Aeration to Manage Insects in Wheat Stored in the Balkan Peninsula: Computer Simulations Using Historical Weather Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collecting Weather Data
2.2. Weather Station Data Summation Analysis
2.3. Modeling Analysis and Statistical Analysis
3. Results
3.1. Grouping of Weather Station Data
3.2. Prediction of S. oryzae Populations
3.3. Correlation Analysis of Predicted Adult Populations
3.4. Aeration Cooling Patterns-Example from Each Zone
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fleurat-Lessard, F. Qualitative reasoning and integrated management of the quality of stored grain: A promising new approach. J. Stored Prod. Res. 2002, 38, 191–218. [Google Scholar] [CrossRef]
- Bareil, N.; Crépon, K.; Piraux, F. Prediction of insect mortality in cooled stored grain. J. Stored Prod. Res. 2018, 78, 110–117. [Google Scholar] [CrossRef]
- Abadía, M.B.; Urcola, H.A.; Ferrari, M.C.; Bartosik, R.E. Is the argentine postharvest system ready to handle more and better grains? J. Stored Prod. Res. 2019, 83, 218–226. [Google Scholar] [CrossRef]
- Lopes, D.C.; Steidle Neto, A.J. Effects of climate change on the aeration of stored beans in Minas Gerais State, Brazil. Biosyst. Eng. 2019, 188, 155–164. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Lin, Q.; Wu, Z.; Chen, L.; Zhang, Q. Smart cooling-aeration guided by aeration window model for paddy stored in concrete silos in a depot of Guangzhou, China. Comput. Electron. Agric. 2020, 173, 105452. [Google Scholar] [CrossRef]
- Navarro, S.; Noyes, R.T.; Casada, M.; Arthur, F.H. Grain Aeration. In Stored Product Protection; Phillips, T.W., Hagstrum, D.M., Cuperus, G.W., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 121–134. [Google Scholar]
- Howe, R.W. A summary of estimates of optimal and minimal conditions for population increase of some stored products insects. J. Stored Prod. Res. 1965, 1, 177–184. [Google Scholar] [CrossRef]
- Fields, P.G. The control of stored-product insects and mites with extreme temperatures. J. Stored Prod. Res. 1992, 28, 89–118. [Google Scholar] [CrossRef]
- Noyes, R.T.; Clary, B.L.; Cuperus, G.W. Maintaining the Quality of Stored Wheat by Aeration; Oklahoma State University: Stillwater, OK, USA, 1992. [Google Scholar]
- Reed, C.; Arthur, F.H. Aeration. In Alternatives to Pesticides in Stored-Product IPM; Subramanyam, B., Hagstrum, D.W., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2000; pp. 51–72. [Google Scholar]
- Jones, C.; Casada, M.; Loewer, O.J. Drying, handling, and storage of raw commodities. In Stored Product Protection; Phillips, T.W., Hagstrum, D.M., Cuperus, G., Eds.; Kansas State University: Manhattan, KS, USA, 2012; pp. 101–120. [Google Scholar]
- Daglish, G.J.; Nayak, M.K.; Arthur, F.H.; Athanassiou, C.G. Insect pest management in stored grain. In Recent Advances in Stored Product Protection; Springer: Berlin, Germany, 2018; pp. 45–63. [Google Scholar]
- Reed, C.; Harner, J. Cooling of stored wheat in multiple or single cycles using automatic aeration controllers. Appl. Eng. Agric. 1998, 14, 497–500. [Google Scholar] [CrossRef]
