Effects of Various Additives on Fermentation, Aerobic Stability and Volatile Organic Compounds in Whole-Crop Rye Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ensiling
2.2. Dry Matter Determination
2.3. Chemical and Microbiological Analysis
2.4. Aerobic Stability Test
2.5. Statistical Analysis
3. Results
3.1. Dry Matter Losses, Fermentation Pattern, Aerobic Stability and Formation of Volatile Organic Compounds
3.2. Relationships between Silage Traits
4. Discussion
4.1. Dry Matter Losses and Fermentation Characteristics
4.2. Aerobic Stability
4.3. Formation of Volatile Organic Compounds
4.4. Correlations between Silage Traits
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Nadeau, E. Effects of plant species, stage of maturity and additive on the feeding value of whole-crop cereal silage. J. Sci. Food Agric. 2007, 87, 789–801. [Google Scholar] [CrossRef]
- Kennelly, J.J.; Weinberg, Z. Small grain silage. In Silage Science and Technology; Number 42 in the Series Agronomy; Buxton, D.R., Muck, R.E., Holmes, H.J., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 2003; pp. 749–780. [Google Scholar]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef] [PubMed]
- Tetlow, R.M.; Mason, V.C. Treatment of whole-crop cereals with alkali. 1. The influence of sodium hydroxide and ensiling on the chemical composition and the in vitro digestibility of rye, barley and wheat crops harvested at increasing maturity and dry matter content. Anim. Feed Sci. Technol. 1987, 18, 257–269. [Google Scholar] [CrossRef]
- Orosz, S.; Kruppa, J.; Kruppa, J., Jr.; Szemethy, D.; Piskerne Fülöp, E.; Futo, Z.; Hoffmann, R. Harvest window: Comparison of whole crop rye and whole crop triticale in an early cut system. In Proceedings of the XVIII International Silage Conference, Bonn, Germany, 24–26 July 2018; Gerlach, K., Südekum, K.-H., Eds.; University of Bonn: Bonn, Germany, 2018; pp. 516–517. [Google Scholar]
- Randby, Å.T.; Nadeau, N.; Karlsson, L.; Johansen, A. Effect of maturity stage at harvest and kernel processing of whole crop wheat silage on digestibility by dairy cows. Anim. Feed Sci. Technol. 2019, 243, 141–152. [Google Scholar] [CrossRef]
- Nadeau, N.; de Sousa, D.O.; Magnusson, A.; Hedlund, S.; Richardt, W.; Nørgaard, P. Digestibility and protein utilization in wethers fed whole-crop barley or grass silages harvested at different maturity stages, with or without protein supplementation. J. Anim. Sci. 2019, 97, 2188–2201. [Google Scholar] [CrossRef]
- Weissbach, F.; Haacker, K. Über die Ursachen der Buttersäuregärung in Silagen aus Getreideganzpflanzen (On the causes of butyric acid production in silages made from whole-crop cereals). Wirtsch. Futter 1988, 34, 88–99. (In German) [Google Scholar]
- Knicky, M. Possibilities to Improve Silage Conservation. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, May 2005; pp. 1–20. [Google Scholar]
- Kung, L., Jr.; Myers, C.L.; Neylon, J.M.; Taylor, C.C.; Lazartic, J.; Mills, J.A.; Whiter, A.G. The effects of buffered propionic acid-based additives alone or combined with microbial inoculation on the fermentation of high moisture corn and whole-crop barley. J. Dairy Sci. 2004, 87, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Filya, I. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. J. Appl. Microbiol. 2003, 95, 1080–1086. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Okine, E.K.; McAllister, T. A third-generation esterase inoculant alters fermentation pattern and improves aerobic stability of barley silage and the efficiency of body weight gain of growing feedlot cattle. J. Anim. Sci. 2012, 90, 1541–1552. [Google Scholar] [CrossRef]
- Gomes, A.L.M.; Bolsson, D.C.; Jacovaci, F.A.; Nussio, L.G.; Jobim, C.C.; Daniel, J.L.P. Effects of light wilting and heterolactic inoculant on the formation of volatile organic compounds, fermentative losses and aerobic stability of oat silage. Anim. Feed Sci. Technol. 2019, 247, 194–198. [Google Scholar] [CrossRef]
