The Prospect of Bentazone-Tolerant Soybean for Conventional Cultivation
Abstract
:1. Introduction
2. Bentazone
2.1. Bentazone Effectivity Modulated by Environmental Conditions
2.2. Tolerance Mechanism for Bentazone
2.3. Inheritance and Genes Controlling Bentazone Tolerance in Crops
2.4. Pre- and Post-Emergence Herbicides for Soybean Production
2.5. Utilization of Bentazone in Soybean Production
2.6. Genetic Resources and Genetic Information for Bentazone Tolerance in Soybean
3. Future Perspective and Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Nigatu, L.; Sharma, J.J. Parthenium weed invasion and biodiversity loss in Ethiopia: A literature review. African Crop Sci. Conf. Proc. 2013, 11, 377–381. [Google Scholar]
- Iderawumi, A.M. Characteristics Effects of Weed on Growth Performance and Yield of Maize (Zea mays). Biomed. J. Sci. Tech. Res. 2018, 7, 7–10. [Google Scholar] [CrossRef]
- Oerke, E.C.; Dehne, H.W. Safeguarding production—Losses in major crops and the role of crop protection. Crop Prot. 2004, 23, 275–285. [Google Scholar] [CrossRef]
- Cavigelli, M.A.; Teasdale, J.R.; Conklin, A.E. Long-term agronomic performance of organic and conventional field crops in the mid-Atlantic region. Agron. J. 2008, 100, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Basinger, N.T.; Jennings, K.M.; Monks, D.W.; Jordan, D.L.; Everman, W.J.; Hestir, E.L.; Bertucci, M.B.; Brownie, C. Large crabgrass (Digitaria sanguinalis) and Palmer amaranth (Amaranthus palmeri) intraspecific and interspecific interference in soybean. Weed Sci. 2019, 67, 649–656. [Google Scholar] [CrossRef]
- United States Department of Agricutre Foreign Agricultural Service. Available online: https://www.fas.usda.gov/data/world-agricultural-production (accessed on 10 October 2020).
- Kraehmer, H.; Laber, B.; Rosinger, C.; Schulz, A. Herbicides as Weed Control Agents: State of the Art: I. Weed Control Research and Safener Technology: The Path to Modern Agriculture. Plant Physiol. 2014, 166, 1119–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abouziena, H.F.; Haggag, W.M. Weed Control in Clean Agriculture: A review. Planta Daninha 2016, 34, 377–392. [Google Scholar] [CrossRef]
- Europe, S.P. Weed Control-Global Market Outlook (2017–2026); Stratistics Market Research: Secunderabad, India, June 2018. [Google Scholar]
- Gianessi, L.; Sankula, S. The Value of Herbicides in U.S. Crop Production. Archeamatica 2003, 4, 46–51. [Google Scholar] [CrossRef]
- Hull, H.M. Herbicide Handbook of the Weed Society of America; Humphrey Press: Geneva, NY, USA, 1976; 293p. [Google Scholar]
- Shaner, D.L.; Beckie, H.J. The future for weed control and technology. Pest Manag. Sci. 2014, 70, 1329–1339. [Google Scholar] [CrossRef]
- Milne, G.W.A. (Ed.) Pesticides: An International Guide to 1800 Pest Control Chemicals, 2nd ed.; Ashgate Publishing Ltd.: Hampshire, UK, 2004; ISBN 978-0-471-72334-9. [Google Scholar]
- Wágner, G.; Nádasy, E. Effect of pre-emergence herbicides on growth parameters of green pea. Commun. Agric. Appl. Biol. Sci. 2006, 71, 809–813. [Google Scholar]
- Sherwani, S.I.; Arif, I.A.; Khan, H.A. Modes of Action of Different Classes of Herbicides. Herbic. Physiol. Action Saf. 2015. [Google Scholar] [CrossRef] [Green Version]
- Price, A.J.; Koger, C.H.; Wilcut, J.W.; Miller, D.; Van Santen, E. Efficacy of Residual And Non-Residual Herbicides Used in Cotton Production Systems When Applied with Glyphosate, Glufosinate, or MSMA. Weed Technol. 2008, 22, 459–466. [Google Scholar] [CrossRef]
