Bruise Patterns of Fresh Market Apples Caused by Fruit-to-Fruit Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Pendulum-Type Fruit Impact Device
2.2. Sample Preparation and Experimental Setup
2.3. Equivalent Drop Height
2.4. Fruit Bruising Assessment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Statistical Results of Moving Fruit Weight
3.2. Fruit Impact Responses
3.3. Fruit Bruising Severity Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Crops. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 13 October 2019).
- Peterson, D.L. Harvest mechanization progress and prospects for fresh market quality deciduous tree fruits. HortTechnology 2005, 15, 72–75. [Google Scholar] [CrossRef]
- Du, X.; Jiang, F.; Li, S.; Xu, N.; Li, D.; Wu, C. Design and experiment of vibratory harvesting mechanism for Chinese hickory nuts based on orthogonal eccentric masses. Comput. Electron. Agric. 2019, 156, 178–186. [Google Scholar] [CrossRef]
- Zhang, Z.; Heinemann, P.H.; Liu, J.; Baugher, T.A.; Schupp, J.R. The development of mechanical apple harvesting technology: A review. Trans. ASABE 2016, 59, 1165–1180. [Google Scholar]
- Zhang, Q.; Karkee, M. Fully automated tree fruit harvesting. Resour. Mag. 2016, 23, 16–17. [Google Scholar]
- Peterson, D.L.; Wolford, S.D. Fresh–market quality tree fruit harvester part II: Apples. Appl. Eng. Agric. 2003, 19, 545–548. [Google Scholar]
- De Kleine, M.E.; Karkee, M. A semi-automated harvesting prototype for shaking fruit tree limbs. Trans. ASABE 2015, 58, 1461–1470. [Google Scholar]
- Ma, S.; Karkee, M.; Fu, H.; Sun, D.; Zhang, Q. Evaluation of shake-and-catch mechanism in mechanical harvesting of apples. Trans. ASABE 2018, 61, 1257–1263. [Google Scholar] [CrossRef]
- Schulte, N.L.; Brown, G.K.; Timm, E.J. Apple impact damage thresholds. Appl. Eng. Agric. 1992, 8, 55–60. [Google Scholar] [CrossRef]
- Stropek, Z.; Gołacki, K. The effect of drop height on bruising of selected apple varieties. Postharvest Biol. Technol. 2013, 85, 167–172. [Google Scholar] [CrossRef]
- Wu, J.; Guo, K.; Ge, Y.; Wang, Y. Contact pressure distribution characteristics of Korla pear fruit at moment of drop impact. Trans. CSAE 2012, 28, 250–254. [Google Scholar]
- Zhou, J.; He, L.; Karkee, M.; Zhang, Q. Effect of catching surface and tilt angle on bruise damage of sweet cherry due to mechanical impact. Comput. Electron. Agric. 2016, 121, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Li, C.; Takeda, F.; Krewer, G.; Rains, G.; Hamrita, T. Quantitative evaluation of a rotary blueberry mechanical harvester using a miniature instrumented sphere. Comput. Electron. Agric. 2012, 88, 25–31. [Google Scholar] [CrossRef]
- Opara, U.L.; Al-Ghafri, A.; Agzoun, H.; Al-Issai, J.; Al-Jabri, F. Design and development of a new device for measuring susceptibility to impact damage of fresh produce. N. Z. J. Crop Hortic. Sci. 2007, 35, 245–251. [Google Scholar] [CrossRef]
- Fu, H.; He, L.; Ma, S.; Karkee, M.; Chen, D.; Zhang, Q.; Wang, S. ‘Jazz’ apple impact bruise responses to different cushioning materials. Trans. ASABE 2017, 60, 327–336. [Google Scholar]
- Wang, W.; Lu, H.; Zhang, S.; Yang, Z. Damage caused by multiple impacts of litchi fruits during vibration harvesting. Comput. Electron. Agric. 2019, 162, 732–738. [Google Scholar] [CrossRef]
