Efficacy of Plant Materials in Controlling Aphids on Okra (Abelmoschus esculentus L. Moench) in Limpopo Province of South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Experimental Design
2.3. Sampling
2.4. Preparation of Plant Materials Extracts
2.5. Data Analysis
3. Results
3.1. Aphid Abundance and Leaf Damage of Okra Crops
3.2. Aphid Abundance across Sampling Time
3.3. Okra Leaf Damage across Sampling Times
3.4. Okra Pod Yield
3.5. Aphid Abundance within Sampling Time
3.6. Okra Leaf Damage across Sampling Time
3.7. The Correlation between Leaf Damage and Aphid Abundance
3.8. Relationship between Total Leaf Damage and Total Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schippers, R.R. African Indigenous Vegetables: An Overview of the Cultivated Species; Department for International Development: London, UK, 2000; p. 370.
- Kekeunou, S.; Messi, J.; Weise, S.; Tindo, M. Insect pests’ incidence and variations due to forest landscape degradation in the humid forest zone of Southern Cameroon: Farmers’ perception and need for adopting an integrated pest management strategy. Afr. J. Biotechnol. 2006, 5, 555–562. [Google Scholar]
- Phophi, M.M.; Mafongoya, P.L.; Lottering, S. Perceptions of Climate Change and Drivers of Insect Pest Outbreaks in Vegetable Crops in Limpopo Province of South Africa. Climate 2020, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Schreinemachers, P.; Tipraqsa, P. Agricultural pesticides and land use intensification in high-, middle- and low-income countries. Food Policy 2012, 37, 616–626. [Google Scholar] [CrossRef]
- Department of Agriculture South Africa F and F. Pesticide Management Policy for South Africa; Government Gazette Pretoria: Pretoria, South Africa, 2010; p. 1.
- Nyirenda, S.P.; Sileshi, G.W.; Belmain, S.R.; Kamanula, J.F.; Mvumi, B.M.; Sola, P. Farmers’ ethno-ecological knowledge of vegetable pests and pesticidal plant use in Malawi and Zambia. Afr. J. Agric. Res. 2011, 6, 1525–1537. [Google Scholar]
- Lundström, N.L.; Zhang, H.; Brännström, A. Pareto-efficient biological pest control enable high efficacy at small costs. Ecol. Model. 2017, 364, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Mpumi, N.; Machunda, R.L.; Mtei, K.; Ndakidemi, P. Selected Insect Pests of Economic Importance to Brassica oleracea, Their Control Strategies and the Potential Threat to Environmental Pollution in Africa. Sustainability 2020, 12, 3824. [Google Scholar] [CrossRef]
- El-Wakeil, N.E. Retracted Article: Botanical Pesticides and Their Mode of Action. Gesunde Pflanz. 2013, 65, 125–149. [Google Scholar] [CrossRef]
- Beltagy, B.I.; Omar, G.A. Alteration in some biological and biochemical parameters in Tribolium castaneum (Coleoptera: Tenebrionidae) due to garlic oil effect. J. Adv. Biol. 2016, 9, 1704–1714. [Google Scholar]
- Mohan, M.; Gujar, G.T. Geographical variation in larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis spore-crystal mixtures and purified crystal proteins and associated resistance development in India. Bull. Entomol. Res. 2002, 92, 489. [Google Scholar] [CrossRef]
- Mugisha-Kamatenesi, M.; Deng, A.L.; Ogendo, J.O.; Omolo, E.O.; Mihale, M.J.; Otim, M. Indigenous knowledge of field insect pests and their management around Lake Victoria basin in Uganda. Afr. J. Environ. Sci. Technol. 2008, 2, 342–348. [Google Scholar]
- Mihale, M.J.; Deng, A.L.; Selemani, H.O.; Kamatenesi, M.M.; Kidukuli, A.W.; Ogendo, J.O. Use of indigenous knowledge in the management of field and storage pests around Lake Victoria basin in Tanzania. Afr. J. Environ. Sci. Technol. 2009, 3, 251–259. [Google Scholar]
- Isman, M.B. Plant essential oils for pest and disease management. Crop. Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Belmain, S.R.; Haggar, J.; Holt, J.; Stevenson, P.C. Managing Legume Pests in Sub-Saharan Africa: Challenges and Prospects for Improving Food Security and Nutrition through Agro-Ecological Intensification; Natural Resources Institute: London, UK, 2013; pp. 1–34. [Google Scholar]
- Tropical, C.; van Schoonhoven, A. Standard System for the Evaluation of Bean Germplasm; CIAT: Culoz, France, 1987; p. 54. [Google Scholar]
- Muzemu, S.; Mvumi, B.M.; Nyirenda, S.P.M.; Sileshi, G.W.; Sola, P.; Chikukura, L. Pesticidal Effects of Indigenous Plants Extracts against Rape Aphids and Tomato Red Spider Mites; Midlands State University: Gwaru, Zimbabwe, 2011; pp. 169–171. [Google Scholar]