- Varshney, S.; Hayat, S.; Alyemeni, M.N.; Ahmad, A. Effects of herbicide applications in wheat fields: Is phytohormones application a remedy? Plant Signal Behav. 2012, 7, 570–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jugulam, M.; Shyam, C. Non-target-site resistance to herbicides: Recent developments. Plants 2019, 8, 417. [Google Scholar] [CrossRef] [Green Version]
- Vrbničanin, S.; Pavlović, D.; Božić, D. Weed Resistance to Herbicides. Herbic. Resist. Weeds Crop. 2017. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Zhang, X.; Liu, K.; Zhang, J.; Wu, X.; Zhu, J.; Tu, J. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. Plant Mol. Biol. 2006, 61, 933–943. [Google Scholar] [CrossRef]
- Singh, S.P.; Rawal, S.; Dua, V.K.; Roy, S.; Sharma, S.K. Evaluation of post emergence herbicide bentazon in potato crop. IJCS 2019, 7, 2816–2820. [Google Scholar]
- Herrmann, C.M.; Goll, M.A.; Phillippo, C.J.; Zandstra, B.H. Postemergence weed control in onion with Bentazon, Flumioxazin, and Oxyfluorfen. Weed Technol. 2017, 31, 279–290. [Google Scholar] [CrossRef]
- Zimdahl, R.L. Fundamentals of Weed Science, 5th ed.; Academic Press: Burlington, MA, USA, 2018; Chapter 16; pp. 463–499. ISBN 9780128111437. [Google Scholar]
- Berger, S.; Ferrell, J.; Leon, R. Diagnosing Herbicide Injury in Cotton; University of Florida: Gainesville, FL, USA, 2015; pp. 1–9. Available online: https://edis.ifas.ufl.edu/ag367 (accessed on 29 August 2020).
- Zhu, J.; Patzoldt, W.L.; Radwan, O.; Tranel, P.J.; Clough, S.J. Effects of Photosystem-II-Interfering Herbicides Atrazine and Bentazon on the Soybean Transcriptome. Plant Genome J. 2009, 2, 191. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.C.; Wang, C.Y. Physiological basis of bentazon tolerance in rice (Oryza sativa L.) lines. Weed Biol. Manag. 2002, 2, 186–193. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Meier, D.; Retzlaff, G.; Hamm, R. Distribution and effects of bentazon in crop plants and weeds. Z. Naturforsch. Sect. C J. Biosci. 1982, 37, 889–897. [Google Scholar] [CrossRef]
- Connelly, J.A.; Johnson, M.D.; Gronwald, J.W.; Wyse, D.L. Bentazon metabolism in tolerant and susceptible soybean (Glycine max) genotypes. Weed Sci. 1988, 417–423. [Google Scholar] [CrossRef]
- Stoller, E.W.; Wax, L.M.; Matthiesen, R.L. Response of yellow nutsedge and soybeans to bentazon, glyphosate, and perfluidone. Weed Sci. 1975, 215–221. [Google Scholar] [CrossRef]
- Bradshaw, L.D.; Barrett, M.; Poneleit, C.G. Physiological basis for differential bentazon susceptibility among corn (Zea mays) inbreds. Weed Sci. 1992, 522–527. [Google Scholar] [CrossRef]
- Baltazar, A.M.; Monaco, T.J. Uptake, translocation, and metabolism of bentazon by two pepper species (Capsicum annuum and Capsicum chinese). Weed Sci. 1984, 258–263. [Google Scholar] [CrossRef]
- Penner, D. Bentazone selectivity between soybean and Canada thistle. Weed Res. 1975, 15, 259–262. [Google Scholar] [CrossRef]
- Galhano, V.; Peixoto, F.; Gomes-Laranjo, J.; Fernández-Valiente, E. Differential effects of bentazon and molinate on anabaena cylindrica, an autochthonous cyanobacterium of portuguese rice field agro-ecosystems. Water. Air. Soil Pollut. 2009, 197, 211–222. [Google Scholar] [CrossRef]
