Influence of Nitrogen Management Regimes on Milling Recovery and Grain Quality of Aromatic Rice in Different Rice Production Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Sampling and Measurement
2.2.1. Milling Recoveries
2.2.2. Kernel Appearance Quality Traits
2.2.3. Kernel Nutritional Value
2.2.4. Cooking Quality
2.3. Statistical Analysis
3. Results
3.1. Milling Recovery Traits
3.2. Appearance Quality Traits
3.3. Kernel Protein Contents
3.4. Cooking Quality
4. Discussion
4.1. Milling Recoveries
4.2. Appearance Quality
4.3. Protein Contents
4.4. Cooking Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chauhan, B.S.; Jabran, K.; Mahajan, G. Rice Production Worldwide; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, Y.; Jia, B.; Wang, Y.; Wang, Y.; Xu, Q.; Li, R.; Wang, S.; Dou, F. Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy 2018, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Ashraf, U.; Tian, H.; Mo, Z.; Pan, S.; Anjum, S.A.; Duan, M.; Tang, X. Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice. Plant Physiol. Biochem. 2016, 103, 167–175. [Google Scholar] [CrossRef]
- Dou, Z.; Tang, S.; Li, G.H.; Liu, Z.H.; Ding, C.Q.; Chen, L.; Wang, S.H.; Ding, Y.F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Sci. 2017, 57, 2183–2192. [Google Scholar] [CrossRef] [Green Version]
- Tong, C.; Chen, Y.L.; Tang, F.F.; Xu, F.F.; Huang, Y.; Chen, H.; Bao, J.S. Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan, China. Food Chem. 2014, 161, 239–245. [Google Scholar] [CrossRef]
- Gu, J.F.; Chen, J.; Chen, L.; Wang, Z.Q.; Zhang, H.; Yang, J.C. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop J. 2015, 3, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Lyon, B.G.; Champagne, E.T.; Vinyard, B.T.; Windham, W.R. Sensory and instrumental relationships of texture of cooked rice from selected cultivars and postharvest handling practices. Cereal Chem. 2000, 77, 64–69. [Google Scholar] [CrossRef]
- Zhao, D.S.; Li, Q.F.; Zhang, C.Q.; Zhang, C.; Yang, Q.Q.; Pan, L.X.; Ren, X.Y.; Lu, J.; Gu, M.H.; Liu, Q.Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat. Commun. 2018, 9, 1240. [Google Scholar] [CrossRef]
- Cao, X.M.; Sun, H.Y.; Wang, C.G.; Ren, X.J.; Liu, H.F.; Zhang, Z.J. Effects of late-stage nitrogen fertilizer application on the starch structure and cooking quality of rice. J. Sci. Food Agric. 2017, 98, 2332–2340. [Google Scholar] [CrossRef]
- Ishfaq, M.; Akbar, N.; Zulfiqar, U.; Ali, N.; Ahmad, M.; Anjum, S.A.; Farooq, M. Influence of water management techniques on milling recovery, grain quality and mercury uptake in different rice production systems. Agric. Water Manag. 2020, 243, 106500. [Google Scholar] [CrossRef]
- Ishfaq, M.; Akbar, N.; Anjum, S.A.; Haq, A. Growth, yield and water productivity of dry direct seeded and transplanted aromatic rice under different irrigation management regimes. J. Integr. Agric. 2020, 19, 2–19. [Google Scholar] [CrossRef]
- Ishfaq, M.; Farooq, M.; Zulfiqar, U.; Hussain, S.; Akbar, N.; Nawaz, A.; Anjum, S.A. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 2020, 241, 106363. [Google Scholar] [CrossRef]
