Micronutrient Foliar Fertilization for the Biofortification of Raw and Minimally Processed Early Potatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimental Site, Climate and Soil
2.2. Experimental Design, Plant Material and Management Practices
2.3. Tuber Harvest, Post-Harvest Treatments and Sampling
2.4. Mineral Profile of Raw and Minimally Processed Tubers
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of Foliar Micronutrient Fertilization on Mineral Composition of Raw Potatoes
3.2. Effects of Foliar Micronutrient Fertilization on Mineral Composition of Minimally Processed Potato
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT (Food and Agriculture Organization of the United Nations). Statistics Division. Forestry Production and Trade. Available online: http://www.fao.org/faostat/en/#data (accessed on 23 March 2020).
- Foti, S.; Mauromicale, G.; Ierna, A. Response of seed-grown globe artichoke to different levels of nitrogen fertilization and water supplies. Acta Hort. 2005, 681, 237–242. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric. Water Manag. 2018, 201, 21–26. [Google Scholar] [CrossRef]
- Buono, V.; Paradiso, A.; Serio, F.; Gonnella, M.; De Gara, L.; Santamaria, P. Tuber quality and nutritional components of early potato subjected to chemical haulm desiccation. J. Food Compos. Anal. 2009, 22, 556–562. [Google Scholar] [CrossRef]
- Maathuis, F.J. Physiological functions of mineral macronutrients? Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ballesta, M.; Dominguez-Perles, R.; Moreno, D.A.; Muries, B.; Alcaraz-López, C.; Bastías, E.; García-Viguera, C.; Carvajal, M. Minerals in plant food: Effect of agricultural practices and role in human health. A review. Agron. Sustain. Dev. 2010, 30, 295–309. [Google Scholar] [CrossRef]
- Dos Santos, I.F.; dos Santos, A.M.; Barbosa, U.A.; Lima, J.S.; dos Santos, D.C.; Matos, G.D. Multivariate analysis of the mineral content of raw and cooked okra (Abelmoschus esculentus L.). Microchem. J. 2013, 110, 439–443. [Google Scholar] [CrossRef]
- Pinto, E.; Almeida, A.A.; Aguiar, A.A.; Ferreira, I.M. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J. Food Compos. Anal. 2015, 37, 38–43. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Historical variation in the mineral composition of edible horticultural products. J. Hortic. Sci. Biotech. 2005, 80, 660–667. [Google Scholar] [CrossRef]
- Monasterio, I.; Graham, R.D. Breeding for trace mineral in wheat. Food Nutr. Bull. 2000, 21, 392–396. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. J. Trace Elements Med. Biol. 2009, 29, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Ierna, A.; Parisi, B. Crop growth and tuber yield of “early” potato crop under organic and conventional farming. Sci. Hortic. 2014, 165, 260–265. [Google Scholar] [CrossRef]
- Ryan, J.; Sommer, R. Soil fertility and crop nutrition research at an international center in the Mediterranean region: Achievements and future perspective. Arch. Agron. Soil Sci. 2012, 58, 41–54. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Bindraban, P.S. Fortification of micronutrients for efficient agronomic production: A review. Agron. Sustain. Dev. 2016, 36, 7. [Google Scholar] [CrossRef] [Green Version]
- Rivero, R.C.; Hernández, P.S.; Rodríguez, E.M.R.; Martín, J.D.; Romero, C.D. Mineral concentrations in cultivars of potatoes. Food Chem. 2003, 83, 247–253. [Google Scholar] [CrossRef]
- Andrè, C.M.; Ghislain, M.; Bertin, P.; Oufir, M.; del Rosario Herrera, M.; Hoffmann, L.; Hausman, J.F.; Larondelle, Y.; Evers, D. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef]
- White, P.J.; Bradshaw, J.E.; Finlay, M.; Dale, B.; Ramsay, G.; Hammond, J.P.; Broadley, M.R. Relationships between yield and mineral concentrations in potato tubers. HortScience 2009, 44, 6–11. [Google Scholar] [CrossRef]