- Allievi, L.; Gigliotti, C.; Salardi, C.; Valsecchi, G.; Brusa, T.; Ferrari, A. Influence of the herbicide bentazon on soil microbial community. Microbiol. Res. 1996, 151, 105–111. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Harker, K.N.; Clayton, G.W.; Turkington, T.K.; Rice, W.A.; O’Donovan, J.T. Soil microbial biomass and diversity after herbicide application. Can. J. Plant Sci. 2004, 84, 677–685. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Pathan, S.I. Impact of agrochemicals on soil microbiota and management: A review. Land 2020, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Levi, S.; Hybel, A.M.; Bjerg, P.L.; Albrechtsen, H.J. Stimulation of aerobic degradation of bentazone, mecoprop and dichlorprop by oxygen addition to aquifer sediment. Sci. Total Environ. 2014, 473–474, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke-bin, L.I.; Jing-tao, C.; Xiao-fang, W.; Ying, Z.; Wei-ping, L.I.U. Degradation of Herbicides Atrazine and Bentazone Applied Alone and in Combination in Soils. Pedosphere 2008, 18, 265–272. [Google Scholar]
- Rose, M.T.; Cavagnaro, T.R.; Scanlan, C.A.; Rose, T.J.; Vancov, T.; Kimber, S.; Van Zwieten, L. Impact of herbicides on soil biology and function. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2016; Volume 136, pp. 133–220. [Google Scholar]
- Federal Register. Available online: https://www.federalregister.gov/documents/2019/05/01/2019-08785/bentazon-pesticide-tolerances#print (accessed on 10 October 2020).
- Food and Agriculture Organization. Available online: http://www.fao.org/3/a-i3518e.pdf (accessed on 10 October 2020).
- Acquavella, J.; Doe, J.; Tomenson, J.; Chester, G.; Cowell, J.; Bloemen, L. Epidemiologic studies of occupational pesticide exposure and cancer: Regulatory risk assessments and biologic plausibility. Ann. Epidemiol. 2003, 13, 1–7. [Google Scholar] [CrossRef]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of Climate Change Factors on Weeds and Herbicide Efficacy. In Advances in Agronomy; Academic Press: Burlington, MA, USA, 2016; Volume 135, pp. 107–146. ISBN 9780128046937. [Google Scholar]
- Kudsk, P.; Kristensen, J. Effect of environmental factors on herbicide performance. In Proceedings of the First International Weed Control Congress, Melbourne, Australia, 17–21 February 1992; Weed Science Society of Victoria: Victoria, Australia, 1992; pp. 173–186. [Google Scholar]
- Matzenbacher, F.O.; Vidal, R.A.; Merotto, A.; Trezzi, M.M. Environmental and physiological factors that affect the efficacy of herbicides that inhibit the enzyme protoporphyrinogen oxidase: A literature review. Planta Daninha 2014, 32, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.M.; Swanton, C.J.; Hall, J.C.; Mersey, B.G. The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Res. 1993, 33, 139–147. [Google Scholar] [CrossRef]
- Mine, A.; Matsunaka, S. Mode of action of bentazon: Effect on photosynthesis. Pestic. Biochem. Physiol. 1975, 5, 444–450. [Google Scholar] [CrossRef]
- Kudsk, P. Optimising herbicide performance. In Weed Management Handbook, 9th ed.; Naylor, R.E.L., Ed.; Blackwell Science: Oxford, UK, 2002; pp. 323–344. [Google Scholar]
- Vencill, W.; Grey, T.; Culpepper, S. Resistance of Weeds to Herbicides. Herbic. Environ. 2011. [Google Scholar] [CrossRef] [Green Version]
- Ohkawa, H.; Tsujii, H.; Ohkawa, Y. The use of cytochrome P450 genes to introduce herbicide tolerance in crops: A review. Pestic. Sci. 1999, 55, 867–874. [Google Scholar] [CrossRef]
- Peterson, D.; Thompson, C.; Shoup, D.; Jugulam, M. Herbicide Mode of Action; Kansas State University: Manhattan, KS, USA, May 2015; Available online: https://bookstore.ksre.ksu.edu/pubs/c715.pdf (accessed on 29 August 2020).