- Mahajan, G.; Chauhan, B.S.; Timsina, J.; Singh, P.P.; Singh, K. Crop performance and water and nitrogen use efficiencies in dry seeded rice in response to irrigation and fertilizer amounts in Northwest India. Field Crops Res. 2012, 134, 59–70. [Google Scholar] [CrossRef]
- Prasad, R. Aerobic rice systems. Adv. Agron. 2011, 111, 207–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Guo, Z.; Zhang, C.; Sheng, J.; Chen, L.; Luo, Y.; Zheng, J. Direct-seeded rice increases nitrogen runoff losses in south eastern China. Agric. Ecosyst. Environ. 2018, 251, 149–157. [Google Scholar] [CrossRef]
- Mahajan, G.; Chauhan, B.S.; Gill, M.S. Optimal nitrogen fertilization timing and rate in dry-seeded rice in northwest India. Agron. J. 2011, 103, 1676–1682. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Dong, Y.; Ni, X.; Yang, B.; Gong, J.; Chang, Y.; Dai, Q.; Huo, Z.; Xu, K.; et al. Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions. Sci. Agric. Sin. 2011, 44, 2661–2672. [Google Scholar]
- Yang, L.; Wang, Y.; Kobayashi, K.; Zhu, J.; Huang, J.; Yang, H.; Wang, Y.; Dong, G.; Liu, G.; Han, Y.; et al. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Glob. Chang. Biol. 2008, 14, 1–10. [Google Scholar] [CrossRef]
- Kumar, V.; Ladha, J.K. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Lagomarsino, A.; Elio Agnelli, A.; Ferrara, R.M.; Adviento-Borbe, M.A.; Linquist, B.; Gavina, G.; Ravaglia, S. Green-house gas emissions from rice fields under different water management. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 7–12 April 2013; Available online: http://adsabs.harvard.edu/abs/2013EGUGA (accessed on 15 August 2019).
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 2004, 82, 557–622. [Google Scholar]
- Garnett, T.; Conn, V.; Kaiser, B.N. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ. 2009, 32, 1272–1283. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leesawatwong, M.; Jamjod, S.; Kuo, J.; Dell, B.; Rerkasem, B. Nitrogen fertilizer increases seed protein and milling quality of rice. Cereal Chem. 2005, 82, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Champagne, E.T.; Bett-Garber, K.L.; Thomson, J.L.; Fitzgerald, M.M. Unrevealing the impact of nitrogen nutrition on cooked rice flavour and texture. Cereal Chem. 2009, 86, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Rehman, H.U.; Basra, S.M.A.; Wahid, A. Optimizing nitrogen-split application time to improve dry matter accumulation and yield in dry direct seeded rice. Int. J. Agric. Biol. 2013, 15, 41–47. [Google Scholar]
- Perez, C.M.; Bourne, M.C.; Juliano, B.O. Measuring hardness distribution of cooked rice by single-grain puncture. J. Texture Stud. 1996, 27, 1–13. [Google Scholar] [CrossRef]
- Wopereis-Pura, M.M.; Watanabe, H.; Moreira, J.; Wopereis, M.C.S. Effect of late nitrogen application on rice yield, grain quality and profitability in the Senegal River valley. Eur. J. Agron. 2002, 17, 191–198. [Google Scholar] [CrossRef]