- Keshri, J.; Chen, Y.; Pinto, R.; Kroupitski, Y.; Weinberg, Z.G.; Saldinger, S.S. Bacterial dynamics of wheat silage. Front. Microbiol. 2019, 10, 1532–1547. [Google Scholar] [CrossRef] [PubMed]
- Rooke, J.A.; Hatfield, R.D. Biochemistry of ensiling. In Silage Science and Technology; Number 42 in the Series Agronomy; Buxton, D.R., Muck, R.E., Holmes, H.J., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 2003; pp. 95–139. [Google Scholar]
- Auerbach, H.; Weiss, K.; Nadeau, E. The future of silage preservation. In Proceedings of the 1st International Silage Summit, Leipzig, Germany, 12 November 2012; Auerbach, H., Lückstädt, C., Weissbach, F., Eds.; Anytime Publishing Services: Worthington, UK; pp. 75–144. [Google Scholar]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factor affecting dry matter and qualitative losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auerbach, H.; Nadeau, E. Effects of additive type on fermentation characteristics, yeast count and aerobic stability and changes in nutritive value of grass silage exposed to air. Agronomy 2020, 10, 1229. [Google Scholar] [CrossRef]
- Honig, H.; Thaysen, J. 10 years testing of silage additives by dlg—A comprehensive data evaluation. In Proceedings of the 13th International Silage Conference, Auchincruive, Scotland, 11–13 September 2002; Gechie, M., Thomas, G., Eds.; Scottish Agricultural College (SAC): Auchincruive, Scotland, 2002; pp. 232–233. [Google Scholar]
- Kung, L., Jr.; Stokes, M.R.; Lin, C.J. Silage additives. In Silage Science and Technology; Number 42 in the Series Agronomy; Buxton, D.R., Muck, R.E., Holmes, H.J., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 2003; pp. 305–360. [Google Scholar]
- Kleinschmit, D.H.; Kung, L., Jr. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J. Dairy Sci. 2006, 89, 4005–4013. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Weinberg, Z.G.; Ogunade, I.M.; Cervantes, A.A.P.; Arriola, K.G.; Jiang, Y.; Kim, D.; Li, X.; Gonçalves, M.C.M.; Vyas, D.; et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J. Dairy Sci. 2017, 100, 4587–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L., Jr. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Place, S.E.; Mitloehner, F.M. Invited review: Contemporary environmental issues: A review of the dairy industry’s role in climate change and air quality and the potential of mitigation through improved production efficiency. J. Dairy Sci. 2010, 93, 3407–3416. [Google Scholar] [CrossRef]
- Tabacco, E.; Comino, L.; Borreani, G. Production efficiency, costs and environmental impacts of conventional and dynamic forage systems for dairy farms in Italy. Eur. J. Agron. 2018, 99, 1–12. [Google Scholar] [CrossRef]
- Åby, B.A.; Randby, A.T.; Bonesmo, H.; Aass, L. Impact of grass silage quality on greenhouse gas emissions from dairy and beef production. Grass Forage Sci. 2019, 74, 525–534. [Google Scholar] [CrossRef]
- Ranck, E.J.; Holden, L.A.; Dillon, J.A.; Rotz, C.A.; Soder, K.J. Economic and environmental effects of double cropping winter annuals and corn using the Integrated Farm System Model. J. Dairy Sci. 2020, 103, 3804–3815. [Google Scholar] [CrossRef]
- Gislon, G.; Colombini, S.; Borreani, G.; Crovetto, G.M.; Sandrucci, A.; Galassi, G.; Tabacco, E.; Rapetti, L. Milk production, methane emissions, nitrogen, and energy balance of cows fed diets based on different forage systems. J. Dairy Sci. 2020, 103, 8048–8061. [Google Scholar] [CrossRef] [PubMed]
- Hafner, S.D.; Howard, C.; Muck, R.E.; Franco, R.B.; Montes, F.; Green, P.G.; Mitloehner, F.M.; Trabuef, S.L.; Rotz, C.A. Emission of volatile organic compounds from silage: Compounds, sources, and implications. Atmos. Environ. 2013, 77, 827–839. [Google Scholar] [CrossRef]
