Characterisation and Evaluation of Trimesic Acid Derivatives as Disulphide Cross-Linked Polymers for Potential Colon Targeted Drug Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of (Triphenylmethyl)thioethylamine (1)
2.3. Synthesis of N1,N3,N5-tris(2-(Tritylthio)ethyl)benzene-1,3,5-tricarboxamide (2)
2.4. Synthesis of N1,N3,N5-tris(2-Mercaptoethyl)benzene-1,3,5-tricarboxamide (3)
2.5. Characterisation of the Monomer
2.5.1. Fourier-Transform Infra-Red Spectroscopy
2.5.2. Nuclear Magnetic Resonance
2.5.3. Elemental Analysis
2.5.4. Melting Point Analysis
2.6. Oxidation of the Monomer to Form Polymers
- P10: 3 only
- P15: 1 mol of 3: 5 mol of dithiol
- P21: 2 mol of 3: 1 mol of dithiol
- P25: 2 mol of 3: 5 mol of dithiol
- P51: 5 mol of 3: 1 mol of dithiol
2.7. Physical Characterisation of the Polymer
2.7.1. Raman Spectrometry
2.7.2. Scanning Electron Microscopy-Energy Dispersive X-ray
2.8. Chemical Reduction Studies
2.9. Measurement of Thiol Concentration
2.10. In Vitro Dissolution Studies
2.10.1. Preparation of Bacteroides fragilis (B. fragilis) Culture
2.10.2. Incubation of Polymers in the Simulated Gastric Condition
2.10.3. Incubation of Polymers in the Simulated Intestinal Condition
2.10.4. Incubation of Polymers in the Simulated Colon Condition
2.10.5. Control Incubation
2.11. Statistical Analysis
3. Results
3.1. Synthesis and Physical Characterisation of the Thiolated Monomer
3.2. Characterisation of the Disulphide Polymers
3.2.1. Physical Characterisation and Solubility
3.2.2. Fourier-Transform Infrared Spectroscopy
3.2.3. SEM-EDX Micrographs
3.2.4. Chemical Reduction of Disulphide Cross-Linked Polymers
3.2.5. In Vitro Dissolution Studies
4. Conclusions
Supplementary materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012, 2, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.V.; Sivakumar, T.; Mani, T.T. Colon targeting drug delivery system: A review on recent approaches. Int. J. Pharm. Biomed. Sci. 2011, 2, 11–19. [Google Scholar]
- Mehta, T.J.; Patel, A.; Patel, D.M.R.; Patel, D.N. Need of colon specific drug delivery system: Review on primary and novel approaches. Int. J. Pharm. Res. Dev. 2011, 3, 134–153. [Google Scholar]
- Sahudin, S. Novel Disulphide-Containing Cross-Linked Polymers for Colon-Specific Drug Delivery; King’s College London: London, UK, 2001. [Google Scholar]
- Lloyd, A.W.; Martin, G.P.; Soozandehfar, S.H. Azopolymers: A means of colon specific drug delivery? Int. J. Pharm. 1994, 106, 255–260. [Google Scholar] [CrossRef]
- Xia, X.-X.; Wang, M.; Lin, Y.; Xu, Q.; Kaplan, D.L. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery. Biomacromolecules 2014, 15, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Gulzar, A.; Gai, S.; Yang, P.; Li, C.; Ansari, M.B.; Lin, J. Stimuli responsive drug delivery application of polymer and silica in biomedicine. J. Mater. Chem. B 2015, 3, 8599–8622. [Google Scholar] [CrossRef]
- Xing, T.; Lai, B.; Ye, X.; Yan, L. Disulfide core cross-linked pegylated polypeptide nanogel prepared by a one-step ring opening copolymerization of n-carboxyanhydrides for drug delivery. Macromol. Biosci. 2011, 11, 962–969. [Google Scholar] [CrossRef] [PubMed]
- McRae Page, S.; Martorella, M.; Parelkar, S.; Kosif, I.; Emrick, T. Disulfide cross-linked phosphorylcholine micelles for triggered release of camptothecin. Mol. Pharm. 2013, 10, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kundu, S.; Reddy, M.A.; Bajaj, A.; Srivastava, A. Design and engineering of disulfide crosslinked nanocomplexes of polyamide polyelectrolytes: Stability under biorelevant conditions and potent cellular internalization of entrapped model peptide. Macromol. Biosci. 2013, 13, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Salamończyk, G.M. Synthesis of new dendrimers—Trimesic acid derivatives. Tetrahedron Lett. 2011, 52, 155–158. [Google Scholar] [CrossRef]
- Lim, V.; Peh, K.K.; Sahudin, S. Synthesis, characterisation, and evaluation of a cross-linked disulphide amide-anhydride-containing polymer based on cysteine for colonic drug delivery. Int. J. Mol. Sci. 2013, 14, 24670–24691. [Google Scholar] [CrossRef] [PubMed]
- Bragger, J.L.; Lloyd, A.W.; Soozandehfar, S.H.; Bloomfield, S.F.; Marriott, C.; Martin, G.P. Investigations into the azo reducing activity of a common colonic microorganism. Int. J. Pharm. 1997, 157, 61–71. [Google Scholar] [CrossRef]
