The Potential Distribution of the Potato Tuber Moth (Phthorimaea Operculella) Based on Climate and Host Availability of Potato †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Distribution Modeling Tool: CLIMEX
2.2. Meteorological Data and Climate Change Scenario
2.3. Projection of Potato Tuber Moth and Potato Distributions
2.4. Host Plant Availability for Potato Tuber Moth
2.5. Parameter Estimation for Simulating Potato Tuber Moth and Potato Distributions
3. Results and Discussion
3.1. Projection of Climatic Suitability of the Potato Tuber Moth
3.2. Potential Distribution of the Potato Tuber Moth by Incorporating Potato Distribution and Production in the Analysis
3.3. Potential Distribution of the Potato Tuber Moth Under the 2050 Climate Change Scenario
3.4. Risk Analysis of the Potato Tuber Moth Distribution Based on Changes in Potato Production
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lloyd, D.C. Some South American parasites of the potato tuber moth Phthorimaea operculella (Zeller) and remarks on those in other continents. Tech. Bull. Commonw. Inst. Biol. Control 1972, 15, 35–49. [Google Scholar]
- Kroschel, J.; Sporleder, M.; Tonnang, H.E.Z.; Juarez, H.; Carhuapoma, P.; Gonzales, J.C.; Simon, R. Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agric. For. Meteorol. 2013, 170, 228–241. [Google Scholar] [CrossRef]
- Rondon, S.I. The potato tuberworm: A literature review of its biology, ecology, and control. Am. J. Potato Res. 2010, 87, 149–166. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT (Food and Agriculture Organization of the United Nations). Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 June 2019).
- Jansky, S.H.; Jin, L.P.; Xie, K.Y.; Xie, C.H.; Spooner, D.M. Potato production and breeding in China. Potato Res. 2009, 52, 57–65. [Google Scholar] [CrossRef]
- Chandel, R.S.; Chandla, V.K. Managing tuber damaging pests of potato. Indian Hortic. 2003, 48, 15–17. [Google Scholar]
- Xu, H.; Ding, H.; Li, M.; Qiang, S.; Guo, J.; Han, Z.; Huang, Z.; Sun, H.; He, S.; Wu, H.; et al. The distribution and economic losses of alien species invasion to China. Biol. Invasions 2006, 8, 1495–1500. [Google Scholar] [CrossRef]
- Chandel, R.S.; Chandla, V.K. Integrated control of potato tuber moth (Phthorimaea operculella) in Himachal Pradesh. Indian J. Agric. Sci. 2005, 75, 837–839. [Google Scholar]
- Ward, N.L.; Masters, G.J. Linking climate change and species invasion: An illustration using insect herbivores. Glob. Chang. Biol. 2007, 13, 1605–1615. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Butterfield, J.; Buse, A.; Coulson, J.C.; Farrar, J.; et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543. [Google Scholar] [CrossRef]
- Dicko, A.H.; Lancelot, R.; Seck, M.T.; Guerrini, L.; Sall, B.; Lo, M.; Vreysen, M.J.B.; Lefrançois, T.; Fonta, W.M.; Peck, S.L.; et al. Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal. Proc. Natl. Acad. Sci. USA 2014, 111, 10149–10154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Senaratne, K.W.; Palmer, W.A.; Sutherst, R.W. Use of CLIMEX modelling to identify prospective areas for exploration to find new biological control agents for prickly acacia. Aust. J. Entomol. 2006, 45, 298–302. [Google Scholar] [CrossRef]
- Taylor, C.M.; Hastings, A. Finding optimal control strategies for invasive species: A density-structured model for Spartina alterniflora. J. Appl. Ecol. 2004, 41, 1049–1057. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Constable, F.; Finlay, K.J.; Harrington, R.; Luck, J.; Zalucki, M.P. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 220–237. [Google Scholar] [CrossRef]
- Zalucki, M.P.; Furlong, M.J. Forecasting Helicoverpa populations in Australia: A comparison of regression based models and a bio-climatic based modelling approach. Insect Sci. 2005, 12, 45–56. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Ota, N.; Hutchison, W.D.; Beddow, J.; Walsh, T.; Tay, W.T.; Borchert, D.M.; Paula-Moreas, S.V.; Czepak, C.; Zalucki, M.P. The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time? PLoS ONE 2015, 10, e0119618. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.M.; Lee, W.H.; Jung, S. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomol. Res. 2016, 46, 223–235. [Google Scholar] [CrossRef]
- Byeon, D.H.; Jung, S.; Lee, W.H. Review of CLIMEX and MaxEnt for studying species distribution in South Korea. J. Asia-Pac. Biodivers. 2018, 11, 325–333. [Google Scholar] [CrossRef]
- Rafoss, T.; Sæthre, M.G. Spatial and temporal distribution of bioclimatic potential for the Codling moth and the Colorado potato beetle in Norway: Model predictions versus climate and field data from the 1990s. Agric. For. Entomol. 2003, 5, 75–86. [Google Scholar] [CrossRef]
- Ireland, K.B.; Kriticos, D.J. Why are plant pathogens under-represented in eco-climatic niche modelling? Int. J. Pest Manag. 2019, 65, 207–216. [Google Scholar] [CrossRef]
- Berzitis, E.A.; Minigan, J.N.; Hallett, R.H.; Newman, J.A. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Glob. Chang. Biol. 2014, 20, 2778–2792. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agric. For. Meteorol. 2016, 218, 102–113. [Google Scholar] [CrossRef]
- Hijmans, R.J. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Maywald, G.F.; Yonow, T.; Zurcher, E.J.; Herrmann, N.I.; Sutherst, R.W. CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases; CSIRO: Canberra, Australia, 2015.