- Weiss, K. Volatile organic compounds in silages—Effects of management factors on their formation: A review. Slovak J Anim Sci. 2017, 50, 55–67. [Google Scholar]
- Hafner, S.D.; Franco, R.B.; Kung, L., Jr.; Rotz, C.A.; Mitloehner, F. Potassium sorbate reduces production of ethanol and 2 esters in corn silage. J. Dairy Sci. 2014, 97, 7870–7878. [Google Scholar] [CrossRef] [Green Version]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. J. Dairy Sci. 2016, 99, 8053–8069. [Google Scholar] [CrossRef] [Green Version]
- Brüning, D.; Gerlach, K.; Weiss, K.; Südekum, K.-H. Effect of compaction, delayed sealing and aerobic exposure on maize silage quality and on formation of volatile organic compounds. Grass Forage Sci. 2018, 73, 53–66. [Google Scholar] [CrossRef]
- Weiss, K.; Kroschewski, B.; Auerbach, H. Formation of volatile organic compounds during the fermentation of maize as affected by sealing time and silage additive use. Arch. Anim. Nutr. 2020, 74, 150–163. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Weiss, K.; Custódio, L.; Sá Neto, A.; Santos, M.C.; Zopollatto, M.; Nussio, L.G. Occurrence of volatile organic compounds in sugarcane silage. Anim. Feed Sci. Technol. 2013, 185, 101–105. [Google Scholar] [CrossRef]
- Cardoso, L.L.; Ribeiro, K.G.; Marcondes, M.I.; Pereira, O.G.; Weiss, K. Chemical composition and production of ethanol and other volatile organic compounds in sugarcane silage treated with chemical and microbial additives. Anim. Prod. Sci. 2018, 59, 721–728. [Google Scholar] [CrossRef]
- Kroschewski, B.; Auerbach, H.; Weiss, K. Statistics and experimental design in silage research: Some comments on design and analysis of comparative silage experiments. In Proceedings of the XVIII International Silage Conference, Bonn, Germany, 24–26 July 2018; Gerlach, K., Südekum, K.-H., Eds.; University of Bonn: Bonn, Germany, 2018; pp. 554–560. [Google Scholar]
- Jungbluth, K.H.; Trimborn, M.; Maack, G.C.; Büscher, W.; Li, M.; Cheng, H.; Cheng, Q.; Sun, Y. Effects of three additives and two bulk densities on maize silage characteristics, temperature profiles, CO2 and O2-dynamics in small scale silos during aerobic exposure. Appl. Sci. 2017, 7, 545. [Google Scholar] [CrossRef] [Green Version]
- Weissbach, F.; Strubelt, C. Correcting the dry matter content of maize silages as a substrate for biogas production. Landtechnik 2008, 63, 82–83. [Google Scholar]
- Weissbach, F. A simple method for the correction of fermentation losses measured in laboratory silos. In Proceedings of the 14th International Silage Conference, Belfast, UK, 3–6 July 2005; Park, R.S., Strong, M.D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; p. 278. [Google Scholar]
- Naumann, C.; Bassler, R. Methodenbuch des VDLUFA: Die Chemische Untersuchung von Futtermitteln (Book of Methods of VDLUFA: The Chemical Analysis of Feeds); Ergänzungslieferung (Supplementary Supply) 1993; VDLUFA Verlag: Darmstadt, Germany, 1976; Volume 3. (In German) [Google Scholar]
- GfE (Gesellschaft für Ernährungsphysiologie). Communications of the Committee for Requirement Standards of the Society of Nutrition Physiology: New equations for predicting metabolisable energy of grass and maize products for ruminants. Proc. Soc. Nutr. Physiol. 2008, 17, 191–198. [Google Scholar]
- Weiss, K.; Kaiser, E. Milchsäurebestimmung in Silageextrakten mit Hilfe der HPLC (Lactic acid determination in silage extracts by HPLC). Wirtsch. Futter 1995, 41, 69–80. (In German) [Google Scholar]
- von Lengerken, J.; Zimmermann, K. Handbuch Futtermittelprüfung (Handbook Feed Evaluation), 1st ed.; Deutscher Landwirtschaftsverlag: Berlin, Germany, 1991; pp. 206–267. (In German) [Google Scholar]