- Reed, C.; Harner, J. Thermostatically controlled aeration for insect control in stored hard red winter wheat. Appl. Eng. Agric. 1998, 14, 501–505. [Google Scholar] [CrossRef]
- Thorpe, G.R.; Cuff, W.R.; Longstaff, B.C. Control of Sitophilus oryzae infestation of stored wheat: An ecosystem model of the use of aeration. Ecol. Modell. 1982, 15, 331–351. [Google Scholar] [CrossRef]
- Steidle Neto, A.J.; de Carvalho Lopes, D. Thermistor based system for grain aeration monitoring and control. Comput. Electron. Agric. 2015, 116, 45–54. [Google Scholar] [CrossRef]
- Arthur, F.H.; Siebenmorgen, T.J. Historical weather data and predicted aeration cooling periods for stored rice in Arkansas. Appl. Eng. Agric. 2005, 21, 1017–1020. [Google Scholar] [CrossRef]
- Arthur, F.H.; Casada, M.E. Directional flow of summer aeration to manage insect pests in stored wheat. Appl. Eng. Agric. 2010, 26, 115–122. [Google Scholar] [CrossRef]
- Arthur, F.H.; Casada, M.E. Feasibility of summer aeration to control insects in stored wheat. Appl. Eng. Agric. 2005, 21, 1027–1038. [Google Scholar] [CrossRef]
- Arthur, F.H.; Throne, J.E.; Maier, D.E.; Montross, M.D. Feasibility of aeration for management of maize weevil populations in corn stored in the southern United States: Model simulations based on recorded weather data. Am. Entomol. 1998, 44, 118–123. [Google Scholar] [CrossRef]
- Arthur, F.H.; Throne, J.E.; Maier, D.E.; Montross, M.D. Impact of aeration on maize weevil (Coleoptera: Curculionidae) populations in corn stored in the northern United States: Simulation studies. Am. Entomol. 2001, 47, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Arthur, F.H.; Takahashi, K.; Hoernemann, C.K.; Soto, N. Potential for autumn aeration of stored rough rice and the potential number of generations of Sitophilus zeamais Motschulsky in milled rice in Japan. J. Stored Prod. Res. 2003, 39, 471–487. [Google Scholar] [CrossRef]
- Flinn, P.W.; Hagstrum, D.W.; Muir, W.E.; Sudayappa, K. Spatial model for simulating changes in temperature and insect population dynamics in stored grain. Environ. Entomol. 1992, 21, 1351–1356. [Google Scholar] [CrossRef]
- Flinn, P.W.; Hagstrum, D.W.; Muir, W.E. Effects of time of aeration, bin size, and latitude on insect populations in stored wheat: A simulation study. J. Econ. Entomol. 1997, 90, 646–651. [Google Scholar] [CrossRef]
- Yang, Y.; Wilson, L.T.; Arthur, F.H.; Wang, J.; Jia, C. Regional analysis of bin aeration as an alternative to insecticidal control for post-harvest management of Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). Ecol. Modell. 2017, 359, 165–181. [Google Scholar] [CrossRef]
- Arthur, F.H.; Yang, Y.; Wilson, L.T. Use of a web-based model for aeration management in stored rough rice. J. Econ. Entomol. 2011, 104, 702–708. [Google Scholar] [CrossRef]
- Arthur, F.H.; Johnson, H.L. Development of aeration plans based on weather data: A model for management of corn stored in Georgia. Am. Entomol. 1995, 41, 241–246. [Google Scholar] [CrossRef]
- Baskerville, A.G.L.; Emin, P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 1969, 50, 514–517. [Google Scholar] [CrossRef]