- Sarwar, N.; Ali, H.; Irfan, M.; Akhter, M.T.; Ali, M.T. Boron nutrition under intermittent flooding and drying condition seems sustainable nutrient management technique in rice. Cercet. Agron. Mold. 2016, 49, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Ishfaq, M.; Akbar, N.; Zulfiqar, U.; Ali, N.; Jabran, K.; Nawaz, M.; Farooq, M. Influence of Nitrogen Fertilization Pattern on Productivity, Nitrogen Use Efficiencies, and Profitability in Different Rice Production Systems. J. Soil Sci. Plant Nutr. 2020, 1–17. [Google Scholar] [CrossRef]
- Akbar, N.; Ehsanullah; Jabran, K.; Ali, M.A. Weed management improves yield and quality of direct seeded rice. Aust. J. Crop Sci. 2011, 5, 688–694. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2006; Volume 19, pp. 1006–1101. [Google Scholar]
- Juliano, B.O.; Perez, C.M.; Blakeney, A.B.; Castillo, T.; Kongseree, N.; Laignelet, B.; Lapis, E.T.; Murty, V.V.S.; Paule, C.M.; Webb, B.D. International cooperative testing on the amylose content of milled rice. Starch-Stärke 1981, 33, 157–162. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics; McGraw Hill Co. Inc.: New York, NY, USA, 1997. [Google Scholar]
- Ishimaru, T.; Horigane, A.K.; Ida, M.; Iwasawa, N.; San-oh, Y.A.; Nakazono, M.; Nishizawa, N.K.; Masumura, T.; Kondo, M.; Yoshida, M. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. J. Cereal Sci. 2009, 50, 166–174. [Google Scholar] [CrossRef]
- Gao, X.J.; Hu, X.; Wang, S.P.; He, B.G. Nitrogen losses from flooded rice field. Pedosphere 2002, 12, 151–156. [Google Scholar]
- Xi, M.; Zhao, Y.L.; Lin, Z.M.; Zhang, X.C.; Ding, C.Q.; Tang, S.; Liu, Z.H.; Wang, S.H.; Ding, Y.F. Comparison of physicochemical characteristics between white-belly and white-core rice grains. J. Cereal Sci. 2016, 69, 392–397. [Google Scholar] [CrossRef]
- Tsukaguchi, T.; Iida, Y. Effects of assimilate supply and high temperature during grain-filling period on the occurrence of various types of chalky kernels in rice plants (Oryza sativa L.). Plant Prod. Sci. 2008, 11, 203–210. [Google Scholar] [CrossRef]
- Xu, C.M.; Wang, D.Y.; Shao, G.S.; Zhang, X.F. Effects of transplanting density and nitrogen fertilizer rate on yield formation and grain quality of super high yielding rice Zhongzao 22. Chin. J. Rice Sci. 2008, 22, 507–512. [Google Scholar]
- Yuan, L.; Zhang, Z.C.; Cao, X.C.; Zhu, S.C.; Zhang, X.; Wu, L.H. Responses of rice production, milled rice quality and soil properties to various nitrogen inputs and rice straw incorporation under continuous plastic film mulching cultivation. Field Crops Res. 2014, 155, 164–171. [Google Scholar] [CrossRef]
- Ning, H.F.; Liu, Z.H.; Wang, Q.S.; Lin, Z.M.; Chen, S.J.; Li, G.H.; Wang, S.H.; Ding, Y.F. Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. J. Cereal Sci. 2009, 50, 49–55. [Google Scholar] [CrossRef]
- Juliano, B.O.; Antonio, A.A.; Esmama, B.V. Effects of protein content on the distribution and properties of rice protein. J. Sci. Food Agric. 1973, 24, 295–306. [Google Scholar] [CrossRef]
- Farooq, M.; Kobayashi, N.; Wahid, A.; Ito, O.; Basra, S.M.A. Strategies for producing more rice with less water. Adv. Agron. 2009, 101, 351–388. [Google Scholar] [CrossRef]