- Hayes, R.M.; Wax, L.M. Differential Intraspecific Responses of Soybean Cultivars to Bentazon. Weed Sci. 1975, 23, 516–521. [Google Scholar] [CrossRef]
- Huber, R.; Otto, S. Environmental behavior of bentazon herbicide. Rev. Environ. Contam. Toxicol. 1994, 137, 111–134. [Google Scholar] [CrossRef]
- Anastassiadou, M.; Brancato, A.; Cabrera, L.C.; Ferreira, L.; Greco, L.; Jarrah, S.; Kazocina, A.; Leuschner, R.; Magrans, J.O.; Miron, I.; et al. Modification of the existing maximum residue levels for bentazone in soyabeans and poppy seeds. EFSA J. 2019, 17, e05798. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.D.; Maness, E.P. Constitutive and inducible bentazon hydroxylation in shattercane (Sorghum bicolor) and Johnsongrass (S. halapense). Pestic. Biochem. Physiol. 1992, 44, 40–49. [Google Scholar] [CrossRef]
- McFadden, J.J.; Gronwald, J.W.; Eberlein, C.V. In vitro hydroxylation of bentazon by microsomes from naphthalic anhydride-treated corn shoots. Biochem Biophys Res Commun. 1990, 168, 206–213. [Google Scholar] [CrossRef]
- Yu, Q.; Powles, S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: A threat to herbicide sustainability and global crop production. Plant Physiol. 2014, 166, 1106–1118. [Google Scholar] [CrossRef] [Green Version]
- Siminszky, B. Plant cytochrome P450-mediated herbicide metabolism. Phytochem. Rev. 2006, 5, 445–458. [Google Scholar] [CrossRef]
- De Montellano, P.R.O. 1-Aminobenzotriazole: A Mechanism-Based Cytochrome P450 Inhibitor and Probe of Cytochrome P450 Biology. Med. Chem. 2018, 8, 38–65. [Google Scholar] [CrossRef]
- Nohatto, M.A.; Agostinetto, D.; Langaro, A.C.; de Oliveira, C.; Ruchel, Q. Antioxidant activity of rice plants sprayed with herbicides. Pesqui. Agropecuária Trop. 2016, 46, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Fleming, A.A.; Banks, P.A.; Legg, J.G. Differential response of maize inbreds to bentazon and other herbicides. Can. J. Plant Sci. 1988, 68, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Eberlein, C.V.; Guttieri, M.J.; Fletcher, F.E. Postemergence directed application of bentazon + metribuzin for broadleaf weed control in Russet Burbank potatoes. Am. Potato J. 1996, 73, 135–141. [Google Scholar] [CrossRef]
- Nosratti, I.; Mahdavi-Rad, S.; Heidari, H.; Saeidi, M. Differential tolerance of pumpkin species to bentazon, metribuzin, trifluralin and oxyfluorfen. Planta Daninha 2017, 35. [Google Scholar] [CrossRef]
- Harrison, H.F.; Fery, R.L. Differential Bentazon Response in Cowpea (Vigna unguiculata). Weed Technol. 1993, 7, 756–758. [Google Scholar] [CrossRef]
- Soltani, N.; Nurse, R.E.; Robinson, D.E.; Sikkema, P.H. Response of Pinto and Small Red Mexican Bean to Postemergence Herbicides. Weed Technol. 2008, 22, 195–199. [Google Scholar] [CrossRef]
- Fery, R.L.; Harrison, H.F. Characterization of the bentazon herbicide tolerance factor in “Bohemian Chili” pepper. HortScience 1999, 34, 125–126. [Google Scholar] [CrossRef]
- Jordan, D.L.; Spears, J.F.; Wilcut, J.W. Tolerance of Peanut (Arachis hypogaea L.) to Herbicides Applied Postemergence. Peanut Sci. 2003, 30, 8–13. [Google Scholar] [CrossRef]
- McCurdy, J.D.; McElroy, J.S.; Flessner, M.L. Differential Response of Four Trifolium Species to Common Broadleaf Herbicides: Implications for Mixed Grass-Legume Swards. Weed Technol. 2013, 27, 123–128. [Google Scholar] [CrossRef]
- Burgess, P.; Haverstock, J.; Wood, S. Guide to Weed Management in Highbush Blueberry. 2018. Available online: https://www.perennia.ca/wp-ontent/uploads/2018/03/Highbush-blueberry-weed-control-Guide_2018a.pdf (accessed on 26 August 2020).
