Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis
2.2.1. Nanometer Nickel Oxide (nano-NiO) Preparation.
2.2.2. PANI/nano-NiO Composites Preparation
2.2.3. Electrode Slices Preparation
2.3. Electrochemical Measurements
2.4. Characterization
3. Results and Discussion
3.1. SEM Analysis
3.2. FTIR Analysis
3.3. XRD Analysis
3.4. TGA Analysis
3.5. Electrochemical Properties Analysis
3.5.1. CV Analysis
3.5.2. GCD Analysis
3.5.3. EIS Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Meng, Y.N.; Wang, K.; Zhang, Y.J.; Wei, Z.X. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv. Mater. 2013, 25, 6985. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, J.U.; Jo, J.W.; Bae, S.; Kim, K.T.; Jo, W.H. In-situ preparation of graphene/poly (styrenesulfonic acid-graft-polyaniline) nanocomposite via direct exfoliation of graphite for supercapacitor application. Carbon 2016, 105, 191. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, M.; Wang, Z.; Zhao, S.; Guan, S. Rich nitrogen-doped ordered mesoporous phenolic resin-based carbon for supercapacitors. Electrochim. Acta 2014, 148, 187. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Guang, S.; Ke, F.; Xu, H. Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors. Carbon 2015, 83, 79. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, L.; Li, C.; Yan, C.; Lee, P.S.; Ma, J. High-rate electrochemical capacitors from highly graphitic carbon-tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ. Sci. 2011, 4, 1813. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797. [Google Scholar] [CrossRef] [PubMed]
- Sk, M.M.; Yue, C.Y.; Ghosh, K.; Jena, R.K. Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources 2016, 308, 121–140. [Google Scholar] [CrossRef]
- Han, B.H.; Polarz, S.; Antonietti, M. Cyclodextrin-based Porous Silica Materials as in Situ Chemical “Nanoreactors” for the Preparation of Variable Metal-Silica Hybrids. Chem. Mater. 2001, 13, 3915–3919. [Google Scholar] [CrossRef]
- Li, L.; Sun, X.; Yang, Y.; Guan, N.; Zhang, F. Synthesis of Anatase TiO2 Nanoparticles with β-Cyclodextrin as a Supermolecular Shell. Chem. Asian J. 2006, 1, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ni, W.; Pang, H.; Lu, Q.; Huang, Z.; Zhao, J. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors. Electrochim. Acta 2010, 55, 6830–6835. [Google Scholar] [CrossRef]
- Cao, C.-Y.; Guo, W.; Cui, Z.-M.; Song, W.-G.; Cai, W. Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 2011, 21, 3204–3209. [Google Scholar] [CrossRef]
- Lu, Q.; Lattanzi, M.W.; Chen, Y.; Kou, X.; Li, W.; Fan, X.; Unruh, K.M.; Chen, J.G.; Xiao, J.Q. Supercapacitor Electrodes with High-Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites. Angew. Chem. 2011, 123, 6979–6982. [Google Scholar] [CrossRef]
- Chin, J.-S.; Gopalan, A.-I.; Muthuchamy, N.; Lee, K.-P. Design of Graphene- and Polyaniline-Containing Functional Polymer Hydrogel as a New Adsorbent for Removal of Chromium (VI) Ions. Polymers 2016, 8, 445. [Google Scholar] [CrossRef]
- Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef]
- Kim, B.C.; Hong, J.-Y.; Wallace, G.G.; Park, H.S. Recent progress in flexible electrochemical capacitors: Electrode materials, device configuration, and functions. Adv. Energy Mater. 2015, 5, 1500959. [Google Scholar] [CrossRef]
- Peng, X.; Peng, L.; Wu, C.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Xu, D.; Zhang, J.; Wang, K.; Chen, Z.; Chen, J.; Xu, Q. Controlled fabrication of PANI/CNF hybrid flims: Molecular interaction induced various micromorphologies and electrochemical properties. J. Colloid Interface Sci. 2013, 411, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources 2009, 190, 578. [Google Scholar] [CrossRef]
- Li, L.; Song, H.; Zhang, Q.; Yao, J.; Chen, X. Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. J. Power Sources 2009, 187, 268. [Google Scholar] [CrossRef]
- Hao, Q.; Xia, X.; Lei, W.; Wang, W.; Qiu, J. Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon 2015, 81, 552. [Google Scholar] [CrossRef]