- Van Zeebroeck, M.; Darius, P.; De Ketelaere, B.; Ramon, H.; Tijskens, E. The effect of fruit factors on the bruise susceptibility of apples. Postharvest Biol. Technol. 2007, 46, 10–19. [Google Scholar] [CrossRef]
- Zarifneshat, S.; Ghassemzadeh, H.R.; Sadeghi, M.; Abbaspour-Fard, M.H.; Ahmadi, E.; Javadi, A.; Shervani-Tabar, M.T. Effect of impact level and fruit properties on golden delicious apple bruising. Am. J. Agric. Biol. Sci. 2010, 5, 114–121. [Google Scholar]
- Opara, U.L.; Pathare, P.B. Bruise damage measurement and analysis of fresh horticultural produce—A review. Postharvest Biol. Technol. 2014, 91, 9–24. [Google Scholar] [CrossRef]
- Scheffler, O.C.; Coetzee, C.J.; Opara, U.L. A discrete element model (DEM) for predicting apple damage during handling. Biosyst. Eng. 2018, 172, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Pang, D.; Studman, C.J.; Banks, N.H. Apple bruising thresholds for an instrumented sphere. Trans. ASAE 1994, 37, 893–897. [Google Scholar] [CrossRef]
- Ortiz, C.; Blasco, J.; Balasch, S.; Torregrosa, A. Shock absorbing surfaces for collecting fruit during the mechanical harvesting of citrus. Biosyst. Eng. 2011, 110, 2–9. [Google Scholar] [CrossRef]
- Van Zeebroeck, M.; Ramon, H.; De Baerdemaeker, J.; Nicolaï, B.M.; Tijskens, E. Impact damage of apples during transport and handling. Postharvest Biol. Technol. 2007, 45, 157–167. [Google Scholar] [CrossRef]
- Fadiji, T.; Coetzee, C.; Chen, L.; Chukwu, O.; Opara, U.L. Susceptibility of apples to bruising inside ventilated corrugated paperboard packages during simulated transport damage. Postharvest Biol. Technol. 2016, 118, 111–119. [Google Scholar] [CrossRef]
- Peterson, D.L.; Bennedsen, B.S.; Anger, W.C.; Wolford, S.D. A systems approach to robotic bulk harvesting of apples. Trans. ASAE 1999, 42, 871–876. [Google Scholar] [CrossRef]
- Pang, W.; Studman, C.J.; Banks, N.H. Analysis of damage thresholds in apple-to-apple impacts using an instrumented sphere. N. Z. J. Crop. Hortic. Sci. 1992, 20, 159–166. [Google Scholar] [CrossRef]
- Pang, W.; Studman, C.J.; Ward, G.T. Bruising damage in apple-to-apple impact. J. Agric. Eng. Res. 1992, 52, 229–240. [Google Scholar] [CrossRef]
- Studman, C.J.; Brown, G.K.; Timm, E.J.; Schulte, N.L.; Vreede, M.J. Bruising on blush and non-blush sides in apple-to-apple impacts. Trans. ASAE 1997, 40, 1655–1663. [Google Scholar] [CrossRef]
- Abbott, J.A.; Lu, R. Anisotropic mechanical properties of apples. Trans. ASAE 1996, 39, 1451–1459. [Google Scholar] [CrossRef]
- Bajema, R.W.; Baritelle, A.L.; Hyde, G.M.; Pitts, M.J. Factors influencing dynamic mechanical properties of ‘Red Delicious’ apple tissue. Trans. ASAE 2000, 43, 1725–1731. [Google Scholar] [CrossRef]
- Tennes, B.R.; Zapp, H.R.; Marshall, D.E.; Armstrong, P.R. Apple handling impact data acquisition and analysis with an instrumented sphere. J. Agric. Eng. Res. 1990, 47, 269–276. [Google Scholar] [CrossRef]
- Washington Tree Fruit Acreage Report 2017. Available online: https://www.nass.usda.gov/Statistics_by_State/Washington/Publications/Fruit/2017/FT2017.pdf (accessed on 8 December 2019).
