The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Weather Conditions
2.3. Assessment of Lawns
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolski, K.; Janik, G.; Czarnecki, J.; Ziarko, J.; Talar-Krasa, M.; Walczak, A.; Biernacik, M.; Dawid, M. Bonitation analysis of turf on city stadium in Wroclaw in the season of Euro 2012. J. Ecol. Eng. 2016, 17, 311–320. [Google Scholar] [CrossRef]
- Wolski, K.; Talar-Krasa, M.; Świerszcz, S.; Biernacik, M.; Dradrach, A.; Szymura, M. Visual and functional evaluation of football turf. Electron. J. Pol. Agric. Univ. Civ. Eng. 2016, 19, #01. [Google Scholar]
- Radkowski, A.; Radkowska, I.; Wolski, K. Effect of silicon foliar application on the functional value of lawns. J. Elem. 2018, 23, 1257–1270. [Google Scholar] [CrossRef]
- Hamza, B.; Suggars, A. Biostimulants: Myths and realities. Turfgrass Trends 2001, 8, 6–10. [Google Scholar]
- Chen, Y.; Clapp, C.E.; Magen, H. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutr. 2004, 50, 1089–1095. [Google Scholar] [CrossRef]
- Kocira, S.; Hara, P.; Szparaga, A.; Czerwińska, E.; Beloev, H.; Findura, P.; Bajus, P. Evaluation of the Effectiveness of the Use of Biopreparations as Seed Dressings. Agriculture 2020, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Radkowski, A.; Radkowska, I.; Godyń, D. Effects of fertilization with amino acid preparation on dry matter yield and chemical composition of meadow plants. J. Elem. 2018, 23, 947–958. [Google Scholar] [CrossRef]
- Kocira, S. Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chil. J. Agric. Res. 2019, 79, 17–25. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 JUNE 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products. 2019. Available online: https://eurlex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009 (accessed on 24 June 2020).
- Kumar, H.D.; Aloke, P. Role of Biostimulant Formulations in Crop Production: An Overview. Int. J. Appl. Res. Vet. M 2020, 8, 38–46. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- EBIC Biostimulants—A sector born from industry convergence and sustainability-driven innovation. In Position on the Revision of Reg (EC) 2003/20031; European Biostimulants Industry Consortium: Antwerp, Belgium; L’Haÿ-les-Roses, France, 2011; Version 0.6.
- Beaudreau, D.G., Jr. Biostimulants in Agriculture: Their Current and Future Role in a Connected Agricultural Economy. 2013. Available online: http://www.biostimulantcoalition.org (accessed on 24 September 2020).
- Kocira, S.; Kocira, A.; Szmigielski, M.; Piecak, A.; Sagan, A.; Malaga-Toboła, U. Effect of an amino acids containing biostimulator on common bean crop. Przem. Chem. 2015, 94, 1732–1736. [Google Scholar] [CrossRef]
- Brown, P.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 671, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radkowski, A.; Radkowska, I. Influence of foliar fertilization with amino acid preparations on morphological traits and seed yield of timothy. Plant Soil Environ. 2018, 64, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ervin, E.H.; Schmidt, R.E. Physiological effects of liquid applications of a seaweed extract and humic acid on Creeping Bentgrass. J. Amer. Soc. Hort. Sci. 2003, 128, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Daneshvar, N.; Maibodi, H.; Kafi, M.; Nikbakht, A.; Rejali, F. Effect of foliar applications of humic acid on growth, visual quality, nutrients content and root parameters of Perennial Ryegrass (Lolium perenne L.). J. Plant Nutr. 2015, 38, 224–236. [Google Scholar] [CrossRef]
- Zhang, X.; Schmidt, R.E.; Ervin, E.H.; Doak, S. Creeping Bentgrass physiological responses to natural plant growth regulators and iron under two regimes. Hort Sci. 2002, 37, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Domański, P. Metodyka Badania Wartości Gospodarczej Odmian (WGO) Roślin Uprawnych; COBORU: Słupia Wielka, Poland, 1998; pp. 1–33.
- AOAC Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2006.