- Leah, J.M.; Worrall, T.L.; Cobb, A.H. Isolation and characterisation of two glucosyltransferases from Glycine max associated with bentazone metabolism. Pestic. Sci. 1992, 34, 81–87. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Q.; Chen, H.; Pan, G.; Xiao, S.; Dai, Y.; Li, Q.; Zhang, J.; Wu, X.; Wu, J.; et al. Identification of a cytochrome P450 hydroxylase, CYP81A6, as the candidate for the bentazon and sulfonylurea herbicide resistance gene, Bel, in rice. Mol. Breed. 2007, 19, 59–68. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, H.; Chen, S.; Zhu, K.; Song, H.; Qian, H. Leaf proteome analysis provides insights into the molecular mechanisms of bentazon detoxification in rice. Pestic. Biochem. Physiol. 2015, 125, 45–52. [Google Scholar] [CrossRef]
- Bernard, R.L.; Wax, L.M. Inheritance of a sensitive reaction to bentazon herbicide. Soybean Genet. Newsl. 1975, 2, 46–47. [Google Scholar]
- Kato, S.; Yokota, Y.; Suzuki, R.; Fujisawa, Y.; Sayama, T.; Kaga, A.; Anai, T. Identification of a cytochrome P450 hydroxylase, CYP81E22, as a causative gene for the high sensitivity of soybean to herbicide bentazon. Theor. Appl. Genet. 2020. [Google Scholar] [CrossRef]
- Bradshaw, L.D.; Barrett, M.; Poneleit, C.G. Inheritance of bentazon susceptibility in a corn (Zea mays) line. Weed Sci. 1994, 641–647. [Google Scholar] [CrossRef]
- Nordby, J.N.; Williams, M.M.; Pataky, J.K.; Riechers, D.E.; Lutz, J.D. A common genetic basis in sweet corn inbred Cr1 for cross sensitivity to multiple cytochrome P450-metabolized herbicides. Weed Sci. 2008, 56, 376–382. [Google Scholar] [CrossRef]
- Wolff, D.W.; Collins, W.W.; Monaco, T.J. Inheritance of Tolerance to the Herbicide Bentazon in Peppers (Capsicum annuum L.). J. Am. Soc. Hortic. Sci. 1992, 117, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Shelton, A.; Shaw, D. Green Genes: Sustainability Advantages of Herbicide Tolerant and Insect Resistant Crops. Available online: https://geneticliteracyproject.org/2014/12/02/green-genes-sustainability-advantages-of-herbicide-tolerant-and-insect-resistant-crops (accessed on 10 October 2020).
- Ke, L.; Liu, R.; Chu, B.; Yu, X.; Sun, J.; Jones, B.; Pan, G.; Cheng, X.; Wang, H.; Zhu, S.; et al. Cell Suspension Culture-Mediated Incorporation of the Rice Bel Gene into Transgenic Cotton. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Khan, M.D.; Mei, L.; Raza, I.; Deeba, F.; Hassan, S.; Zhu, S.J. Agrobacterium-mediated Genetic Transformation of Bentazon Resistant Gene (Cyp81A6) in Cotton. J. Bio Mol. Sci. 2013, 1, 17–26. [Google Scholar]
- Liu, C.; Liu, S.; Wang, F.; Wang, Y.; Liu, K. Expression of a rice CYP81A6 gene confers tolerance to bentazon and sulfonylurea herbicides in both Arabidopsis and tobacco. Plant Cell. Tissue Organ Cult. 2012, 109, 419–428. [Google Scholar] [CrossRef]
- Yamada, T.; Ohashi, Y.; Ohshima, M.; Inui, H.; Shiota, N.; Ohkawa, H.; Ohkawa, Y. Inducible cross-tolerance to herbicides in transgenic potato plants with the rat CYP1A1 gene. Theor. Appl. Genet. 2002, 104, 308–314. [Google Scholar] [CrossRef]
- Goldsmith, P.D. Economics of Soybean Production, Marketing, and Utilization. Soybeans Chem. Prod. Process. Util. 2008, 117–150. [Google Scholar] [CrossRef]
- Buhler, D.D.; Hartzler, R.G.; Forcella, F. Implications of weed seedbank dynamics to weed management. Weed Sci. 1997, 45, 329–336. [Google Scholar] [CrossRef]