- Kriticos, D.J.; Webber, B.L.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J.K. CliMond: Global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 2012, 3, 53–64. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- CABI. Invasive Species Compendium International. Available online: https://www.cabi.org/isc (accessed on 20 June 2019).
- GBIF. Global Biodiversity Information Facility. Available online: https://www.gbif.org/species/1852118 (accessed on 24 November 2019).
- Yuan, H.G.; Wu, S.Y.; Lei, Z.R.; Rondon, S.I.; Gao, Y.L. Sub-lethal effects of Beauveria bassiana (Balsamo) on field populations of the potato tuberworm Phthorimaea operculella Zeller in China. J. Integr. Agric. 2018, 17, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Aryal, S.; Jung, C. A potential threat to tomato, a congener crop to potato from invaded potato tuber moth, Phthorimaea operculella (Zeller). J. Asia-Pac. Entomol. 2019, 22, 77–82. [Google Scholar] [CrossRef]
- NBS, National Bureau of Statistics of China. Available online: http://data.stats.gov.cn/english/ (accessed on 14 May 2019).
- CPSIS, Crop Production Statistics Information System. Available online: https://aps.dac.gov.in/APY/Index.htm (accessed on 14 May 2019).
- IFPRI, International Food Policy Research Institute. Global Spatially-Disaggregated Crop Production Statistics Data for 2010 Version 1.1. Available online: https://dataverse.harvard.edu/dataverse/harvestchoice (accessed on 22 November 2019).
- Jin, X.; Li, Z.; Chen, B.; Sun, Y. Experimental population life tables of potato tuber moth at different temperatures. Southwest China J. Agric. Sci. 2005, 18, 773–776. [Google Scholar]
- Briese, D.T. Characterisation of a laboratory strain of the potato moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Bull. Entomol. Res. 1980, 70, 203–212. [Google Scholar] [CrossRef]
- Broodryk, S.W. Ecological investigations on the potato tuber moth, Pbtborimae operculella (Zeller) (Lepidoptera: Gelechiidae). Phytophylactica 1971, 3, 73–84. [Google Scholar]
- Saour, G.; Al-Daoude, A.; Ismail, H. Evaluation of potato tuber moth mortality following postharvest cold storage of potatoes. Crop Prot. 2012, 38, 44–48. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Spanoudis, C.G.; Zakka, G.; Aslanidou, B.; Noukari, S.; Savopoulou-Soultani, M. Effect of temperature on rate of development, survival and adult longevity of Phthorimaea operculella (Lepidoptera: Gelechiidae). Eur. J. Entomol. 2017, 114, 35–41. [Google Scholar] [CrossRef]
- Firman, D.M.; O’brien, P.J.; Allen, E.J. Leaf and flower initiation in potato (Solanum tuberosum) sprouts and stems in relation to number of nodes and tuber initiation. J. Agric. Sci. 1991, 117, 61–74. [Google Scholar] [CrossRef]
- Kooman, P.L.; Haverkort, A.J. Modelling development and growth of the potato crop influenced by temperature and daylength: LINTUL-POTATO. In Potato Ecology and Modelling of Crops under Conditions Limiting Growth; Haverkort, A.J., MacKerron, D.K.L., Eds.; Springer: Dordrecht, The Netherlands, 1995; Volume 3, pp. 41–59. [Google Scholar]