- Mueller, S.R.; Kussow, W.R. Biostimualnt influences on turfgrass microbial communities and creeping bentgrass putting green quality. Hort. Sci. 2005, 40, 1904–1910. [Google Scholar] [CrossRef] [Green Version]
- Butler, T.; Hunter, A. Impact of biostimulants on turfgrass growth and nutrition. In Proceedings of the 16th Irish Environmental Researchers’ Colloquium, Dublin, Ireland, 27–29 January 2006; pp. 44–47. [Google Scholar]
- Talar-Kraska, M.; Świerszcz, S. The influence of using biostimulant on the visual quality of turf. Episteme 2015, 26, 365–373. [Google Scholar]
- Liu, H.; Cooper, R.J. Humic substances influence creeping bentgrass growth. Golf Course Manag. 2000, 68, 49–53. [Google Scholar]
- Van Dyke, A. Influence of humic acid on Kentucky Bluegrass establishment. In Professional Turfgrass Solutions LLC 2009, 2nd ed.; Professional Turfgrass Solutions LLC: Salt Lake City, UT, USA, 2009; p. 10. [Google Scholar]
- Carey, K.; Gunn, E. Evaluation of the Performance of Humic Acid Products in Turfgrass Management; Annual Research Report; Guelph Turfgrass Institute, Victoria Road South: Guelph, ON, Canada, 2000; pp. 5–10. [Google Scholar]
- Van Dyke, A.; Johnson, P.G.; Grossl, P.R. Humic substances effect on moisture retention, nutrition, and colour of intermountain west putting greens. USGA Turfgrass Environ. Res. Online 2009, 8, 1–9. [Google Scholar]
- Nikbakht, A.; Pessarakli, M. New Approaches to Turfgrass Nutrition: Humic Substances and Mycorrhizal Inoculation. In Handbook of Plant and Crop Physiology (Books in Soils, Plants, and the Environment), 3rd ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 919–922. [Google Scholar]
- Hunter, A.; Anders, A. The Influence of Humic Acid on Turfgrass Growth and Development of Creeping Bentgrass. In ISHS Acta Horticulturae 661, Proceedings of the 1st International Conference on Turfgrass Management and Science for Sports Fields, Athens, Greece, 2–7 June 2003; Nektarios, P.A., Ed.; Acta Horticulturae: Leuven, Belgium, 2004; Volume 661, pp. 257–264. [Google Scholar] [CrossRef]
- Shahabivand, S.; Padash, A.; Aghaee, A.; Nasiri, Y.; Rezaei, P.F. Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iran. J. Plant Physiol. 2018, 8, 2333–2344. [Google Scholar] [CrossRef]
- Lötze, E.; Hoffman, E.W. Nutrient composition and content of various biological active compounds of three South African-based commercial seaweed biostimulants. J. Appl. Phycol. 2016, 28, 1379–1386. [Google Scholar] [CrossRef]
- Bettoni, M.M.; Mogor, A.F.; Pauletti, V.; Goicoechea, N.; Aranjuelo, I.; Garmendia, I. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Comp. Anal. 2016, 51, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month | Rainfall [mm] | Mean Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 1990–2019 | 2017 | 2018 | 2019 | 1990–2019 | |