- Chen, W.; Gui, D.; Liu, J. Nickel oxide/graphene aerogel nanocomposite as a supercapacitor electrode material with extremely wide working potential window. Electrochim. Acta 2016, 222, 1424–1429. [Google Scholar] [CrossRef]
- Manseki, K.; Yu, Y.; Yanagida, S. Effect of pore size/distribution in TiO2 films on agarose gel electrolyte-based dye-sensitized solar cells. Chem. Commun. 2013, 49, 1416. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.W.; Do, K.; Lee, T.H.; Jeon, S.S.; Yoon, W.J.; Kim, C.; Ko, J.; Im, S.S. Iodine vapor doped polyaniline nanoparticles counter electrodes for dye-sensitized solar cells. Synth. Met. 2013, 6, 174. [Google Scholar] [CrossRef]
- Hu, Z.; Zu, L.; Jiang, Y.; Lian, H.; Liu, Y.; Li, Z.; Chen, F.; Wang, X.; Gui, X. High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using KI-H2SO4 Electrolyte. Polymers 2015, 7, 1939–1953. [Google Scholar] [CrossRef]
- Hu, C.C.; Tsou, T.W. Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition. Electrochem. Acta 2002, 47, 3523–3532. [Google Scholar] [CrossRef]
- Jaouhari, A.E.; Laabd, M.; Aouzal, Z.; Bouabdallaoui, M.; Bazzaoui, E.A.; Albourine, A.; Martins, J.I.; Wang, R.; Bazzaoui, M. Effect of electrolytic conditions on PANi electrosynthesis on stainless steel: A new application to polycarboxy-benzoic acids removal from industrial effluents. Prog. Org. Coat. 2016, 101, 233–239. [Google Scholar] [CrossRef]
- Jiang, Y.; Cui, X.; Zu, L.; Hu, Z.; Gan, J.; Lian, H.; Liu, Y.; Xing, J. High Rate Performance Nanocomposite Electrode of Mesoporous Manganese Dioxide/Silver Nanowires in KI Electrolytes. Nanomaterials 2015, 5, 1638–1653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Park, M.; Kim, H.Y.; Park, S.-J. Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density. J. Colloid Interface Sci. 2017, 500, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lu, Z.; Aruna, S.T.; Aurbach, D.; Gedanken, A. Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes. Chem. Mater. 2000, 12, 2557–2566. [Google Scholar] [CrossRef]
- Hu, Z.; Zu, L.; Jiang, Y.; Lian, H.; Liu, Y.; Wang, X.; Cui, X. High Performance Nanocomposite Electrodes of Mesoporous Silica Platelet-Polyaniline Synthesized via Impregnation Polymerization. Polym. Compos. 2015. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Liu, J.; Zhang, S.; Jiang, C.; He, X. How intermolecular charge transfer influences the air-water interface. Mater. Chem. Phys. 2012, 17, 137. [Google Scholar]
- Wang, X.; Chandrabose, R.S.; Chun, S.-E.; Zhang, T.; Evanko, B.; Jian, Z.; Boettcher, S.W.; Stucky, G.D.; Ji, X. High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte. ACS Appl. Mater. Interfaces 2015, 7, 19978–19985. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhu, P.; Xiong, Y.; Chen, H.; Kang, S.; Luo, H.; Guan, S. Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors. Electrochim. Acta 2016, 222, 12–19. [Google Scholar] [CrossRef]
- Deng, W.; Ji, X.; Chen, Q.; Banks, C.E. Electrochemical capacitors utilising transition metal oxides: An update of recent developments. RSC Adv. 2011, 1, 1171–1178. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, J.; He, Y.; Zhong, C.; Hu, W.; Liu, L.; Deng, Y. Sub-3 nm Co3O4 Nanofilms with Enhanced Supercapacitor Properties. ACS Nano 2015, 9, 1730–1739. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liu, X.; Sang, Y.; Zhao, Z.; Zhou, K.; Liu, H.; Chen, S. Enhanced Performance of Layered Titanate Nanowire-Based Supercapacitor Electrodes by Nickel Ion Exchange. ACS Appl. Mater. 2014, 6, 4578–4586. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhu, Y.; Wu, Y.; Wu, Z.; Liu, E. The effect of hydroquinone as an electrolyte additive on electrochemical performance of the polyaniline supercapacitor. Mater. Res. Bull. 2014, 50, 303–306. [Google Scholar] [CrossRef]
- Xiong, C.; Li, T.; Zhu, Y.; Zhao, T.; Dang, A.; Li, H.; Ji, X.; Shang, Y.; Khan, M. Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode. J. Alloy. Compd. 2016, 10, 253. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Heydari, H.; Abdolmaleki, A.; Hosseini, H. Nanostructured CuO/PANI composite as supercapacitor electrode material. Mater. Sci. Semicond. Process. 2014, 30, 157–161. [Google Scholar] [CrossRef]