- Rhee, I.K.; van Rijn, R.M.; Verpoorte, R. Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem. Anal. 2003, 14, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Abdullah Al, N.; Lee, H.; Lee, Y.S.; Lee, K.D.; Park, S.Y. Development of disulfide core-crosslinked pluronic nanoparticles as an effective anticancer-drug-delivery system. Macromol. Biosci. 2011, 11, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Zhang, T.; Sun, J.; Liu, X.; Ren, G.; Kou, L.; Zhang, Y.; Han, X.; Ding, W.; Ai, X. Enhanced oral delivery of paclitaxel using acetylcysteine functionalized chitosan-vitamin e succinate nanomicelles based on a mucus bioadhesion and penetration mechanism. Mol. Pharm. 2013, 10, 3447–3458. [Google Scholar] [CrossRef] [PubMed]
- Diaz, F.R.; Sanchez, C.O.; Valle, M.A.; Radic, D.; Bernede, J.C.; Tregouet, Y.; Molinie, P. Synthesis, characterisation and electrical properties of poly[bis-(2-aminphenyl)disulfide] and poly[bis-(2-aminophenyl)diselenide] part II. Xps, esr, sem and conductivity study. Synth. Met. 2000, 110, 71–77. [Google Scholar] [CrossRef]
- Le, Q.G. Novel Polymers for Targeting Drugs to the Colon; King’s College London: London, UK, 1998. [Google Scholar]
- Lau, Y.K.; Lim, V. Colon targeted drug delivery of branch-chained disulphide cross-linked polymers: Design, synthesis, and characterisation studies. Chem. Cent. J. 2016, 10, 77. [Google Scholar] [CrossRef] [PubMed]
Compound | Carbon (%) | Hydrogen (%) | Nitrogen (%) | Melting point (°C) | |||
---|---|---|---|---|---|---|---|
Theoretical | Actual | Theoretical | Actual | Theoretical | Actual | ||
1 | 78.90 | 78.74 | 6.58 | 7.00 | 4.39 | 4.35 | 94–96 |
2 | 77.63 | 76.53 | 5.66 | 5.96 | 3.77 | 3.69 | 225–227 |
3 | 46.51 | 45.66 | 5.43 | 5.60 | 10.85 | 9.73 | 159–161 |
Polymers | Physical appearance |
---|---|
P10 | White fine powder |
P15 | Yellowish film |
P21 | White coarse powder |
P25 | Sticky yellowish granules |
P51 | White solid |
Solvent | Polymer | ||||
---|---|---|---|---|---|
P10 | P15 | P21 | P25 | P51 | |
DCM | Insoluble | Insoluble | Insoluble | Insoluble | Insoluble |
DMSO | Soluble | Insoluble | Insoluble | Insoluble | Insoluble |
Chloroform | Insoluble | Insoluble | Insoluble | Insoluble | Insoluble |
Ethanol | Insoluble | Insoluble | Insoluble | Insoluble | Insoluble |
Water | Insoluble | Insoluble | Insoluble | Insoluble | Insoluble |
Incubation medium | P10 | P15 | P21 | P25 | P51 |
---|---|---|---|---|---|
Stomach (a) | 11.449 ± 0.967 | 11.402 ± 0.637 | 3.958 ± 0.872 | 19.458 ± 0.711 | 2.989 ± 0.743 |
Intestine (b) | 15.533 ± 0.427 | 16.262 ± 0.737 | 6.485 ± 0.585 | 43.985 ± 0.556 | 7.048 ± 0.065 |
Colon (c) | 74.108 ± 0.941 | 63.602 ± 1.004 | 13.056 ± 0.779 | 60.222 ± 4.279 | 15.861 ± 0.291 |
Statistical analysis | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
Dunnett’s (significant) | a & c i b & c i | a & c i b & c i | a & c i b & c i | a & c ii b & c ii | a & c i b & c i |
Incubation medium | P10 | P15 | P21 | P25 | P51 |
---|---|---|---|---|---|
Bacteria (a) | 0.297 ± 0.111 | 0.436 ± 0.194 | 0.363 ± 0.100 | 0.469 ± 0.247 | 0.385 ± 0.151 |
Polymer (b) | 32.084 ± 0.818 | 24.551 ± 1.251 | 5.155 ± 0.632 | 22.748 ± 0.405 | 6.364 ± 0.369 |
Polymer + bacteria (c) | 74.108 ± 0.941 | 63.602 ± 1.004 | 13.056 ± 0.779 | 60.222 ± 4.279 | 15.861 ± 0.291 |
Statistical analysis | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
Dunnett’s (significant) | a & c i b & c i | a & c i b & c i | a & c i b & c i | a & c ii b & c ii | a & c i b & c i |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mat Yusuf, S.N.A.; Ng, Y.M.; Ayub, A.D.; Ngalim, S.H.; Lim, V. Characterisation and Evaluation of Trimesic Acid Derivatives as Disulphide Cross-Linked Polymers for Potential Colon Targeted Drug Delivery. Polymers 2017, 9, 311. https://doi.org/10.3390/polym9080311
Mat Yusuf SNA, Ng YM, Ayub AD, Ngalim SH, Lim V. Characterisation and Evaluation of Trimesic Acid Derivatives as Disulphide Cross-Linked Polymers for Potential Colon Targeted Drug Delivery. Polymers. 2017; 9(8):311. https://doi.org/10.3390/polym9080311
Chicago/Turabian StyleMat Yusuf, Siti Nur Aishah, Yoke Mooi Ng, Asila Dinie Ayub, Siti Hawa Ngalim, and Vuanghao Lim. 2017. "Characterisation and Evaluation of Trimesic Acid Derivatives as Disulphide Cross-Linked Polymers for Potential Colon Targeted Drug Delivery" Polymers 9, no. 8: 311. https://doi.org/10.3390/polym9080311
APA StyleMat Yusuf, S. N. A., Ng, Y. M., Ayub, A. D., Ngalim, S. H., & Lim, V. (2017). Characterisation and Evaluation of Trimesic Acid Derivatives as Disulphide Cross-Linked Polymers for Potential Colon Targeted Drug Delivery. Polymers, 9(8), 311. https://doi.org/10.3390/polym9080311