January | 21.2 | 9.6 | 44.2 | 31.9 | −2.1 | −4.9 | −2.1 | −1.8 |
February | 80.6 | 22.4 | 12.8 | 24.7 | 3.9 | 0.2 | 3.1 | −0.3 |
March | 34.6 | 43.8 | 21.4 | 34.4 | 4.7 | 6.4 | 6.2 | 3.6 |
April | 58.6 | 111 | 76.2 | 50.2 | 9.5 | 7.6 | 10.3 | 9.1 |
May | 41.4 | 83.8 | 205 | 79.4 | 14.5 | 14 | 12.4 | 13.6 |
June | 59.8 | 45.2 | 22.4 | 73.8 | 18.8 | 18.8 | 22.2 | 16.1 |
July | 92.8 | 84.4 | 53.2 | 85.3 | 19.6 | 19.2 | 19.2 | 18.2 |
August | 62.0 | 83.8 | 88.2 | 82.0 | 18.5 | 20.3 | 20.5 | 18.9 |
September | 24.0 | 164 | 88.6 | 70.6 | 16.3 | 13.5 | 14.7 | 16.5 |
October | 104.4 | 83.0 | 36.0 | 49.7 | 7.7 | 9.9 | 11.3 | 8.8 |
November | 36.2 | 48.4 | 43.0 | 35.7 | 3.8 | 4.4 | 6.1 | 3.7 |
December | 19.2 | 30.2 | 37.6 | 29.2 | 0.3 | 1.9 | 3.2 | −0.4 |
Total (April–September) | Mean (April–September) | |||||||
338.6 | 572.2 | 533.6 | 441.3 | 16.2 | 15.6 | 16.6 | 15.4 | |
Total | Mean | |||||||
634.8 | 809.6 | 728.6 | 646.9 | 9.6 | 9.3 | 10.6 | 8.8 |
Source of Variation | Year | Dose | Year × Dose | Residual |
---|---|---|---|---|
Degrees of freedom | 2 | 3 | 6 | 24 |
Overall aspect (spring) | 0.3014 *** | 4.8931 *** | 0.0007 | 0.0118 |
Overall aspect (summer) | 0.2372 *** | 7.4251 *** | 0.0014 | 0.0097 |
Overall aspect (autumn) | 0.3544 *** | 3.2425 *** | 0.0002 | 0.0200 |
Density (spring) | 0.2824 *** | 3.8090 *** | 0.0006 | 0.0101 |
Density (summer) | 0.2961 *** | 2.3202 *** | 0.0003 | 0.0101 |
Density (autumn) | 0.3121 *** | 2.4814 *** | 0.0004 | 0.0151 |
Overwintering | 0.2499 *** | 1.1152 *** | 0.0002 | 0.0076 |
Leaf colour in autumn | 0.2643 *** | 6.6494 *** | 0.0015 | 0.0193 |
Leaf structure (fineness) | 0.2058 *** | 2.0559 *** | 0.0003 | 0.0133 |
Susceptibility to diseases (Microdochium nivale) | 0.3365 *** | 2.4829 *** | 0.0004 | 0.0033 |
Susceptibility to diseases (Drechslera siccans) | 0.2523 *** | 4.7170 *** | 0.0027 | 0.0022 |
N | 0.1533 *** | 0.2111 *** | 0.0001 | 0.0054 |
P | 0.0885 *** | 0.1512 *** | 0.0001 | 0.0070 |
K | 1.1519 | 23.7768 *** | 0.0564 | 0.4377 |
Na | 0.0001 | 0.0014 | 0.0009 | 0.0007 |
Ca | 0.1878 | 0.0992 | 0.0605 | 0.4466 |
Mg | 0.0124 | 0.4557 *** | 0.0015 | 0.0333 |
Mn | 2.5580 | 43.722 *** | 2.732 | 1.56 |
Fe | 4.55 | 3.55 | 1.26 | 39.02 |
Zn | 23.42 | 70.14 | 35.94 | 45.29 |
Cu | 0.4175 | 0.4006 | 0.1835 | 0.5336 |
Treatment (L·ha–1) | Year | Overall Aspect | Density | Overwintering | ||||
---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Spring | Summer | Autumn | |||
Control | 2017 | 6.600 ± 0.100 | 5.400 ± 0.100 | 7.000 ± 0.100 | 6.500 ± 0.100 | 6.900 ± 0.100 | 7.167 ± 0.153 | 6.567 ± 0.058 |
2018 | 6.501 ± 0.099 | 5.238 ± 0.074 | 6.845 ± 0.073 | 6.402 ± 0.099 | 6.796 ± 0.099 | 7.059 ± 0.151 | 6.468 ± 0.057 | |