- Ku, S.B.; Edwards, G.E.; Tanner, C.B. Effects of light, carbon dioxide, and temperature on photosynthesis, oxygen inhibition of photosynthesis, and transpiration in Solanum tuberosum. Plant Physiol. 1977, 59, 868–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwelle, R.B.; Kleinkopf, G.E.; Steinhorst, R.K.; Pavek, J.J.; Hurley, P.J. The influence of physiological processes on tuber yield of potato clones (Solanum tuberosum L.): Stomatal diffusive resistance, stomatal conductance, gross photosynthetic rate, leaf canopy, tissue nutrient levels, and tuber enzyme activities. Potato Res. 1981, 24, 33–47. [Google Scholar] [CrossRef]
- Manrique, L.A. Potato production in the tropics: Crop requirements. J. Plant Nutr. 1992, 15, 2679–2726. [Google Scholar] [CrossRef]
- Hammes, P.S.; De Jager, J.A. Net photosynthetic rate of potato at high temperatures. Potato Res. 1990, 33, 515–520. [Google Scholar] [CrossRef]
- Ensign, M.R. Factors influencing the growth and yield of potatoes in Florida. Plant Physiol. 1935, 10, 465–482. [Google Scholar] [CrossRef]
- Singh, G.A. review of the soil-moisture relationship in potatoes. Am. Potato J. 1969, 46, 398–403. [Google Scholar] [CrossRef]
- Demagante, A.L.; Vander Zaag, P. The response of potato (Solanum spp.) to photoperiod and light intensity under high temperatures. Potato Res. 1988, 31, 73–83. [Google Scholar] [CrossRef]
- Trivedi, T.P.; Rajagopal, D.; Tandon, P.L. Environmental correlates of the potato tuber moth Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Int. J. Pest Manag. 1994, 40, 305–308. [Google Scholar] [CrossRef]
- Khatana, V.S.; Karnic, K.S.; Ilangantileke, S.G.; Vaman, L.K.; Patil, M.G.; Scott, G.J. Farmers’ Storage Practices for Potatoes in Karnataka, India: Problems and Prospects; International Potato Center (CIP): Lima, Peru, 1977; pp. 1–22. [Google Scholar]
- Beddow, J.M.; Kriticos, D.J.; Pardey, P.G.; Sutherst, R.W. Potential Global Crop Pest Distributions Using CLIMEX: HarvestChoice Applications; HarvestChoise: Saint Paul, MN, USA, 2010. [Google Scholar]
- Poutsma, J.; Loomans, A.J.M.; Aukema, B.; Heijerman, T. Predicting the potential geographical distributin of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. BioControl 2007, 53, 103–125. [Google Scholar] [CrossRef]
- Jung, J.M.; Jung, S.; Ahmed, M.R.; Cho, B.K.; Lee, W.H. Invasion risk of the yellow crazy ant (Anoplolepis gracilipes) under the Representative Concentration Pathways 8.5 climate change scenario in South Korea. J. Asia-Pac. Biodivers. 2017, 10, 548–554. [Google Scholar] [CrossRef]
- Kumar, S.; Yee, W.L.; Neven, L.G. Mapping global potential risk of establishment of Rhagoletis pomonella (Diptera: Tephritidae) using MaxEnt and CLIMEX niche models. J. Econ. Entomol. 2016, 109, 2043–2053. [Google Scholar] [CrossRef]
- Park, J.J.; Mo, H.H.; Lee, G.S.; Lee, S.E.; Lee, J.H.; Cho, K. Predicting the potential geographic distribution of Thrips palmi in Korea, using the CLIMEX model. Entomol. Res. 2014, 44, 47–57. [Google Scholar] [CrossRef]
- Byeon, D.H.; Jung, J.M.; Lohumi, S.; Cho, B.K.; Jung, S.; Lee, W.H. Predictive analysis of Metcalfa pruinosa (Hemiptera: Flatidae) distribution in South Korea using CLIMEX software. J. Asia-Pac. Biodivers. 2017, 10, 379–384. [Google Scholar] [CrossRef]