- Tobin, P.C.; Nagarkatti, S.; Saunders, M.C. Modeling development in grape berry moth (Lepidoptera: Tortricidae). Environ. Entomol. 2001, 30, 692–699. [Google Scholar] [CrossRef]
- Morrison, W.R.; Andresen, J.; Szendrei, Z. The development of the asparagus miner (Ophiomyia simplex Loew; Diptera: Agromyzidae) in temperate zones: A degree-day model. Pest Manag. Sci. 2014, 70, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.M.; Morrell, J.J. Development of the powderpost beetle (Coleoptera: Bostrichidae) at constant temperatures. Environ. Entomol. 2009, 38, 478–483. [Google Scholar] [CrossRef]
- Arthur, F.H.; Morrison, W.R.; Trdan, S. Feasibility of using aeration to cool wheat stored in Slovenia: A predictive modeling approach using historical weather data. Appl. Sci. 2020, 10, 6066. [Google Scholar] [CrossRef]
- Daglish, G.J.; Nayak, M.K.; Pavic, H. Phosphine resistance in Sitophilus oryzae (L.) from eastern Australia: Inheritance, fitness and prevalence. J. Stored Prod. Res. 2014, 59, 237–244. [Google Scholar] [CrossRef]
- Holloway, J.C.; Falk, M.G.; Emery, R.N.; Collins, P.J.; Nayak, M.K. Resistance to phosphine in Sitophilus oryzae in Australia: A national analysis of trends and frequencies over time and geographical spread. J. Stored Prod. Res. 2016, 69, 129–137. [Google Scholar] [CrossRef]
- Afful, E.; Elliott, B.; Nayak, M.K.; Phillips, T.W. Phosphine resistance in North American field populations of the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). J. Econ. Entomol. 2018, 111, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.J.; Schlipalius, D.I. Insecticide resistance. In Recent Advances in Stored Product Protection; Springer: Berlin, Germany, 2018; pp. 169–182. [Google Scholar]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W.; Ebert, P.R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entomol. 2020, 65, 333–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrafioti, P.; Athanassiou, C.G.; Nayak, M.K. Detection of phosphine resistance in major stored-product insects in Greece and evaluation of a field resistance test kit. J. Stored Prod. Res. 2019, 82, 40–47. [Google Scholar] [CrossRef]
- Kaur, R.; Nayak, M.K. Developing effective fumigation protocols to manage strongly phosphine-resistant Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Pest Manag. Sci. 2015, 71, 1297–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plumier, B.M.; Schramm, M.; Maier, D.E. Developing and verifying a fumigant loss model for bulk stored grain to predict phosphine concentrations by taking into account fumigant leakage and sorption. J. Stored Prod. Res. 2018, 77, 197–204. [Google Scholar] [CrossRef]
- Plumier, B.M.; Maier, D.E. Sensitivity analysis of a fumigant movement and loss model for bulk stored grain to predict effects of environmental conditions and operational variables on fumigation efficacy. J. Stored Prod. Res. 2018, 78, 18–26. [Google Scholar] [CrossRef]