- Shinde, S.V.; Nelson, J.E.; Huber, K.C. Soft wheat starch pasting behavior in relation to A- and B-granule content and composition. Cereal Chem. 2003, 80, 91–98. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Rashid, A.; Nadeem, F.; Stuerz, S.; Asch, F.; Bell, R.W.; Siddique, K.H.M. Boron nutrition of rice in different production systems. A review. Agron. Sustain. Dev. 2018, 38, 1–25. [Google Scholar] [CrossRef] [Green Version]
Month | Temperature °C | Relative Humidity b (%) | Monthly Average Sunshine c (h) | Rainfall d (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Monthly Maximum a | Monthly Minimum a | Monthly Mean a | ||||||||||
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
June | 39.8 | 39.8 | 27.3 | 27.9 | 33.5 | 33.9 | 44.5 | 56.5 | 8.5 | 9.38 | 41.6 | 92.0 |
July | 38.5 | 38.0 | 28.9 | 28.0 | 33.7 | 33.0 | 70.0 | 70.2 | 07.0 | 07.9 | 117 | 195 |
August | 38.1 | 39.0 | 28.6 | 29.5 | 33.4 | 34.2 | 68.9 | 67.4 | 7.87 | 08.5 | 66.0 | 05.4 |
September | 36.7 | 37.2 | 24.4 | 25.6 | 30.6 | 31.4 | 67.7 | 65.1 | 08.8 | 08.7 | 35.6 | 41.7 |
October | 35.0 | 32.6 | 19.2 | 18.7 | 27.1 | 25.6 | 68.2 | 64.4 | 07.5 | 8.81 | 0.00 | 0.00 |
November | 24.1 | 27.1 | 11.8 | 12.7 | 18.0 | 19.9 | 84.6 | 74.6 | 3.65 | 6.68 | 01.5 | 00.6 |
Treatment | Brown Rice (%) | Brown Head Rice (%) | Brown Broken Rice (%) | White Rice (%) | White Head Rice (%) | White Broken Rice (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | ||
Production system (PS) | |||||||||||||
Dry direct-seeded rice (DDSR) | 78.2 a | 76.5 b | 58.4 b | 54.7 b | 19.8 a | 21.7 a | 69.1 a | 63.8 a | 44.9 b | 43.9 b | 24.1 a | 19.9 a | |
Transplanted rice (TPR) | 77.8 b | 77.9 a | 59.6 a | 57.0 a | 18.2 b | 20.9 a | 69.3 a | 64.6 a | 44.8 a | 47.2 a | 22.6 a | 17.4 b | |
HSD (p ≤ 0.05) | 0.24 | 0.94 | 1.09 | 1.16 | 1.32 | 1.99 | 1.24 | 1.47 | 0.98 | 1.16 | 2.20 | 1.84 | |
Nitrogen management (NM) | |||||||||||||
N1 (0 kg ha−1 N = Control) | 75.2 e | 71.1 e | 48.5 e | 49.7 d | 26.7 a | 21.5 a,b | 65.1 d | 56.1 c | 38.7 d | 36.6 e | 26.4 a | 19.5 a,b | |
N2 (50 kg ha−1 N as basal) | 76.4 d | 75.3 d | 55.5 d | 52.8 cd | 20.9 b | 22.4 a | 68.2 c | 60.9 b | 42.1 a | 40.5 d | 26.1 a | 20.4 a | |
N3 (100 kg ha−1 N as basal) | 77.7 c | 76.9 c,d | 58.3 c | 54.9 bc | 19.4 b | 22.0 a,b | 69.4 b | 63.0 b | 45.1 b | 43.3 c | 24.3 ab | 19.8 a,b | |
N4 (150 kg ha−1 N as basal) | 78.6 bc | 78.3 bc | 62.8 b | 56.2 b | 15.8 c | 22.1 a,b | 69.7 b | 64.0 b | 46.2 b | 45.7 b | 23.6 b | 18.4 a,b | |
N5 (100 kg ha−1 N in three splits) | 80.7 a | 81.1 a | 65.0 a | 61.2 a | 15.7 b | 19.8 b | 71.9 a | 71.1 a | 52.2 a | 53.2 a | 19.8 c | 17.9 a,b | |
N6 (150 kg ha−1 N in three splits) | 79.4 b | 80.5 a,b | 64.1 a,b | 60.4 a | 15.5 b | 20.1 a,b | 70.9 a | 69.8 a | 51.0 a | 53.9 a | 19.9 c | 15.9 b | |
HSD (p ≤ 0.05) | 0.99 | 2.68 | 1.36 | 3.23 | 1.91 | 2.55 | 1.16 | 3.38 | 2.29 | 2.20 | 2.48 | 4.22 | |
Analysis of variance | - | - | - | - | - | - | - | - | - | - | - | - | - |
Source | df | - | - | - | - | - | - | - | - | - | - | - | - |
PS | 1 | * | * | * | * | * | ns | ns | ns | * | ** | ns | * |
NM | 5 | ** | ** | ** | ** | ** | * | ** | ** | ** | ** | ** | * |
PS × NM | 5 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | Chalky Kernel (%) | Abortive Kernel (%) | Opaque Kernel (%) | Kernel Length (%) | Kernel Width (%) | Kernel Length to Width Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | ||