- Kwon, M.; Kim, J.; Maharjan, R.; Choi, J.Y.; Kim, G.H. Change in the distribution of the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in Korea. J. Asia-Pac. Entomol. 2017, 20, 1249–1253. [Google Scholar] [CrossRef]
- Misra, S.S.; Agrawal, H.O. Potato pests in India and their control. Int. J. Pest Manag. 1988, 34, 199–209. [Google Scholar] [CrossRef]
- Bacon, O.; Burton, V.; Wyman, J. Management of insect pests on potatoes. Calif. Agric. 1978, 32, 26. [Google Scholar]
- Tayoub, G.; Alorfi, M.; Ismail, H. Fumigant toxicities of essential oils and two monoterpenes against potato tuber moth (Phthorimaea operculella Zeller). Herba Pol. 2016, 62, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.A.; Kroschel, J. Microbial control of the potato tuber moth (Lepidoptera: Gelechiidae). Fruit Veg. Cereal Sci. Biotechnol. 2009, 3, 46–54. [Google Scholar]
- Lacey, L.A.; Neven, L.G. The potential of the fungus, Muscodor albus, as a microbial control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. J. Invertebr. Pathol. 2006, 91, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Ashiv, M.; Ezekiel, R. Non-refrigerated storage of potatoes. Potato J. 2010, 37, 87–99. [Google Scholar]
- Fuglie, K.O. Economics of potato storage: Case studies. Potato Glob. Res. Dev. 2002, 2, 6–11. [Google Scholar]
Country | State | Current | 2030 | 2050 | 2070 | Country | State | Current | 2030 | 2050 | 2070 |
---|---|---|---|---|---|---|---|---|---|---|---|
India | Andhra Pradesh | 0.66 | 0.00 | 0.00 | 0.00 | China | Inner Mongolia 2 | 0.98 | 0.93 | 0.68 | 0.67 |
India | Arunachal Pradesh | 0.64 | 0.65 | 0.65 | 0.65 | China | Liaoning 2 | 0.88 | 0.84 | 0.59 | 0.58 |
India | Assam | 0.80 | 0.81 | 0.81 | 0.81 | China | Jilin 2 | 0.90 | 0.85 | 0.61 | 0.60 |
India | Bihar 1 | 0.84 | 0.80 | 0.78 | 0.76 | China | Heilongjiang 2 | 0.95 | 0.90 | 0.65 | 0.64 |
India | Chandigarh | 0.32 | 0.24 | 0.00 | 0.00 | China | Shanghai | 0.00 | 0.00 | 0.00 | 0.00 |
India | Chhattisgarh | 0.66 | 0.70 | 0.71 | 0.72 | China | Jiangsu | 0.00 | 0.00 | 0.00 | 0.00 |
India | Gujarat | 0.85 | 0.91 | 0.92 | 0.92 | China | Zhejiang | 0.85 | 0.87 | 0.87 | 0.87 |
India | Haryana 2 | 0.76 | 0.72 | 0.70 | 0.69 | China | Anhui 2 | 0.75 | 0.70 | 0.68 | 0.67 |
India | Himachal Pradesh 2 | 0.64 | 0.60 | 0.58 | 0.57 | China | Fujian | 0.87 | 0.86 | 0.86 | 0.86 |
India | Jammu and Kashmir | 0.57 | 0.61 | 0.62 | 0.62 | China | Jiangxi 2 | 0.75 | 0.73 | 0.71 | 0.69 |
India | Jharkhand 1 | 0.71 | 0.67 | 0.65 | 0.64 | China | Shandong 3 | - | - | - | - |
India | Karnataka 2 | 0.76 | 0.73 | 0.71 | 0.70 | China | Henan 3 | - | - | - | - |
India | Kerala 2 | 0.57 | 0.55 | 0.53 | 0.52 | China | Hubei | 0.92 | 0.91 | 0.92 | 0.92 |
India | Madhya Pradesh | 0.82 | 0.87 | 0.87 | 0.88 | China | Hunan 2 | 0.88 | 0.84 | 0.81 | 0.80 |
India | Meghalaya | 0.73 | 0.72 | 0.72 | 0.72 | China | Guangdong | 0.85 | 0.84 | 0.83 | 0.83 |
India | Mizoram 1 | 0.45 | 0.44 | 0.43 | 0.42 | China | Guangxi | 0.85 | 0.89 | 0.90 | 0.90 |
India | Nagaland 2 | 0.68 | 0.65 | 0.63 | 0.62 | China | Hainan | 0.40 | 0.00 | 0.00 | 0.00 |