- Subramanian, N.K.; White, P.J.; Broadley, M.R.; Ramsay, G. Variation in tuber mineral concentrations among accessions of Solanum species held in the commonwealth potato collection. Genet. Resour. Crop Ev. 2017, 64, 1927–1935. [Google Scholar] [CrossRef]
- Asrat, A.; Woldegiorgis, G.; Kolech, S.A.; Mulugeta, G.; Mulugeta, D.; Ngugi, A.; Burgos, G.; Felde, T.; Bonierbale, M. Micro-nutrient composition and end-user acceptable quality in potato in Ethiopia. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 596–607. [Google Scholar]
- Haynes, K.G.; Yencho, G.C.; Clough, M.E.; Henninger, M.R.; Sterrett, S.B. Genetic variation for potato tuber micronutrient content and implications for biofortification of potatoes to reduce micronutrient malnutrition. Am. J. Pot Res. 2012, 89, 192–198. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking inhuman diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.R.; Galavi, M.; Ahmadvand, G. Effect of zinc and manganese foliar application on yield, quality and enrichment on potato (Solanum tuberosum L.). Asian, J. Plant Sci. 2007, 6, 1256–1260. [Google Scholar] [CrossRef] [Green Version]
- White, P.J.; Broadley, M.R.; Hammond, J.P.; Ramsay, G.; Subramanian, N.K.; Thompson, J.; Wright, G. Bio-fortification of potato tubers using foliar zinc-fertiliser. J. Hortic. Sci Biotech. 2012, 87, 123–129. [Google Scholar] [CrossRef]
- Delgado Otero, L. Fertilización con Zinc en dos Variedades de Papa (Solanum tuberosum) en Suelos de Costa y Sierra. Bachelor’s Thesis, Universidad Nacional Agraria La Molina, Lima, Peru, 29 December 2014. [Google Scholar]
- Gabriel, J.; Arce, M.; Angulo, A.; Botello, R.; Casazola, J.L.; Velasco, J.; Veramendi, S.; Rodríguez, F. Agronomic biofortification in two native potato cultivars (Solanum tuberosum L.). Rev. Latinoam. Papa 2015, 19, 1–17. [Google Scholar]
- Kromann, P.; Valverde, F.; Alvarado, S.; Velez, R.; Pisuna, J.; Potosi, B.; Taipe, A.; Caballero, D.; Cabezas, A.; Devaux, A. Can Andean potatoes be agronomically biofortified with iron and zinc fertilizers? Plant Soil. 2017, 411, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Cabezas-Serrano, A.B.; Amodio, M.L.; Cornacchia, R.; Rinaldi, R.; Colelli, G. Suitability of five different potato cultivars (Solanum tuberosum L.) to be processed as fresh-cut products. Postharvest Biol. Technol. 2009, 53, 138–144. [Google Scholar] [CrossRef]
- Ierna, A.; Pellegrino, A.; Di Silvestro, I.; Buccheri, M. Sensory and physico-chemical characteristics of minimally processed “early” potato tubers as affected by anti-browning treatments and cultivar. Acta Hortic. 2016, 1141, 229–236. [Google Scholar] [CrossRef]
- Osservatorio delle Acque. Available online: www.osservatorioacque.it (accessed on 26 May 2020).
- Natural Resources Conservation Service of the United States Department of Agriculture. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Agriculture Handbook Number 436; U.S. Government Printing Office: Washington, DC, USA, 1999; pp. 1–886.
- Violante, P. Metodi di Analisi Chimica del Suolo; Franco Angeli: Milano, Italy, 2000. [Google Scholar]
- Mauromicale, G.; Signorelli, P.; Ierna, A.; Foti, S. Effects of intraspecific competition on yield of early potato grown in Mediterranean environment. Am. J. Pot Res. 2003, 80, 281–288. [Google Scholar] [CrossRef]
- Scam. Available online: www.scam.it/en/nutrition/32/aximicro-lsa/19541) (accessed on 13 November 2019).
- Ierna, A.; Pandino, G.; Lombardo, S.; Mauromicale, G. Tuber yield, water and fertilizer productivity in early potato as affected by a combination of irrigation and fertilization. Agric. Water Manag. 2011, 101, 35–41. [Google Scholar] [CrossRef]
- Ierna, A.; Bonomo, A.; Malvuccio, A. Effects of pre-harvest micronutrient fertilization on quality of raw potatoes and post-harvest shelf-life of minimally processed tubers from “early” potato crops. Postharvest Biol. Technol. 2017, 134, 38–44. [Google Scholar] [CrossRef]