- Yesuraja, J.; Elumalaib, V.; Bhagavathiacharia, M.; Samuela, A.S.; Elaiyappillaic, E.; Johnsonc, P.M. A facile sonochemical assisted synthesis of α-MnMoO4/PANI nanocomposite electrode for supercapacitor applications. Elsevier B.V. J. Electroanal. Chem. 2017, 797, 78–88. [Google Scholar] [CrossRef]
- Lv, D.; Shen, J.; Wang, G. A post-oxidation strategy for the synthesis of graphene/carbon nanotube-supported polyaniline nanocomposites as advanced supercapacitor electrodes. RSC Adv. 2015, 5, 24599. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Guang, S.; Xu, H.; Su, X. Facile fabrication of three-dimensional highly ordered structural polyaniline—graphene bulk hybrid materials for high performance supercapacitor electrodes. J. Mater. Chem. A 2014, 2, 813. [Google Scholar] [CrossRef]
- Xu, J.; Gu, X.; Cao, J.; Wang, W.; Chen, Z. Porous Hollow Carbon@Sulfur Composites for High-Power Lithium–Sulfur Batteries. J. Solid State Electrochem. 2012, 16, 2667–2674. [Google Scholar] [CrossRef]
- Córdoba-Torres, P.; Mesquita, T.J.; Nogueira, R.P. Towards a better characterization of constant-phase element behavior on disk electrodes from direct impedance analysis: Methodological considerations and mass transport effects. Electrochim. Acta 2013, 92, 323–334. [Google Scholar] [CrossRef]
Sample | Electrolyte | Discharge Time (s) | Current Density (A·g−1) | Specific Capacitance (F·g−1) |
---|---|---|---|---|
nano-NiO | 0.05 M KI | 18.5 | 1 | 46.25 |
PANI | 0.05 M KI | 149 | 1 | 372.5 |
PANI/nano-NiO | 0.05 M KI | 427.4 | 1 | 1068.5 |
PANI/nano-NiO | 1 M KOH | 19 | 0.5 | 23.75 |
1 M H2SO4 | 235.9 | 0.5 | 235.9 | |
PANI/nano-NiO | 0 M KI | 1293 | 0.1 | 258.6 |
632.4 | 0.2 | 252.96 | ||
235.9 | 0.5 | 235.9 | ||
116.8 | 1 | 233.6 | ||
51.2 | 2 | 204.8 | ||
PANI/nano-NiO | 0.05 M KI | 8491 | 0.1 | 2122.75 |
3452.3 | 0.2 | 1726.2 | ||
983.6 | 0.5 | 1229.5 | ||
427.4 | 1 | 1068.5 | ||
83.4 | 2 | 417 | ||
PANI/nano-NiO | 0 M KI | 116.8 | 1 | 233.6 |
0.05 M KI | 427.4 | 1 | 1068.5 | |
0.1 M KI | 390.1 | 1 | 975.25 | |
0.2 M KI | 249.6 | 1 | 624 | |
0.5 M KI | 187.4 | 1 | 468.5 |
Materials | Electrolytes | Specific Capacitance (F/g) | Cycle Retention | References |
---|---|---|---|---|
Ni/NiO-3 nanofibers | 3M KOH | 526 (1 A/g) | 79.3% (6000 cycles, 5A/g) | [28] |
K2Ti4O9@Ni(OH)2/Ti | 3 M KOH | 340 mF/cm2 (50 mV/s) | 92.5% (2000 cycles) | [36] |
PANI | 0.4 M HQ–1 M H2SO4 (0.5 A/g) | 584 (0.5 A/g) | 70% (1000 cycles) | [37] |
3D RGO-CNI-PANI | 1.5 M Li2SO4 | 741 (10 mV/s) | - | [38] |
PANI/CuO | 1 M Na2SO4 (5 mV/s) | 185 (5 mV/s) | 75% (2000 cycles) | [39] |
PANI/Go | 1 M Na2SO4 | 596.2 (0.5 A/g) | 83.7% (1500 cycles, 2A/g) | [33] |
PANI/α-MnMoO4 | 1 M Na2SO4 | 396 (5 mV/s) | 80.3% (500 cycles) | [40] |
PANI/nano-NiO | 0.05 M KI–1 M H2SO4 (0.1 A/g) | 2122.75 (0.1 A/g) | 86% (1000 cycles, 1.5A/g) | This work |
Sample | Concentration (mol·L−1) | Rs (Ω) | Rct (Ω) |
---|---|---|---|
PANI/nano-NiO | 0.01 | 1.19 | 5.21 |
0.02 | 1.26 | 3.24 | |
0.05 | 0.91 | 1.29 | |
0.1 | 1.37 | 1.64 | |
0.2 | 1.05 | 4.67 | |
0.5 | 1.19 | 2.53 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Cui, X.; Zu, L.; Zhang, Y.; Gao, X.; Lian, H.; Liu, Y.; Wang, X. Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials. Polymers 2017, 9, 288. https://doi.org/10.3390/polym9070288
Cai X, Cui X, Zu L, Zhang Y, Gao X, Lian H, Liu Y, Wang X. Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials. Polymers. 2017; 9(7):288. https://doi.org/10.3390/polym9070288
Chicago/Turabian StyleCai, Xiaomin, Xiuguo Cui, Lei Zu, You Zhang, Xing Gao, Huiqin Lian, Yang Liu, and Xiaodong Wang. 2017. "Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials" Polymers 9, no. 7: 288. https://doi.org/10.3390/polym9070288
APA StyleCai, X., Cui, X., Zu, L., Zhang, Y., Gao, X., Lian, H., Liu, Y., & Wang, X. (2017). Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials. Polymers, 9(7), 288. https://doi.org/10.3390/polym9070288