- Brabec, D.; Campbell, J.; Arthur, F.; Casada, M.; Tilley, D.; Bantas, S. Evaluation of wireless phosphine sensors for monitoring fumigation gas in wheat stored in farm bins. Insects 2019, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Agrafioti, P.; Brabec, D.L.; Morrison, W.R.; Campbell, J.F.; Athanassiou, C.G. Scaling recovery of susceptible and resistant stored product insects after short exposures to phosphine by using automated video-tracking software. Pest Manag. Sci. 2020. [Google Scholar] [CrossRef]
- Opit, G.P.; Thoms, E.; Phillips, T.W.; Payton, M.E. Stored product effectiveness of sulfuryl fluoride fumigation for the control of phosphine-resistant grain insects infesting stored wheat. J. Econ. Entomol. 2016, 109, 930–941. [Google Scholar] [CrossRef]
- Nayak, M.K.; Jagadeesan, R.; Kaur, R.; Daglish, G.J.; Reid, R.; Pavic, H.; Smith, L.W.; Collins, P.J. Use of sulfuryl fluoride in the management of strongly phosphine-resistant insect pest populations in bulk grain storages in Australia. Indian J. Entomol. 2016, 78, 100–107. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Athanassiou, C.G. Improving stored product insect pest management: From theory to practice. Insects 2019, 10, 332. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Deque, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Maracchi, G.; Sirotenko, O.; Bindi, M. Impacts of present and future climate variability on agriculture and forestry in the temperate regions: Europe. Clim. Chang. 2005, 70, 117–135. [Google Scholar] [CrossRef]
- Arthur, F.H. Efficacy of methoprene for multi-year protection of stored wheat, brown rice, rough rice and corn. J. Stored Prod. Res. 2016, 68, 85–92. [Google Scholar] [CrossRef] [Green Version]
Country | Station | Lat. | Long. | Aug. | Sept. | 120-h Date | Julian Date |
---|---|---|---|---|---|---|---|
Zone 1 | |||||||
Greece | Larissa | 39.65 | 22.45 | 0 | 60 | 8 Oct. | 281 |
Turkey | Edirne | 41.67 | 26.57 | 0 | 64 | 6 Oct. | 279 |
Zone 2 | |||||||
Romania | Galati | 45.50 | 28.02 | 0 | 139 | 29 Sept. | 272 |
Bulgaria | Vidin | 43.98 | 22.85 | 10 | 152 | 26 Sept. | 269 |
Moldova | Chisinau | 47.02 | 28.87 | 0 | 195 | 26 Sept. | 269 |
Zone 3 | |||||||
Romania | Craiova | 44.23 | 23.87 | 3 | 180 | 24 Sept. | 267 |
Croatia | Knin | 44.04 | 16.21 | 16 | 175 | 23 Sept. | 266 |
Serbia | Nis | 43.31 | 21.90 | 10 | 177 | 23 Sept. | 266 |
Serbia | Novi Sad | 45.31 | 19.85 | 26 | 180 | 23 Sept. | 266 |
Bulgaria | Kurdzhali | 41.65 | 25.38 | 7 | 200 | 22 Sept. | 265 |
N. Macedonia | Prilep | 41.33 | 21.57 | 3 | 204 | 21 Sept. | 264 |
Croatia | Osijek | 45.53 | 18.63 | 24 | 221 | 20 Sept. | 263 |
Zone 4 | |||||||
Romania | Arad | 46.13 | 21.35 | 35 | 207 | 18 Sept. | 261 |
Slovenia | Portoroz | 45.50 | 13.60 | 0 | 272 | 18 Sept. | 261 |
Romania | Iasi | 47.17 | 27.63 | 25 | 255 | 16 Sept. | 259 |
Bosnia | Sarajevo | 43.87 | 18.43 | 42 | 267 | 13 Sept. | 257 |
Slovenia | Murska Sobota | 46.70 | 16.20 | 38 | 264 | 13 Sept. | 257 |
Romania | Caransebes | 45.42 | 22.25 | 56 | 258 | 11 Sept. | 255 |
Croatia | Ogulin | 45.20 | 15.27 | 75 | 297 | 7 Sept. | 251 |
Slovenia | Lesce | 46.40 | 14.20 | 136 | 359 | 30 Aug. | 242 |
Country | Station 1 | Elev.(m) | Start Date | Unaerated | Aerated |