India | Odisha 2 | 0.69 | 0.65 | 0.64 | 0.62 | China | Chongqing | 0.95 | 0.93 | 0.92 | 0.92 |
India | Rajasthan 2 | 0.70 | 0.68 | 0.66 | 0.65 | China | Sichuan | 1.00 | 1.00 | 1.00 | 1.00 |
India | Tamil Nadu 2 | 0.69 | 0.67 | 0.65 | 0.64 | China | Guizhou | 0.98 | 0.98 | 0.98 | 0.98 |
India | Telangana | 0.64 | 0.00 | 0.00 | 0.00 | China | Yunnan | 0.97 | 0.95 | 0.94 | 0.93 |
India | Uttar Pradesh 2 | 0.99 | 0.95 | 0.93 | 0.91 | China | Tibet | 0.62 | 0.63 | 0.64 | 0.65 |
India | Uttarakhand | 0.72 | 0.63 | 0.00 | 0.00 | China | Shaanxi | 0.92 | 0.91 | 0.91 | 0.90 |
India | West Bengal 2 | 0.93 | 0.94 | 0.91 | 0.90 | China | Gansu 2 | 0.99 | 0.94 | 0.92 | 0.90 |
China | Beijing 3 | - | - | - | - | China | Qinghai 2 | 0.88 | 0.84 | 0.81 | 0.80 |
China | Tianjin 3 | - | - | - | - | China | Ningxia 2 | 0.89 | 0.85 | 0.82 | 0.81 |
China | Hebei | 0.90 | 0.91 | 0.91 | 0.91 | China | Xinjiang | 0.83 | 0.80 | 0.77 | 0.76 |
China | Shanxi 2 | 0.87 | 0.82 | 0.58 | 0.57 |
Parameters | Code | Potato Tuber Moth | Potato |
---|---|---|---|
Temperature | |||
Limiting low temperature (°C) | DV0 | 9 | 4 |
Lower optimal temperature (°C) | DV1 | 20 | 16 |
Upper optimal temperature (°C) | DV2 | 30 | 25 |
Limiting high temperature (°C) | DV3 | 38 | 40 |
PDD 1 | 497 | 950 | |
Moisture | |||
Limiting low soil moisture | SM0 | 0.1 | 0.12 |
Lower optimal soil moisture | SM1 | 0.15 | 0.2 |
Upper optimal soil moisture | SM2 | 1.0 | 0.8 |
Limiting high soil moisture | SM3 | 1.5 | 1.5 |
Light | |||
Day-length at no growth | LT1 | - | 10 |
Day-length at maximum growth | LT0 | - | 16 |
Cold stress (CS) | |||
CS temperature threshold (°C) | TTCS | 5 | |
CS temperature rate | THCS | −0.00013 | |
Heat stress (HS) | |||
HS temperature threshold (°C) | TTHS | 38 | - |
HS temperature rate | THHS | 0.005 | - |
Dry stress (DS) | |||
DS threshold | SMDS | 0.1 | - |
DS rate | HDS | −0.02 | - |
Wet stress (WS) | |||
WS threshold | SMWS | 1.5 | - |
WS threshold | HWS | 0.001 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-M.; Lee, S.-G.; Kim, K.-H.; Jeon, S.-W.; Jung, S.; Lee, W.-H. The Potential Distribution of the Potato Tuber Moth (Phthorimaea Operculella) Based on Climate and Host Availability of Potato. Agronomy 2020, 10, 12. https://doi.org/10.3390/agronomy10010012
Jung J-M, Lee S-G, Kim K-H, Jeon S-W, Jung S, Lee W-H. The Potential Distribution of the Potato Tuber Moth (Phthorimaea Operculella) Based on Climate and Host Availability of Potato. Agronomy. 2020; 10(1):12. https://doi.org/10.3390/agronomy10010012
Chicago/Turabian StyleJung, Jae-Min, Sang-Geui Lee, Kwang-Ho Kim, Sung-Wook Jeon, Sunghoon Jung, and Wang-Hee Lee. 2020. "The Potential Distribution of the Potato Tuber Moth (Phthorimaea Operculella) Based on Climate and Host Availability of Potato" Agronomy 10, no. 1: 12. https://doi.org/10.3390/agronomy10010012
APA StyleJung, J.-M., Lee, S.-G., Kim, K.-H., Jeon, S.-W., Jung, S., & Lee, W.-H. (2020). The Potential Distribution of the Potato Tuber Moth (Phthorimaea Operculella) Based on Climate and Host Availability of Potato. Agronomy, 10(1), 12. https://doi.org/10.3390/agronomy10010012