- Ierna, A.; Rizzarelli, P.; Malvuccio, A.; Rapisarda, M. Effect of different anti-browning agents on quality of minimally processed early potatoes packaged on a compostable film. LWT Food Sci. Technol. 2017, 85, 434–439. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 16th ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press Publishing: Ames, IA, USA, 1989; p. 503. [Google Scholar]
- Malakouti, M.J. The effect of micronutrients in ensuring efficient use of macronutrients. Turk. J. Agric. For. 2008, 32, 215–220. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Functions of nutrient: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Elsevier: Oxford, UK, 2012; pp. 243–248. [Google Scholar]
- Barłóg, P.; Nowacka, A.; Błaszyk, R. Effect of zinc band application on sugar beet yield, quality and nutrient uptake. Plant Soil Environ. 2016, 62, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Burlingame, B.; Mouillé, B.; Charrondière, R. Nutrients bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal. 2009, 22, 494–502. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Schulin, R.; Chaney, R.L.; Daneshbakhsh, B.; Afyuni, M. Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 83–107. [Google Scholar] [CrossRef] [Green Version]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency; Virtual Fertilizer Research Center: Washington, DC, USA, 2015; p. 42. [Google Scholar]
- Singh, D.P.; Beloy, J.; McInerney, J.K.; Day, L. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 2012, 132, 1161–1170. [Google Scholar] [CrossRef]
- Rashid, A.; Ryan, J. Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: A review. J. Plant Nutr. 2004, 27, 959–975. [Google Scholar] [CrossRef]
- Schönherr, J.; Fernández, V.; Schreiber, L. Rates of cuticular penetration of chelated FeIII: Role of humidity, concentration, adjuvants, temperature, and type of chelate. J. Agric Food Chem. 2005, 53, 4484–4492. [Google Scholar] [CrossRef]
- Yang, X.; Tian, X.; Lu, X.; Cao, Y.; Chen, Z. Impacts of phosphorus and zinc levels on phosphorus and zinc nutrition and phytic acid concentration in wheat (Triticum aestivum L.). J. Sci. Food Agric. 2011, 91, 2322–2328. [Google Scholar] [CrossRef]
- Iratkar, A.G.; Giri, J.D.; Kadam, M.M.; Giri, J.N.; Dabhade, M.B. Distribution of DTPA extractable micronutrients and their relationship with soil properties in soil of Parsori watershed of Nagpur district of Maharashtra. Asian J. Soil Sci. 2014, 9, 297–299. [Google Scholar]
- WHO/FAO. Micronutrient malnutrition: A public health problem. In Guidelines on Food Fortification with Micronutrients; Allen, L.D., de Benoist, B., Dary, O., Hurrell, R.E., Eds.; WHO: Geneva, Switzerland; FAO: Rome, Italy, 2006; pp. 3–20. [Google Scholar]
- Zeidan, M.S.; Mohamed, M.F.; Hamouda, H.A. Effect of foliar fertilization of Fe, Mn and Zn on wheat yield and quality in low sandy soils fertility. World J. Agric. Sci. 2010, 6, 696–699. [Google Scholar]
- Westermann, D.T. Nutritional requirements of potatoes. Am. J. Potato Res. 2005, 82, 301–307. [Google Scholar] [CrossRef]
- Gupta, U.C.; Srivastava, P.C.; Gupta, S.C. Role of Micronutrients: Boron and Molybdenum in Crops and in Human Health and Nutrition. Curr. Nutr. Food Sci. 2011, 7, 126–136. [Google Scholar] [CrossRef]
- Krummel, R.D. Nutrición en la hypertension. In Nutrición y Dietoterapia de Krause, 10th ed.; Mahan, L.K., Escott-Stump, S., Eds.; McGraw Hill: Contadero, Mexico, 2000; pp. 649–664. [Google Scholar]
- True, R.H.; Hogan, J.M.; Augustin, J.; Johnson, S.J.; Teitzel, C.; Toma, R.B.; Shaw, R.L. Mineral composition of freshly harvested potatoes. Am. Potato J. 1978, 55, 511–519. [Google Scholar] [CrossRef]
- Trehan, S.P.; Sharma, R.C. Mineral nutrient composition in peels and flesh of tubers of potato genotypes. J. Indian Potato Assoc. 1996, 23, 139–143. [Google Scholar]