- International Organization for Standardization. Microbiology of Food and Animal Feedingstuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria–Colony-Count Technique at 30 °C, 1st ed.; ISO 15214; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- International Organization for Standardization. Microbiology of Food and Animal Feedingstuffs-Horizontal Method for the Enumeration of Yeasts and Moulds-Part 1: Colony Count Technique in Products with Water Activity Greater Than 0.95; ISO 21527-1; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- Honig, H. Evaluation of aerobic stability. In Proceedings of the EUROBAC Conference, Uppsala, Sweden, 12–16 August 1986; Lindgren, S., Pettersson, K.L., Eds.; Swedish University of Agricultural Sciences: Uppsala, Sweden, 1990; pp. 76–82. [Google Scholar]
- Addah, W.; Baah, Groenewegen, J.P.; Okine, E.K.; McAllister, T.A. Comparison of the fermentation characteristics, aerobic stability and nutritive value of barley and corn silages ensiled with or without a mixed bacterial inoculant. Can. J. Anim. Sci. 2011, 91, 133–146. [Google Scholar] [CrossRef]
- Romero, J.J.; Zhao, Y.; Balseca-Paredes, M.A.; Tiezzi, F.; Gutierrez-Rodriguez, E.; Castillo, M.S. Laboratory silo type and inoculation effects on nutritional composition, fermentation, and bacterial and fungal communities of oat silage. J. Dairy Sci. 2017, 100, 1812–1828. [Google Scholar] [CrossRef] [Green Version]
- Duniere, L.; Xu, S.; Long, J.; Elekwachi, C.; Wang, Y.; Turkington, K.; Forster, R.; McAllister, T.A. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage. BMC Microbiol. 2017, 17, 50–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, J.; Turkington, T.K.; Blackshaw, R.; Geddes, C.M.; Lupwayi, N.Z.; Xu, S.; Yang, J.; Yang, H.E.; Wang, Y.; McAllister, T.A. Impact of field fungal contamination of barley on ensiling properties, nutritional quality and the microbiome of barley silage. Grass Forage Sci. 2019, 74, 231–243. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Auerbach, H.; Weiss, K.; Theobald, P.; Nadeau, E. Effects of inoculant type on dry matter losses, fermentation pattern, yeast count and aerobic stability of green rye silages. In Proceedings of the 12. BOKU-Symposium Tierernährung, Vienna, Austria, 11 April 2013; Mair, C., Kraft, M., Wetscherek, W., Schedle, K., Eds.; University of Natural Resources and Life Sciences: Vienna, Austria, 2013; pp. 179–185. [Google Scholar]
- Bernardi, A.; Härter, C.J.; Silva, A.W.L.; Reis, R.A.; Rabelo, C.H.S. A meta-analysis examining lactic acid bacteria inoculants for maize silage: Effects on fermentation, aerobic stability, nutritive value and livestock production. Grass Forage Sci. 2019, 74, 596–612. [Google Scholar] [CrossRef]
- Oude-Elferink, S.J.W.H.; Krooneman, J.; Gotschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F. Anaerobic degradation of lactic acid to acetic acid and 1,2-propandediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 2001, 67, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Condon, M. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 1987, 46, 269–280. [Google Scholar] [CrossRef]
- Auerbach, H.; Theobald, P. Additive type affects fermentation, aerobic stability and mycotoxin formation during air exposure of early-cut rye (Secale cereale L.) silage. Agonomy 2020, 10, 1432. [Google Scholar] [CrossRef]
- Krooneman, J.; Faber, F.; Alderkamp, A.C.; Oude Elferink, S.J.H.W.; Driehuis, F.; Cleenwerck, I.; Swings, J.; Gottschal, J.C.; Vancanneyt, M. Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int. J. Syst. Evol. Microbiol. 2002, 52, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, N.C.; Nascimento, C.F.; Campos, V.M.A.; Alves, M.A.P.; Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Anim. Feed Sci. Technol. 2019, 251, 124–133. [Google Scholar] [CrossRef]