- Vivian, R.; Reis, A.; Kálnay, P.A.; Vargas, L.; Ferreira, A.C.C.; Mariani, F. Weed Management in Soybean —Issues and Practices. In Soybean—Pest Resistance; El-Shemy, H.A., Ed.; IntechOpen Limited: London, UK; Rijeka, Croatia, 2013; p. 290. [Google Scholar]
- El-Nahhal, Y.; Hamdona, N. Phytotoxicity of Alachlor, Bromacil and Diuron as single or mixed herbicides applied to wheat, melon, and molokhia. Springerplus 2015. [Google Scholar] [CrossRef] [Green Version]
- Soltani, N.; Nurse, R.E.; Sikkema, P.H. Weed Management in Kidney Bean with Tank Mixes of S-Metolachlor, Imazethapyr and Linuron. Agric. Sci. 2014, 5, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.A.; Lawrence, B.H.; Bararpour, T.M.; Dodds, D.M.; Golden, B.R.; Irby, J.T.; Larson, E.J.; Reynolds, D.B. (Eds.) Weed Management Suggestions for Mississippi Row Crops. 2019. Available online: https://extension.msstate.edu/sites/default/files/publications/publications/p3171.pdf (accessed on 29 August 2020).
- Hager, A.G.; Wax, L.M.; Bollero, G.A.; Stoller, E.W. Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (glycine max). Weed Technol. 2003, 17, 14–20. [Google Scholar] [CrossRef]
- Green, J.M.; Owen, M.D.K. Herbicide-resistant crops: Utilities and limitations for herbicide-resistant weed management. J. Agric. Food Chem. 2011, 59, 5819–5829. [Google Scholar] [CrossRef] [PubMed]
- Soybean Herbicide Guide, Syngenta. 2019. Available online: https://www.syngenta-us.com/prodrender/imagehandler.ashx?ImID=DE713DB6-BBB5-4F0A-BA9C-54448F9A10DF&fTy=0&et=8 (accessed on 26 August 2020).
- Dayan, F.E.; Duke, S.O. Protoporphyrinogen Oxidase-Inhibiting Herbicides. In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Hayes, W.J., Ed.; Elsevier Inc.: San Diego, CA, USA, 2010; Volume 2, pp. 1733–1751. [Google Scholar]
- Almarie, A.A. The critical period for weed competition in soybean (Glycine max) under Iraqi irrigated areas. ARPN J. Agril. Biol. Sci. 2017, 4, 128–132. [Google Scholar]
- Scursoni, J.A.; Satorre, E.H. Glyphosate management strategies, weed diversity and soybean yield in Argentina. Crop Prot. 2010, 29, 957–962. [Google Scholar] [CrossRef]
- Carpenter, J.E. Comparing Roundup Ready and Conventional Soybean Yields 1999; National Center for Food and Agricultural Policy: Washington, DC, USA, 2001; p. 20036.
- Williams, M.M.; Nelson, R.L. Vegetable Soybean Tolerance to Bentazon, Fomesafen, Imazamox, Linuron, and Sulfentrazone. Weed Technol. 2014, 28, 601–607. [Google Scholar] [CrossRef]
- Meseldžija, M.; Rajković, M.; Dudić, M.; Vranešević, M.; Bezdan, A.; Jurišić, A.; Ljevnaić-Mašić, B. Economic Feasibility of Chemical Weed Control in Soybean Production in Serbia. Agronomy 2020, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Davidson, B.; Cook, T.; Chauhan, B.S. Alternative Options to Glyphosate for Control of Large Echinochloa colona and Chloris virgata Plants in Cropping Fallows. Plants 2019, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, M.; Nakayama, S.; Watanabe, H. Response of soybean cultivars to bentazon in the Tohoku region, Japan. J. Weed Sci. Technol. 2006, 51, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Kapusta, G.; Jackson, L.A.; Mason, D.S. Yield Response of Weed-Free Soybeans (Glycine max) to Injury from Postemergence Broadleaf Herbicides. Weed Sci. 1986, 34, 304–307. [Google Scholar] [CrossRef]
- Barrentine, W.L.; Street, J.E.; Eddie, J. Soybean Response to Quinclorac and Triclopyr; Department of Information Services, Division of Agriculture, Forestry, and Veterinary Medicine, Mississippi State University: Starkville, MS, USA, 1993; Volume 995.