- Zarifneshat, S.; Rohani, A.; Ghassemzadeh, H.R.; Sadeghi, M.; Ahmadi, E.; Zarifneshat, M. Predictions of apple bruise volume using artificial neural network. Comput. Electron. Agric. 2012, 82, 75–86. [Google Scholar] [CrossRef]
- Komarnicki, P.; Stopa, R.; Szyjewicz, D.; Młotek, M. Evaluation of bruise resistance of pears to impact load. Postharvest Biol. Technol. 2016, 114, 36–44. [Google Scholar] [CrossRef]
- Stopa, R.; Szyjewicz, D.; Komarnicki, P.; Kuta, Ł. Limit values of impact energy determined from contours and surface pressure distribution of apples under impact loads. Comput. Electron. Agric. 2018, 154, 1–9. [Google Scholar] [CrossRef]
- Pang, D.; Studman, C.J.; Banks, N.H.; Baas, P.H. Rapid assessment of the susceptibility of apples to bruising. J. Agric. Eng. Res. 1996, 64, 37–47. [Google Scholar] [CrossRef]
- Stropek, Z.; Gołacki, K. A new method for measuring impact related bruises in fruits. Postharvest Biol. Technol. 2015, 110, 131–139. [Google Scholar] [CrossRef]
- Peterson, D.L.; Tabb, A.L.; Baugher, T.A.; Lewis, K.; Glenn, D.M. Dry bin filler for apples. Appl. Eng. Agric. 2010, 26, 541–549. [Google Scholar] [CrossRef]
- Li, Z.; Thomas, C. Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci. Technol. 2014, 35, 138–150. [Google Scholar] [CrossRef]
- Pitt, R.E. Models for the rheology and statistical strength of uniformly stressed vegetative tissue. Trans. ASAE 1982, 25, 1776–1784. [Google Scholar] [CrossRef]
- Horsfield, B.C.; Fridley, R.B.; Claypool, L.L. Application of theory of elasticity to the design of fruit harvesting and handling equipment for minimum bruising. Trans. ASAE 1972, 15, 746–750. [Google Scholar] [CrossRef]
- Abedi, G.; Ahmadi, E. Bruise susceptibilities of golden delicious apples as affected by mechanical impact and fruit properties. J. Agric. Sci. 2014, 152, 439–447. [Google Scholar] [CrossRef]
- Siyami, S.; Brown, G.K.; Burgess, G.J.; Gerrish, J.B.; Tennes, B.R.; Burton, C.L.; Zapp, R.H. Apple impact bruise prediction models. Trans. ASAE 1988, 31, 1038–1046. [Google Scholar] [CrossRef]
- Chen, P.; Yazdani, R. Prediction of apple bruising due to impact on different surfaces. Trans. ASAE 1991, 34, 956–961. [Google Scholar] [CrossRef]
Impacting Zones | Impact Levels | ||||||
---|---|---|---|---|---|---|---|
Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 | Level 7 | |
Middle to Top | 92 ± 9 a | 93 ± 6 a | 97 ± 10 a | 92 ± 9 a | 94 ± 9 a | 95 ± 11 a | 95 ± 12 a |
Middle to Middle | 89 ± 10 a | 92 ± 11 a | 92 ± 14 a | 88 ± 11 a | 90 ± 8 a | 94 ± 9 a | 93 ± 8 a |
Middle to Bottom | 93 ± 12 a | 82± 6 b | 90 ± 10 a | 82 ± 8 b | 85 ± 8 a | 90 ± 13 a | 82 ± 7 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Karkee, M.; He, L.; Duan, J.; Li, J.; Zhang, Q. Bruise Patterns of Fresh Market Apples Caused by Fruit-to-Fruit Impact. Agronomy 2020, 10, 59. https://doi.org/10.3390/agronomy10010059
Fu H, Karkee M, He L, Duan J, Li J, Zhang Q. Bruise Patterns of Fresh Market Apples Caused by Fruit-to-Fruit Impact. Agronomy. 2020; 10(1):59. https://doi.org/10.3390/agronomy10010059
Chicago/Turabian StyleFu, Han, Manoj Karkee, Long He, Jieli Duan, Jun Li, and Qin Zhang. 2020. "Bruise Patterns of Fresh Market Apples Caused by Fruit-to-Fruit Impact" Agronomy 10, no. 1: 59. https://doi.org/10.3390/agronomy10010059
APA StyleFu, H., Karkee, M., He, L., Duan, J., Li, J., & Zhang, Q. (2020). Bruise Patterns of Fresh Market Apples Caused by Fruit-to-Fruit Impact. Agronomy, 10(1), 59. https://doi.org/10.3390/agronomy10010059