- Bernardes, T.F.; de Oliveira, I.L.; Lara, M.A.S.; Casagrande, D.R.; Avila, C.L.S.; Pereira, O.G. Effects of potassium sorbate and sodium benzoate at two application rates on fermentation and aerobic stability of maize silage. Grass Forage Sci. 2014, 70, 491–498. [Google Scholar] [CrossRef]
- Da Silva, T.C.; Smith, M.L.; Barnard, A.M.; Kung, L., Jr. The effect of a chemical additive on the fermentation and aerobic stability of high-moisture corn. J. Dairy Sci. 2015, 98, 8904–8912. [Google Scholar] [CrossRef] [PubMed]
- Knicky, M.; Spörndly, R. Short communication: Use of a mixture of sodium nitrite, sodium benzoate, and potassium sorbate in aerobically challenged silages. J. Dairy Sci. 2015, 98, 5729–5734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kung, L., Jr.; Smith, M.L.; da Silva, E.B.; Windle, M.C.; da Silva, T.C.; Polukis, S.A. An evaluation of the effectiveness of a chemical additive based on sodium benzoate, potassium sorbate, and sodium nitrite on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 2018, 101, 5949–5960. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, E.B.; Savage, R.M.; Biddle, A.S.; Polukis, S.A.; Smith, M.L.; Kung, L., Jr. Effects of a chemical additive on the fermentation, microbial communities, and aerobic stability of corn silage with or without air stress during storage. J. Anim. Sci. 2020, 98, 1–11. [Google Scholar] [CrossRef]
- Auerbach, H.; Nadeau, E. Chemical additives for silages: When to use it and what are the options? In Proceedings of the 6th International Symposium on Forage Quality and Conservation, Piracicaba, Brazil, 7–8 November 2019; Nussio, L.G., da Silva, E.B., Oliveira, K.S., Gritti, V.C., Salvo, P.A.R., Salvati, G.G., de Sousa, D.O., Eds.; University of Sao Paulo: Piracicaba, Brazil, 2019; pp. 49–88. [Google Scholar]
- Pitt, R.E.; Muck, R.E.; Pickering, N.B. A model of aerobic fungal growth in silage. 2. Aerobic stability. Grass Forage Sci. 1991, 46, 301–312. [Google Scholar] [CrossRef]
- Spoelstra, S.F.M.; Courtin, M.G.; van Beers, J.A.C. Acetic acid bacteria can initiate aerobic deterioration of whole-crop maize. J. Agric. Sci. 1988, 111, 127–132. [Google Scholar] [CrossRef]
- Driehuis, F.; van Wikselaar, P.G. Effect of addition of formic, acetic or propionic acid to maize silage and low dry matter grass silage on the microbial flora and aerobic stability. In Proceedings of the 11th International Silage Conference, Aberystwyth, UK, 8–11 September 1996; Jones, D.I.H., Jones, R., Dewhurst, R., Merry, R., Haigh, P.M., Eds.; University of Aberystwyth: Aberythwyth, UK, 1996; pp. 256–257. [Google Scholar]
- Fredlund, E.; Druvefors, U.Ä.; Olstorpe, M.N.; Passoth, V.; Schnürer, J. Influence of ethyl acetate production and ploidy on the anti-mould activity of Pichia anomala. FEMS Microbiol. Lett. 2004, 238, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.M.G.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microbial. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude-Elferink, S.J.W.E.; Spoelstra, S.F. Microbiology of ensiling. In Silage Science and Technology; Number 42 in the Series Agronomy; Buxton, D.R., Muck, R.E., Holmes, H.J., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar]
- Santos, M.C.; Golt, C.; Joerger, R.D.; Mechor, G.D.; Mourão, G.B.; Kung, L., Jr. Identification of the major yeasts isolated from high moisture corn and corn silages in the United States using genetic and biochemical methods. J. Dairy Sci. 2017, 100, 1151–1160. [Google Scholar] [CrossRef] [Green Version]
- Hafner, S.D.; Windle, M.; Merrill, C.C.; Smith, M.L.; Franco, R.B.; Kung, L., Jr. Effects of potassium sorbate and Lactobacillus plantarum MTD1 on production of ethanol and other volatile organic compounds in corn silage. Anim. Feed Sci. Technol. 2015, 208, 79–85. [Google Scholar] [CrossRef]