2019 | 6.775 ± 0.103 | 5.543 ± 0.103 | 7.186 ± 0.103 | 6.672 ± 0.103 | 7.083 ± 0.103 | 7.357 ± 0.157 | 6.741 ± 0.059 | |
2017–2019 | 6.625d ± 0.15 | 5.394d ± 0.155 | 7.010d ± 0.168 | 6.525d ± 0.147 | 6.926d ± 0.153 | 7.194d ± 0.186 | 6.592c ± 0.130 | |
Variant I: 1 L·ha–1 | 2017 | 7.400 ± 0.100 | 5.700 ± 0.100 | 7.400 ± 0.100 | 7.100 ± 0.100 | 7.300 ± 0.100 | 7.400 ± 0.100 | 6.700 ± 0.100 |
2018 | 7.289 ± 0.099 | 5.615 ± 0.099 | 7.266 ± 0.067 | 6.993 ± 0.099 | 7.191 ± 0.099 | 7.289 ± 0.099 | 6.599 ± 0.099 | |
2019 | 7.596 ± 0.103 | 5.851 ± 0.103 | 7.596 ± 0.103 | 7.288 ± 0.103 | 7.493 ± 0.103 | 7.596 ± 0.103 | 6.878 ± 0.103 | |
2017–2019 | 7.428c ± 0.16 | 5.722c ± 0.135 | 7.421c ± 0.164 | 7.127c ± 0.156 | 7.328c ± 0.159 | 7.428c ± 0.160 | 6.726b ± 0.150 | |
Variant II: 2 L·ha–1 | 2017 | 7.833 ± 0.058 | 6.500 ± 0.100 | 7.967 ± 0.208 | 7.600 ± 0.100 | 7.600 ± 0.100 | 7.767 ± 0.058 | 6.833 ± 0.058 |
2018 | 7.716 ± 0.057 | 6.402 ± 0.099 | 7.827 ± 0.172 | 7.486 ± 0.099 | 7.486 ± 0.099 | 7.650 ± 0.057 | 6.731 ± 0.057 | |
2019 | 8.041 ± 0.059 | 6.672 ± 0.103 | 8.178 ± 0.214 | 7.801 ± 0.103 | 7.801 ± 0.103 | 7.972 ± 0.059 | 7.014 ± 0.059 | |
2017–2019 | 7.863b ± 0.15 | 6.525b ± 0.147 | 7.991b ± 0.230 | 7.629b ± 0.163 | 7.629b ± 0.163 | 7.796b ± 0.150 | 6.860b ± 0.134 | |
Variant III: 3 L·ha–1 | 2017 | 8.333 ± 0.153 | 7.400 ± 0.100 | 8.333 ± 0.153 | 8.000 ± 0.100 | 8.100 ± 0.100 | 8.367 ± 0.153 | 7.367 ± 0.115 |
2018 | 8.208 ± 0.151 | 7.289 ± 0.099 | 8.208 ± 0.151 | 7.880 ± 0.099 | 7.978 ± 0.099 | 8.241 ± 0.151 | 7.256 ± 0.114 | |
2019 | 8.554 ± 0.157 | 7.596 ± 0.103 | 8.554 ± 0.157 | 8.212 ± 0.103 | 8.315 ± 0.103 | 8.588 ± 0.157 | 7.562 ± 0.119 | |
2017–2019 | 8.365a ± 0.20 | 7.428a ± 0.160 | 8.365a ± 0.202 | 8.031a ± 0.170 | 8.131a ± 0.171 | 8.399a ± 0.202 | 7.395a ± 0.168 | |
LSD0.05 | 0.16 | 0.14 | 0.19 | 0.15 | 0.16 | 0.17 | 0.14 | |
Standard deviation | 0.667 | 0.811 | 0.559 | 0.591 | 0.472 | 0.491 | 0.339 | |
Variation coefficient | 8.81% | 12.93% | 7.26% | 8.07% | 6.29% | 6.37% | 4.92% |
Treatment (L·ha–1) | Year | Leaf Colour in Autumn | Leaf Structure (Fineness) | Susceptibility to Diseases | |
---|---|---|---|---|---|
Fusarium Patch Microdochium nivale | Dreschlera Leaf Spot Drechslera siccans | ||||
Control | 2017 | 5.967 ± 0.153 | 6.033 ± 0.208 | 7.633 ± 0.058 | 7.433 ± 0.058 |
2018 | 5.817 ± 0.149 | 5.882 ± 0.203 | 7.442 ± 0.056 | 7.247 ± 0.056 | |
2019 | 6.055 ± 0.155 | 6.122 ± 0.211 | 7.746 ± 0.059 | 7.543 ± 0.059 | |
2017–2019 | 5.946d ± 0.168 | 6.013d ± 0.208 | 7.607d ± 0.142 | 7.408c ± 0.139 | |
Variant I: 1 L·ha–1 | 2017 | 7.167 ± 0.153 | 6.333 ± 0.058 | 8.267 ± 0.058 | 8.167 ± 0.058 |
2018 | 6.987 ± 0.149 | 6.175 ± 0.056 | 8.060 ± 0.056 | 7.963 ± 0.056 | |