Production system (PS) | |||||||||||||
Dry direct-seeded rice (DDSR) | 19.7 a | 18.1 a | 10.6 a | 13.6 a | 8.57 a | 11.2 a | 9.34 a | 9.18 b | 1.70 a | 1.83 a | 5.55 a | 5.02 b | |
Transplanted rice (TPR) | 16.3 b | 14.6 a | 9.41 b | 11.9 b | 8.10 a | 9.45 a | 10.0 a | 9.68 a | 1.81 a | 1.84 a | 5.60 a | 5.26 a | |
HSD (p ≤ 0.05) | 3.43 | 5.48 | 1.14 | 0.59 | 0.98 | 2.56 | 0.91 | 0.29 | 0.26 | 0.04 | 1.09 | 0.17 | |
Nitrogen management (NM) | |||||||||||||
N1 (0 kg ha−1 N = Control) | 26.5 a | 24.6 a | 15.5 a | 15.7 a | 12.8 a | 17.6 a | 8.75 d | 8.82 a | 1.45 c | 1.79 a | 6.10 a | 4.94 a | |
N2 (50 kg ha−1 N as basal) | 23.5 a | 20.2 b | 12.7 b | 14.2 a,b | 9.00 b | 14.1 b | 9.17 c,d | 9.08 a | 1.61 b,c | 1.82 a | 5.77 a | 4.99 a | |
N3 (100 kg ha−1 N as basal) | 19.2 b | 18.1 b | 10.4 c | 13.0 b,c | 8.32 b | 9.87 c | 9.53 b,c | 9.42 a | 1.80 a,b | 1.84 a | 5.47 a | 5.13 a | |
N4 (150 kg ha−1 N as basal) | 17.8 b | 16.4 b | 9.25 c | 11.7 b,c | 7.92 b | 9.61 d | 9.94 a,b | 9.59 a | 1.86 a | 1.85 a | 5.44 a | 5.19 a | |
N5 (100 kg ha−1 N in three splits) | 10.8 c | 10.1 c | 6.37 d | 10.8 c | 6.13 c | 6.84 d | 10.3 a | 9.75 a | 1.90 a | 1.86 a | 5.36 a | 5.26 a | |
N6 (150 kg ha−1 N in three splits) | 10.1 c | 9.07 c | 5.78 d | 11.1 c | 5.80 c | 5.89 d | 10.5 a | 9.91 a | 1.91 a | 1.87 a | 5.32 a | 5.31 a | |
HSD (p ≤ 0.05) | 3.72 | 4.30 | 1.76 | 2.53 | 1.45 | 2.17 | 0.65 | 1.29 | 0.23 | 0.09 | 0.99 | 0.71 | |
Analysis of variance | |||||||||||||
Source | df | ||||||||||||
PS | 1 | * | ns | * | ** | ns | ns | ns | * | ns | ns | ns | * |
NM | 5 | ** | ** | ** | ** | ** | ** | ** | ns | ** | ns | ns | ns |
PS × NM | 5 | * | ns | ns | ns | ns | * | ns | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishfaq, M.; Akbar, N.; Zulfiqar, U.; Hussain, S.; Murtza, K.; Batool, Z.; Ashraf, U.; Alyemeni, M.N.; Ahmad, P. Influence of Nitrogen Management Regimes on Milling Recovery and Grain Quality of Aromatic Rice in Different Rice Production Systems. Agronomy 2020, 10, 1841. https://doi.org/10.3390/agronomy10111841
Ishfaq M, Akbar N, Zulfiqar U, Hussain S, Murtza K, Batool Z, Ashraf U, Alyemeni MN, Ahmad P. Influence of Nitrogen Management Regimes on Milling Recovery and Grain Quality of Aromatic Rice in Different Rice Production Systems. Agronomy. 2020; 10(11):1841. https://doi.org/10.3390/agronomy10111841
Chicago/Turabian StyleIshfaq, Muhammad, Nadeem Akbar, Usman Zulfiqar, Saddam Hussain, Khadija Murtza, Zarina Batool, Umair Ashraf, Mohammed Nasser Alyemeni, and Parvaiz Ahmad. 2020. "Influence of Nitrogen Management Regimes on Milling Recovery and Grain Quality of Aromatic Rice in Different Rice Production Systems" Agronomy 10, no. 11: 1841. https://doi.org/10.3390/agronomy10111841
APA StyleIshfaq, M., Akbar, N., Zulfiqar, U., Hussain, S., Murtza, K., Batool, Z., Ashraf, U., Alyemeni, M. N., & Ahmad, P. (2020). Influence of Nitrogen Management Regimes on Milling Recovery and Grain Quality of Aromatic Rice in Different Rice Production Systems. Agronomy, 10(11), 1841. https://doi.org/10.3390/agronomy10111841