- Raun, B.M.L.; Kristensen, N.B. Propanol in maize silage at Danish dairy farms. Acta Agric. Scand. Sect. A Anim. Sci. 2010, 60, 53–59. [Google Scholar] [CrossRef]
- Rabelo, C.H.S.; Härter, C.J.; da Silva Avila, C.L.; Reis, R.A. Meta-analysis of the effects of Lactobacillus plantarum and Lactobacillus buchneri on fermentation, chemical composition and aerobic stability of sugarcane silage. Grassl. Sci. 2019, 65, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.J.; Kung, L., Jr. The effects of Lactobacillus buchneri with or without a homolactic bacterium on the fermentation and aerobic stability of corn silages made at different locations. J. Dairy Sci. 2010, 93, 1616–1624. [Google Scholar] [CrossRef]
Item | Mean | Standard Deviation |
---|---|---|
Dry matter, g/kg | 439 | 3.4 |
Crude ash | 33 | 1.3 |
Crude protein | 44 | 0.9 |
Crude fibre | 362 | 2.0 |
Starch | 79 | 4.5 |
Sugar * | 157 | 3.9 |
Water-soluble carbohydrates † | 214 | 4.0 |
Metabolizable energy, MJ kg−1 DM | 10.2 | 0 |
Net energy lactation, MJ NEL kg−1 DM | 6.1 | 0 |
Lactic acid bacteria, log10 cfu g−1 | 5.4 | 0.14 |
Yeasts, log10 cfu g−1 | 5.3 | 0.17 |
Moulds, log10 cfu g−1 | 5.1 | 0.45 |
Item | CON | LABho | LABhe | LABheho | NHS | BSP | SEM | p |
---|---|---|---|---|---|---|---|---|
DM, g kg−1 | 419 ab | 413 a | 426 bc | 428 c | 429 c | 432 c | 1.7 | <0.001 |
DM loss, % | 7.2 b | 8.2 b | 4.9 a | 5.2 a | 3.9 a | 4.1 a | 0.29 | <0.001 |
Water-soluble carbohydrates | 62.5 a | 55.4 a | 50.7 a | 40.2 a | 131.1 b | 138.2 b | 6.23 | <0.001 |
NH3-N, g kg−1 total N | 13.5 bc | 12.6 b | 13.9 c | 14.0 c | 11.2 a | 12.7 b | 0.24 | <0.001 |
pH | 3.94 bc | 3.98 cd | 3.78 a | 3.81 a | 4.00 d | 3.92 b | 0.010 | <0.001 |
Lactic acid | 33.8 b | 33.8 b | 33.3 b | 32.6 b | 27.8 a | 31.5 b | 0.70 | <0.001 |
Acetic acid | 8.9 a | 5.8 a | 19.6 c | 21.0 c | 13.3 b | 12.7 b | 0.73 | <0.001 |
Propionic acid | ND | ND | ND | ND | ND | ND | - | - |
Butyric acid | ND | ND | ND | ND | ND | ND | - | - |
Ethanol | 27.1 c | 28.9 c | 5.6 ab | 7.4 b | 1.5 a | 4.1 ab | 1.10–4.50 | 0.002 |
n-propanol | ND | ND | ND | ND | ND | ND | - | - |
1,2-propanediol | 0.4 x | 0 w | 1.1 y | 1.4 z | 0 w | 0 w | 0–0.01 | <0.001 |
Yeast count, log10 cfu g−1 | 6.6 b | 7.1 b | 3.5 a | 2.8 a | 6.7 b | 6.3 b | 0.26 | <0.001 |
Mould count, log10 cfu g−1 | ND | ND | ND | ND | ND | ND | - | - |
Aerobic stability, hours | 19 w | 15 w | 336 y | 303 y | 52 x | 63 x | 0–32.7 | <0.001 |
Propyl acetate, mg kg−1 DM | ND | ND | ND | ND | ND | ND | - | - |
Ethyl lactate, mg kg−1 DM | 307 z | 359 z | 127 xy | 127 y | 11 w | 62 x | 5.0–60.5 | <0.001 |
Ethyl acetate, mg kg−1 DM | 108 z | 87 yz | 44 xy | 35 x | 0 w | 0 w | 0–20.7 | <0.001 |
Total ethyl esters, mg kg−1 DM | 415 z | 446 z | 171 xyz | 162 y | 11 w | 62 x | 5.0–81.0 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auerbach, H.; Theobald, P.; Kroschewski, B.; Weiss, K. Effects of Various Additives on Fermentation, Aerobic Stability and Volatile Organic Compounds in Whole-Crop Rye Silage. Agronomy 2020, 10, 1873. https://doi.org/10.3390/agronomy10121873
Auerbach H, Theobald P, Kroschewski B, Weiss K. Effects of Various Additives on Fermentation, Aerobic Stability and Volatile Organic Compounds in Whole-Crop Rye Silage. Agronomy. 2020; 10(12):1873. https://doi.org/10.3390/agronomy10121873
Chicago/Turabian StyleAuerbach, Horst, Peter Theobald, Bärbel Kroschewski, and Kirsten Weiss. 2020. "Effects of Various Additives on Fermentation, Aerobic Stability and Volatile Organic Compounds in Whole-Crop Rye Silage" Agronomy 10, no. 12: 1873. https://doi.org/10.3390/agronomy10121873
APA StyleAuerbach, H., Theobald, P., Kroschewski, B., & Weiss, K. (2020). Effects of Various Additives on Fermentation, Aerobic Stability and Volatile Organic Compounds in Whole-Crop Rye Silage. Agronomy, 10(12), 1873. https://doi.org/10.3390/agronomy10121873