- Belfry, K.D.; Soltani, N.; Brown, L.R.; Sikkema, P.H. Tolerance of identity preserved soybean cultivars to preemergence herbicides. Can.J. Plant Sci. 2015, 95, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Franzen, D.W.; O’Barr, J.H.; Zollinger, R.K. Interaction of a foliar application of iron HEDTA and three postemergence broadleaf herbicides with soybeans stressed from chlorosis. J. Plant Nutr. 2003, 26, 2365–2374. [Google Scholar] [CrossRef]
- Ivany, J.A.; Reddin, J. Effect of post-emergence herbicide injury and planting date on yield of narrow-row soybean (Glycine max). Can. J. Plant Sci. 2002, 82, 249–252. [Google Scholar] [CrossRef]
- Lich, J.M.; Renner, K.A.; Penner, D. Interaction of glyphosate with postemergence soybean (Glycine max) herbicides. Weed Sci. 1997, 12–21. [Google Scholar] [CrossRef]
- Palmer, E.W.; Shaw, D.R.; Holloway, J.C. Broadleaf weed control in soybean (Glycine max) with CGA-277476 and four postemergence herbicides. Weed Technol. 2000, 14, 617–623. [Google Scholar] [CrossRef]
- Ritter, R.L.; Harris, T.C.; Kaufman, L.M. Chlorsulfuron and metsulfuron residues on double-cropped soybeans (Glycine max). Weed Technol. 1988, 49–52. [Google Scholar] [CrossRef]
- Wichert, R.A.; Talbert, R.E. Soybean [Glycine max (L.)] response to lactofen. Weed Sci. 1993, 23–27. [Google Scholar] [CrossRef]
- Young, B.G.; Young, J.M.; Matthews, J.L. Soybean (Glycine max) Response to Foliar Applications of Mesotrione1. Weed Technol. 2003, 17, 651–654. [Google Scholar] [CrossRef]
- Wixson, M.B.; Shaw, D.R. Differential Response of Soybean (Glycine max) Cultivars to AC 263,222. Weed Technol. 1991, 5, 430–433. [Google Scholar] [CrossRef]
- Wax, L.M.; Bernard, R.L.; Hayes, R.M. Response of soybean cultivars to bentazon, bromoxynil, chloroxuron, and 2,4-DB. Weed Sci. 1974, 22, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Abugho, S.B. Weed Control and Management for Vegetable Soybeans in Arkansas. Ph.D. Thesis, University of Arkansas, Fayetteville, AR, USA, December 2018. [Google Scholar]
- Lee, C.; Choi, M.-S.; Kim, H.T.; Yun, H.T.; Lee, B.; Chung, Y.S.; Kim, R.W.; Choi, H.K. Soybean [Glycine max (L.) Merrill]: Importance as a Crop and Pedigree Reconstruction of Korean Varieties. Plant Breed. Biotechnol. 2015, 3, 179–196. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.Y.T.; Chan, A.W.K. Genetically modified foods in China and the United States: A primer of regulation and intellectual property protection. Food Sci. Human Wellness 2016, 5, 124–140. [Google Scholar] [CrossRef] [Green Version]
- Tillie, P.; Rodríguez-Cerezo, E. Markets for non-Genetically Modified, Identity-Preserved soybean in the EU. JRC Sci. Policy Rep. 2015, 1–72. [Google Scholar] [CrossRef]
- Si, P.; Yan, G.; Kamsan, M.A.; Adhikari, K.N. Genotypic variation of metribuzin and carfentrazone-ethyl tolerance among yellow lupin (Lupinus luteus L.) germplasm. N. Zeal. J. Crop Hortic. Sci. 2012, 40, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Si, P.; Sweetingham, M.W.; Buirchell, B.J.; Bowran, D.G.; Piper, T. Genotypic variation in metribuzin tolerance in narrow-leafed lupin (Lupinus angustifolius L.). Aust. J. Exp. Agric. 2006, 46, 85–91. [Google Scholar] [CrossRef]