2019 | 7.272 ± 0.155 | 6.427 ± 0.059 | 8.389 ± 0.059 | 8.287 ± 0.059 | |
2017–2019 | 7.142c ± 0.182 | 6.312c ± 0.121 | 8.238c ± 0.152 | 8.139b ± 0.151 | |
Variant II: 2 L·ha–1 | 2017 | 7.600 ± 0.100 | 6.533 ± 0.058 | 8.567 ± 0.058 | 8.967 ± 0.058 |
2018 | 7.410 ± 0.098 | 6.370 ± 0.056 | 8.352 ± 0.056 | 8.742 ± 0.056 | |
2019 | 7.728 ± 0.105 | 6.630 ± 0.059 | 8.693 ± 0.059 | 9.010 ± 0.018 | |
2017–2019 | 7.579b ± 0.164 | 6.511b ± 0.124 | 8.537b ± 0.157 | 8.907a ± 0.131 | |
Variant III: 3 L·ha–1 | 2017 | 7.933 ± 0.153 | 7.167 ± 0.058 | 8.867 ± 0.058 | 9.000 ± 0.000 |
2018 | 7.735 ± 0.149 | 6.987 ± 0.056 | 8.645 ± 0.056 | 8.775 ± 0.000 | |
2019 | 8.073 ± 0.129 | 7.272 ± 0.059 | 8.997 ± 0.059 | 9.000 ± 0.000 | |
2017–2019 | 7.914a ± 0.193 | 7.142a ± 0.134 | 8.836a ± 0.162 | 8.925a ± 0.113 | |
LSD0.05 | 0.17 | 0.15 | 0.15 | 0.13 | |
Standard deviation | 0.774 | 0.444 | 0.484 | 0.649 | |
Variation coefficient | 10.83% | 6.836% | 5.829% | 7.773% |
Treatment (L·ha–1) | Year | Macronutrient Content (g·kg−1 DM) | |||||
---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Na | ||
Control | 2017 | 3.315 ± 0.038 | 2.503 ± 0.075 | 18.94 ± 1.276 | 4.372 ± 0.208 | 1.284 ± 0.147 | 0.065 ± 0.014 |
2018 | 3.523 ± 0.040 | 2.660 ± 0.080 | 19.04 ± 1.023 | 4.986 ± 0.808 | 1.396 ± 0.244 | 0.083 ± 0.026 | |
2019 | 3.474 ± 0.040 | 2.623 ± 0.079 | 18.70 ± 1.261 | 4.802 ± 0.778 | 1.345 ± 0.235 | 0.083 ± 0.046 | |
2017–2019 | 3.53b ± 0.541 | 2.66b ± 0.542 | 18.9d ± 1.043 | 4.720a ± 0.633 | 1.342b ± 0.191 | 0.077b ± 0.029 | |
Variant I: 1 L·ha–1 | 2017 | 3.344 ± 0.063 | 2.597 ± 0.096 | 20.58 ± 0.208 | 4.467 ± 0.799 | 1.344 ± 0.105 | 0.068 ± 0.030 |
2018 | 3.553 ± 0.067 | 2.760 ± 0.101 | 21.10 ± 0.213 | 4.582 ± 0.819 | 1.379 ± 0.107 | 0.098 ± 0.028 | |
2019 | 3.504 ± 0.066 | 2.721 ± 0.100 | 20.32 ± 0.205 | 4.412 ± 0.789 | 1.328 ± 0.104 | 0.095 ± 0.027 | |
2017–2019 | 3.57b ± 0.423 | 2.78b ± 0.532 | 20.67c ± 0.389 | 4.487a ± 0.699 | 1.350b ± 0.094 | 0.087ab ± 0.028 | |
Variant II: 2 L·ha–1 | 2017 | 3.513 ± 0.080 | 2.588 ± 0.090 | 22.60 ± 0.024 | 4.677 ± 0.782 | 1.310 ± 0.045 | 0.096 ± 0.027 |
2018 | 3.733 ± 0.085 | 2.750 ± 0.095 | 23.18 ± 0.024 | 4.796 ± 0.802 | 1.344 ± 0.046 | 0.112 ± 0.016 | |
2019 | 3.681 ± 0.084 | 2.711 ± 0.094 | 22.32 ± 0.024 | 4.619 ± 0.772 | 1.294 ± 0.045 | 0.108 ± 0.016 | |
2017–2019 | 3.73b ± 0.623 | 2.76b ± 0.478 | 22.7a ± 0.379 | 4.697a ± 0.685 | 1.316b ± 0.045 | 0.105a ± 0.019 | |
Variant III: 3 L·ha–1 | 2017 | 3.629 ± 0.091 | 2.798 ± 0.058 | 21.72 ± 0.650 | 4.622 ± 0.301 | 1.777 ± 0.272 | 0.109 ± 0.016 |
2018 | 3.857 ± 0.097 | 2.973 ± 0.061 | 21.95 ± 0.147 | 4.741 ± 0.309 | 1.823 ± 0.279 | 0.070 ± 0.031 | |
2019 | 3.803 ± 0.096 | 2.932 ± 0.060 | 21.46 ± 0.642 | 4.565 ± 0.297 | 1.755 ± 0.269 | 0.068 ± 0.020 | |