- Wszelaki, A.L.; Delwiche, J.F.; Walker, S.D.; Liggett, R.E.; Scheerens, J.C.; Kleinhenz, M.D. Sensory quality and mineral and glycoalkaloid concentrations in organically and conventionally grown redskin potatoes (Solanum tuberosum). J Sci. Food Agric. 2005, 85, 720–726. [Google Scholar] [CrossRef]
- Subramanian, N.K.; White, P.J.; Broadley, M.R.; Ramsay, G. The three-dimensional distribution of minerals in potato tubers. Ann Bot. 2011, 107, 68–91. [Google Scholar] [CrossRef] [Green Version]
- Ierna, A. Characterization of potato genotypes by chlorophyll fluorescence during plant aging in a Mediterranean environment. Photosynthetica 2007, 45, 568–575. [Google Scholar] [CrossRef]
- Hagg, M.; Hakkinen, U.; Kumpulainen, J.; Ahvenainen, R.; Hurme, E. Effects of preparation procedures, packaging and storage on nutrient retention in peeled potatoes. J. Sci. Food Agric. 1998, 77, 519–526. [Google Scholar] [CrossRef]
- Zagory, D.; Kader, A.A. Quality maintenance in fresh fruits and vegetables by controlled atmospheres. In Quality Factors of Fruits and Vegetables: Chemistry and Technology; Jen, J.J., Ed.; American Chemical Society: Washington, DC, USA, 1989; pp. 174–188. [Google Scholar]
Year | Dec | Jan | Feb | Mar | Apr | May | |
---|---|---|---|---|---|---|---|
Max t (°C) | 2015 | 18.4 | 16.8 | 14.8 | 17.9 | 21.9 | 28.7 |
1977–2006 | 16.7 | 15.4 | 16.2 | 17.7 | 20.2 | 24.3 | |
Min t (°C) | 2015 | 6.2 | 3.7 | 4.5 | 5.7 | 6.5 | 11.3 |
1977–2006 | 9.0 | 7.1 | 7.6 | 8.8 | 10.9 | 14.4 | |
Rainfall (mm) | 2015 | 59 | 51 | 239 | 118 | 1 | 5 |
1977–2006 | 56 | 65 | 38 | 25 | 31 | 20 |
Microfertilization | N | P | K | Ca | Mg | Na |
---|---|---|---|---|---|---|
Micro− | 162 ± 14 b | 479 ± 26 a | 4.682 ± 310 a | 126 ± 10 a | 169 ± 16 a | 73 ± 12 b |
Micro+ | 200 ± 17 a | 465 ± 35 a | 4.500 ± 260 a | 69 ± 4 b | 147 ± 18 a | 90 ± 13 a |
Microfertilization | Fe | Zn | Mn | Cu | Mo |
---|---|---|---|---|---|
Micro- | 12.8 ± 1.0 b | 5.2 ± 0.1 b | 2.2 ± 0.06 b | 2.0 ± 0.04 a | 0.15 ± 0.001 b |
Micro+ | 21.6 ± 2.0 a | 6.6 ± 0.2 a | 2.6 ± 0.08 a | 1.0 ± 0.02 b | 0.20 ± 0.001 a |
N | P | K | Ca | Mg | Na | |
---|---|---|---|---|---|---|
Microfertilization | ||||||
Micro− | 170 ± 14 b | 460 ± 37 a | 4.465 ± 320 a | 108 ± 9 a | 162 ± 7 a | 66 ± 8 b |
Micro+ | 205 ± 18 a | 442 ± 40 a | 4.272 ± 251 a | 57 ± 4 b | 143 ± 5 a | 82 ± 7 a |
Storage time (days) | ||||||
0 | 182 ± 15 a | 453 ± 35 a | 4.390 ± 272 a | 85 ± 8 a | 151 ± 6 a | 75 ± 4 a |
12 | 193 ± 16 a | 449 ± 26 a | 4.347 ± 352 a | 80 ± 5 a | 154 ± 8 a | 73 ± 2 a |
Fe | Zn | Mn | Cu | Mo | |
---|---|---|---|---|---|
Microfertilization | |||||
Micro− | 9.0 ± 0.8 b | 4.8 ± 0.16 b | 2.0 ± 0.1 b | 1.8 ± 0.06 a | 0.14 ± 0.02 b |
Micro+ | 15.5 ± 1.8 a | 5.8 ± 0.18 a | 2.3 ± 0.08 a | 0.8 ± 0.02 b | 0.18 ± 0.03 a |
Storage time (days) | |||||
0 | 11.5 ± 1.4 a | 5.6 ± 0.14 a | 2.1 ± 0.06 a | 1.4 ± 0.08 a | 0.15 ± 0.03 a |
12 | 13.0 ± 1.6 a | 5.0 ± 0.12 a | 2.2 ± 0.04 a | 1.2 ± 0.10 a | 0.17 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ierna, A.; Pellegrino, A.; Mauro, R.P.; Leonardi, C. Micronutrient Foliar Fertilization for the Biofortification of Raw and Minimally Processed Early Potatoes. Agronomy 2020, 10, 1744. https://doi.org/10.3390/agronomy10111744
Ierna A, Pellegrino A, Mauro RP, Leonardi C. Micronutrient Foliar Fertilization for the Biofortification of Raw and Minimally Processed Early Potatoes. Agronomy. 2020; 10(11):1744. https://doi.org/10.3390/agronomy10111744
Chicago/Turabian StyleIerna, Anita, Alessandra Pellegrino, Rosario Paolo Mauro, and Cherubino Leonardi. 2020. "Micronutrient Foliar Fertilization for the Biofortification of Raw and Minimally Processed Early Potatoes" Agronomy 10, no. 11: 1744. https://doi.org/10.3390/agronomy10111744
APA StyleIerna, A., Pellegrino, A., Mauro, R. P., & Leonardi, C. (2020). Micronutrient Foliar Fertilization for the Biofortification of Raw and Minimally Processed Early Potatoes. Agronomy, 10(11), 1744. https://doi.org/10.3390/agronomy10111744