- Kleemann, S.G.L.; Gill, G.S. Differential tolerance in wheat (Triticum aestivum L.) genotypes to metribuzin. Aust. J. Agric. Res. 2007, 58, 452–456. [Google Scholar] [CrossRef]
Active Ingredient | Chemical Family | Time of Application | Mode of Application | Soybean Stages at Application | Mode of Action | Injury Leaf or Yield |
---|---|---|---|---|---|---|
Bentazone | Benzothiadiazole | POST | Foliar | 2–3 trifoliate stage | Photsystem-II interference | Leaf injury depends on genotypes |
Chlorimuron-ethyl | Sulfonylurea | POST | Foliar | 2 trifoliate stage | Inhibition of acetolactate synthase (ALS) | 5% or less of leaf injury |
Thifensulfuron | Sulfonylurea | POST | Foliar | 2 trifoliate stage | Inhibition of acetolactate synthase (ALS) | 22% of leaf injury |
Chlorimuron | Sulfonylurea | POST | Foliar | 1–2 trifoliate stage | Inhibition of acetolactate synthase (ALS) | 22% of leaf injury |
Chlorosulfuron | Sulfonylurea | POST | Foliar | 1–2 trifoliate stage | Inhibition of acetolactate synthase (ALS) | 27% reduced yield |
Imazamox. | Imidazolinone | POST | Foliar | 1–2 trifoliate stage | Inhibition of acetolactate synthase (ALS) | 23% of leaf injury |
Imazethapy | Imidazolinone | POST | Foliar, Soil | 2 trifoliate | Inhibition of acetolactate synthase (ALS) | 35% of leaf injury |
Imazaquin | Imidazolinone | POST | Foliar | 1–2 trifoliate stage | Inhibition of acetolactate synthase (ALS) | 13% of leaf injury |
Mesotrione | Triketone | POST | Foliar | 1 trifoliate stage | 4-Hydroxyphenylpyruvate dioxygenase Inhibitors | 25–78% of leaf injury |
Fomesafen | Diphenylether | POST | Foliar | 1–2 trifoliate stage | Cell Membrane Disrupters (PPO Inhibitors) | 25% of leaf injury |
Lactofen | Diphenylether | POST | Foliar | Before full seed stage | Cell Membrane Disrupters (PPO Inhibitors) | 29 and 34% of leaf injury |
Acifluorfen | Diphenylether | PRE, POST | Foliar, Soil | 3 trifoliate stage | Cell Membrane Disrupters (PPO Inhibitors) | 20% of leaf injury |
Propanil | Phenyl-pyridazine | POST | Foliar | 1–2 trifoliate stage | Pigment Inhibitors | 10–30% of leaf injury |
Quinclorac | Quinolines | POST | Foliar | 1 trifoliate stage | Not completely understood | 46% of leaf injury |
Bromoxynil | Nitrile | PRE, POST | Foliar | 1 trifoliate stage | Photosystem II inhibitor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, L.; Jo, H.; Song, J.T.; Lee, J.-D. The Prospect of Bentazone-Tolerant Soybean for Conventional Cultivation. Agronomy 2020, 10, 1650. https://doi.org/10.3390/agronomy10111650
Ali L, Jo H, Song JT, Lee J-D. The Prospect of Bentazone-Tolerant Soybean for Conventional Cultivation. Agronomy. 2020; 10(11):1650. https://doi.org/10.3390/agronomy10111650
Chicago/Turabian StyleAli, Liakat, Hyun Jo, Jong Tae Song, and Jeong-Dong Lee. 2020. "The Prospect of Bentazone-Tolerant Soybean for Conventional Cultivation" Agronomy 10, no. 11: 1650. https://doi.org/10.3390/agronomy10111650