---|---|---|---|---|---|
Adults/MT | Adults/MT | ||||
Zone 1 | |||||
Greece | Larissa | 73 | 1-July | 1,5096.3 | 50.0 |
15-July | 3555.6 | 31.1 | |||
30-July | 1107.4 | 12.2 | |||
Turkey | Edirne | 51 | 1-July | 8385.2 | 33.7 |
15-July | 2329.6 | 18.1 | |||
30-July | 803.7 | 5.2 | |||
Zone 2 | |||||
Romania | Galati | 71 | 1-July | 2320.4 | 18.1 |
15-July | 975.6 | 9.6 | |||
30-July | 254.4 | 1.9 | |||
Bulgaria | Vidin | 595 | 1-July | 1785.9 | 10.4 |
15-July | 779.3 | 3.3 | |||
30-July | 200.0 | 1.5 | |||
Moldova | Chisinau | 173 | 1-July | 1285.6 | 14.4 |
15-July | 496.7 | 4.8 | |||
30-July | 102.2 | 1.5 | |||
Zone 3 | |||||
Romania | Craiova | 192 | 1-July | 1401.1 | 7.0 |
15-July | 598.5 | 2.6 | |||
30-July | 142.2 | 1.5 | |||
Croatia | Knin | 255 | 1-July | 2356.3 | 6.3 |
15-July | 1025.6 | 2.6 | |||
30-July | 328.1 | 1.5 | |||
Serbia | Nis | 201 | 1-July | 1655.6 | 5.9 |
15-July | 738.5 | 1.9 | |||
30-July | 197.4 | 1.5 | |||
Serbia | Novi Sad | 84 | 1-July | 2959.3 | 9.6 |
15-July | 1274.1 | 3.3 | |||
30-July | 459.3 | 1.5 | |||
Bulgaria | Kurdzhali | 331 | 1-July | 1537.0 | 4.8 |
15-July | 692.6 | 1.9 | |||
30-July | 181.5 | 1.5 | |||
N. Macedonia | Prilep | 673 | 1-July | 1274.1 | 3.7 |
15-July | 563.0 | 1.9 | |||
30-July | 148.1 | 1.5 | |||
Croatia | Osijek | 88 | 1-July | 1103.7 | 3.0 |
15-July | 433.3 | 1.5 | |||
30-July | 103.7 | 1.5 | |||
Zone 4 | |||||
Romania | Arad | 117 | 1-July | 1351.9 | 1.9 |
15-July | 377.8 | 1.5 | |||
30-July | 88.9 | 1.5 | |||
Slovenia | Portoroz | 2 | 1-July | 1066.7 | 5.2 |
15-July | 377.8 | 1.5 | |||
30-July | 81.5 | 1.5 | |||
Romania | Iasi | 102 | 1-July | 703.7 | 1.9 |
15-July | 234.8 | 1.5 | |||
30-July | 63.3 | 1.5 | |||
Bosnia | Sarajevo | 630 | 1-July | 670.4 | 1.5 |
15-July | 251.9 | 1.5 | |||
30-July | 74.1 | 1.5 | |||
Slovenia | Murska Sobota | 188 | 1-July | 566.7 | 1.5 |
15-July | 192.6 | 1.5 | |||
30-July | 59.3 | 1.5 | |||
Romania | Caransebes | 321 | 1-July | 742.6 | 1.5 |
15-July | 293.0 | 1.5 | |||
30-July | 80.7 | 1.5 | |||
Croatia | Ogulin | 326 | 1-July | 559.3 | 1.5 |
15-July | 188.9 | 1.5 | |||
30-July | 63.0 | 1.5 | |||
Slovenia | Lesce | 515 | 1-July | 47.4 | 1.5 |
15-July | 34.8 | 1.5 | |||
30-July | 19.3 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrison, W.R., III; Arthur, F.H.; Wilson, L.T.; Yang, Y.; Wang, J.; Athanassiou, C.G. Aeration to Manage Insects in Wheat Stored in the Balkan Peninsula: Computer Simulations Using Historical Weather Data. Agronomy 2020, 10, 1927. https://doi.org/10.3390/agronomy10121927
Morrison WR III, Arthur FH, Wilson LT, Yang Y, Wang J, Athanassiou CG. Aeration to Manage Insects in Wheat Stored in the Balkan Peninsula: Computer Simulations Using Historical Weather Data. Agronomy. 2020; 10(12):1927. https://doi.org/10.3390/agronomy10121927
Chicago/Turabian StyleMorrison, William R., III, Frank H. Arthur, Lloyd Ted Wilson, Yubin Yang, Jing Wang, and Christos G. Athanassiou. 2020. "Aeration to Manage Insects in Wheat Stored in the Balkan Peninsula: Computer Simulations Using Historical Weather Data" Agronomy 10, no. 12: 1927. https://doi.org/10.3390/agronomy10121927