2017–2019 | 3.88a ± 0.528 | 2.96a ± 0.418 | 21.71b ± 0.509 | 4.643a ± 0.273 | 1.785a ± 0.239 | 0.082ab ± 0.028 | |
LSD0.05 | 0.172 | 0.152 | 0.615 | 0.575 | 0.155 | 0.025 | |
Standard deviation | 0.157 | 0.126 | 1.554 | 0.580 | 0.251 | 0.027 | |
Variation coefficient | 4.267% | 4.510% | 7.401% | 12.50% | 17.31% | 31.21% |
Treatment (L·ha–1) | Year | Micronutrient Content (mg·kg−1 DM) | |||
---|---|---|---|---|---|
Cu | Mn | Fe | Zn | ||
Control | 2017 | 1.491 ± 0.206 | 21.55 ± 1.644 | 10.29 ± 1.148 | 28.57 ± 12.649 |
2018 | 1.591 ± 0.523 | 22.10 ± 1.686 | 11.71 ± 1.921 | 29.30 ± 12.972 | |
2019 | 1.669 ± 0.687 | 21.28 ± 1.624 | 11.43 ± 2.316 | 18.21 ± 9.437 | |
2017–2019 | 1.584a 1 ± 0.451 | 21.64b ± 1.475 | 11.14a ± 1.737 | 25.36a ± 1.539 | |
Variant I: 1 L·ha–1 | 2017 | 1.876 ± 1.071 | 22.45 ± 0.679 | 12.21 ± 3.686 | 18.61 ± 2.360 |
2018 | 1.734 ± 0.713 | 23.02 ± 0.697 | 12.69 ± 4.026 | 19.09 ± 2.421 | |
2019 | 1.853 ± 1.058 | 22.17 ± 0.671 | 11.97 ± 3.525 | 18.38 ± 2.331 | |
2017–2019 | 1.821a ± 0.835 | 22.55b ± 0.701 | 12.29a ± 3.264 | 18.69b ± 2.077 | |
Variant II: 2 L·ha–1 | 2017 | 2.029 ± 0.782 | 24.70 ± 1.706 | 12.32 ± 10.251 | 19.89 ± 2.466 |
2018 | 1.880 ± 0.787 | 25.33 ± 1.750 | 12.63 ± 10.513 | 20.40 ± 2.529 | |
2019 | 2.131 ± 0.741 | 26.39 ± 0.323 | 12.17 ± 10.124 | 23.59 ± 1.852 | |
2017–2019 | 2.014a ± 0.676 | 25.48a ± 1.438 | 12.37a ± 8.92 | 21.30ab ± 2.645 | |
Variant III: 3 L·ha–1 | 2017 | 1.690 ± 0.695 | 26.72 ± 0.327 | 10.89 ± 4.843 | 20.76 ± 5.485 |
2018 | 1.765 ± 0.665 | 27.41 ± 0.335 | 13.56 ± 6.201 | 21.81 ± 7.576 | |
2019 | 2.663 ± 0.372 | 24.40 ± 1.685 | 13.06 ± 5.972 | 19.65 ± 2.436 | |
2017–2019 | 2.039a ± 0.697 | 26.18a ± 1.623 | 12.50a ± 5.09 | 20.74ab ± 4.922 | |
LSD0.05 | 0.652 | 1.303 | 5.241 | 6.236 | |
Standard deviation | 0.675 | 2.331 | 5.248 | 6.676 | |
Variation coefficient | 36.20% | 9.727% | 43.45% | 31.02% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radkowski, A.; Radkowska, I.; Bocianowski, J.; Sladkovska, T.; Wolski, K. The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy 2020, 10, 1656. https://doi.org/10.3390/agronomy10111656
Radkowski A, Radkowska I, Bocianowski J, Sladkovska T, Wolski K. The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy. 2020; 10(11):1656. https://doi.org/10.3390/agronomy10111656
Chicago/Turabian StyleRadkowski, Adam, Iwona Radkowska, Jan Bocianowski, Tetiana Sladkovska, and Karol Wolski. 2020. "The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value" Agronomy 10, no. 11: 1656. https://doi.org/10.3390/agronomy10111656
APA StyleRadkowski, A., Radkowska, I., Bocianowski, J., Sladkovska, T., & Wolski, K. (2020). The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy, 10(11), 1656. https://doi.org/10.3390/agronomy10111656