.; Yang, J.S. Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J. Appl. Polym. Sci. 2001, 82, 2808–2826. [Google Scholar] [CrossRef]
- Gleadall, A.; Pan, J.; Kruft, M.-A.; Kellomäki, M. Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomater. 2014, 10, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Shih, C. Chain-end scission in acid catalyzed hydrolysis of poly(d,l-lactide) in solution. J. Control. Release 1995, 34, 9–15. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lobland, H.E. Materials. Introduction and Applications; John Wiley & Sons: New York, NY, USA, 2017; ISBN 9781119281009. [Google Scholar]
- Espartero, J.L.; Rashkov, I.; Li, S.M.; Manolova, N.; Vert, M. NMR Analysis of low molecular weight poly(lactic acid)s. Macromolecules 1996, 29, 3535–3539. [Google Scholar] [CrossRef]
- Brochure KT/KC, E 100, 2009. Biodegradable Polymers—Inspired by Nature Ecoflex®, Ecovio®. Available online: http://www.plasticsmanufacturers.co.za/basf_pdf/Ecoflex_Brochure.pdf (accessed on 6 May 2016).
Sample | TgPBAT [°C] | ΔcpPBAT [J/g °C] | TmPBAT [°C] | ΔHmPBAT [J/g] | TgPLA [°C] | ΔcpPLA [J/g °C] | TmPLA [°C] | ΔHmPLA [J/g] |
---|---|---|---|---|---|---|---|---|
EV | −29.7/49.1 | 0.19/0.22 | 125.5 | 7.1 | 60.4 | 0.07 | 156.2 | 0.2 |
Sachet | −28.3/47.9 | 0.18/0.18 | 121.1 | 9.6 | 62.1 | 0.08 | 152.7 | 0.2 |
Stress at Break | 24.6 MPa |
---|---|
Elongation at break | 754.7% |
Tear resistance | 7.73 N |
Shrinkage | 47.3% |
Coefficient of friction | 0.2 |
Welding | 0.3 s (115 °C) |
Sample | TgPBAT [°C] | ΔcpPBAT [J/g °C] | TmPBAT [°C] | ΔHmPBAT [J/g] | TgPLA [°C] | ΔcpPLA [J/g °C] | TmPLA [°C] | ΔHmPLA [J/g] |
---|---|---|---|---|---|---|---|---|
EV0 | −29.7/49.1 | 0.19/0.22 | 125.5 | 7.1 | 60.4 | 0.07 | 156.2 | 0.2 |
EVW8 | −35.5/36.5 | 0.29/0.29 | 141.1 | 14.5 | - | - | - | - |
EVW52 | −35.0/50.4 | 0.21/0.33 | 154.9 | 24.6 | - | - | - | - |
EVP8 | −30.8/45.3 | 0.16/0.14 | 126.7 | 5.6 | 60.7 | 0.07 | 152.2 | 0.5 |
EVP52 | −35.1/43.3 | 0.22/0.25 | 129.1 | 5.4 | 53.4 | 0.04 | 153.6 | 0.7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikorska, W.; Rydz, J.; Wolna-Stypka, K.; Musioł, M.; Adamus, G.; Kwiecień, I.; Janeczek, H.; Duale, K.; Kowalczuk, M. Forensic Engineering of Advanced Polymeric Materials—Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages. Polymers 2017, 9, 257. https://doi.org/10.3390/polym9070257
Sikorska W, Rydz J, Wolna-Stypka K, Musioł M, Adamus G, Kwiecień I, Janeczek H, Duale K, Kowalczuk M. Forensic Engineering of Advanced Polymeric Materials—Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages. Polymers. 2017; 9(7):257. https://doi.org/10.3390/polym9070257
Chicago/Turabian StyleSikorska, Wanda, Joanna Rydz, Katarzyna Wolna-Stypka, Marta Musioł, Grażyna Adamus, Iwona Kwiecień, Henryk Janeczek, Khadar Duale, and Marek Kowalczuk. 2017. "Forensic Engineering of Advanced Polymeric Materials—Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages" Polymers 9, no. 7: 257. https://doi.org/10.3390/polym9070257
APA StyleSikorska, W., Rydz, J., Wolna-Stypka, K., Musioł, M., Adamus, G., Kwiecień, I., Janeczek, H., Duale, K., & Kowalczuk, M. (2017). Forensic Engineering of Advanced Polymeric Materials—Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages. Polymers, 9(7), 257. https://doi.org/10.3390/polym9070257