- Ahmad, T.; Fauzy, Z.M.; Yoshia; Utami, T.; Arbianti, R.; Hermansyah, H. Production of Bio-Insecticide from Extracted Carica Papaya Using NADES Solvent with Ultrasound-Assisted Extraction (UAE); EDP Sciences: Les Ulis, France, 2018; Volume 67, p. 03007. [Google Scholar]
- Zobayer, N.; Hasan, R. Effects of manually processed Bio-pesticides on crop production and pest managements in okra (Abelmoschus Esculentus (L.) Moench). J. Nat. Sci. Res. 2013, 3, 112–118. [Google Scholar]
- Dunkel, F.V.; Jaronski, S.T.; Sedlak, C.W.; Meiler, S.U.; Veo, K.D. Effects of Steam-Distilled Shoot Extract ofTagetes minuta L. (Asterales: Asteraceae) and Entomopathogenic Fungi on Larval Tetanops myopaeformis. Environ. Èntomol. 2010, 39, 979–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bon, H.; Huat, J.; Parrot, L.; Sinzogan, A.A.C.; Martin, T.; Malézieux, E.; Vayssières, J.-F. Pesticide risks from fruit and vegetable pest management by small farmers in sub-Saharan Africa. A review. Agron. Sustain. Dev. 2014, 34, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.; Ochou, G.O.; Hala-N’Klo, F.; Vassal, J.; Vaissayre, M. Pyrethroid resistance in the cotton bollworm, Helicoverpa armigera (Hübner), in West Africa. Pest Manag. Sci. 2000, 56, 549–554. [Google Scholar] [CrossRef]
- Baryakabonaa, S.; Mwine, J. Evaluation of the Efficacy of Crude Extracts of Tick Berry Lantana camara and Mexican Marigold Tagetes manuta Against Cabbage Aphids Brevicoryne brassicae. Am. Sci. Res. J. Eng. Tehnol. Sci. 2017, 33, 168–169. [Google Scholar]
- Tomar, S.P.S. Impact of weather parameters on aphid population in cotton. Ind. J. Agric. Res. 2010, 44, 125–130. [Google Scholar]
- Ngowi, A.; Mbise, T.; Ijani, A.; London, L.; Ajayi, O.C. Smallholder vegetable farmers in Northern Tanzania: Pesticides use practices, perceptions, cost and health effects. Crop. Prot. 2007, 26, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Panhwar, S.B. Farmers adoption of plant materials for insects’ control. Int. Serv. Natl. Agric. Res. 2002, 4, 61–68. [Google Scholar]
- Pedigo, L.P.; Rice, M.E. Entomology and Pest Management; Waveland Press: Long Grove, IL, USA, 2014; p. 287. [Google Scholar]
- Mandal, E.; Amin, M.R.; Rahman, H.; Akanda, A. Infestation level and population dynamics of aphid on mustard. Bangladesh J. Agric. Res. 2018, 43, 611–618. [Google Scholar] [CrossRef]
- Waceke, J.W. Plant parasitic nematodes associated with cabbages in Kenya. Afr. Crop Sci. J. 2007, 8, 1071–1074. [Google Scholar]
- Heng-Moss, T.M.; Ni, X.; Macedo, T.; Markwell, J.P.; Baxendale, F.P.; Quisenberry, S.S.; Tolmay, V. Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. J. Econ. Èntomol. 2003, 96, 475–481. [Google Scholar] [CrossRef] [PubMed]
Month | January | February | March | April | May | June |
---|---|---|---|---|---|---|
Max temp °C | 33.5 | 31.1 | 32.3 | 29.2 | 27.8 | 24.4 |
Min temp °C | 20.5 | 20 | 19.6 | 16.7 | 11.6 | 7.3 |
Rainfall mm | 0.0 | 88.2 | 30 | 23 | 0.0 | 0.0 |
pH (H2O) | Ca (mg/kg) | Mg (mg/kg) | Na (mg/kg) | K (mg/kg) | P (mg/kg) | Clay % | Silt % | Sand % |
---|---|---|---|---|---|---|---|---|
6.47 | 654.66 | 260.302 | 63.597 | 144.746 | 9.0 | 22 | 4 | 74 |
Treatment | Aphid Abundance | Leaf Damage |
---|---|---|
Control | 1.24 b | 1.37 b |
Mercaptothion | 1.24 b | 1.34 b |
Nicotiana Tabacum L. | 0.88 a | 1.14 a |
Lantana camara L. | 0.89 a | 1.13 a |
Carica papaya L. | 0.87 a | 1.11 a |
Tagetes minuta L. | 0.87 a | 1.12 a |
Capsicum annuum L. | 0.93 a | 1.19 a |
Least Significant Difference | 0.1 | 0.12 |
Treatment | Sampling Time | |||
---|---|---|---|---|
February | March | April | May | |
Control | 1.49 ef | 0.72 b | 1.26 de | 2.75 i |
Mercaptothion | 1.69 ef | 0.93 bc | 1.16 cd | 2.42 h |
Nicotiana tabacum L. | 0.81 b | 0.09 a | 1.48 ef | 2.03 g |
Lantana camara L. | 0.94 bc | 0.12 a | 1.37 de | 2.02 g |
Carica papaya L. | 0.81 b | 0.05 a | 1.41 de | 2.08 g |
Tagetes minuta L. | 0.83 b | 0.06 a | 1.33 de | 2.17 g |
Capsicum annuum L. | 0.91 bc | 0.16 a | 1.38 de | 2.20 gh |
Least Significant Difference | 0.23 |
Treatment | Sampling Time | |||
---|---|---|---|---|
February | March | April | May | |
Control | 1.32 abc | 1.33 bc | 1.16 abc | 2.97 d |
Mercaptothion | 1.37 bc | 1.23 abc | 1.19 abc | 1.90 d |
Nicotiana tabacum L. | 1.08 ab | 1.07 ab | 1.25 abc | 1.30 abc |
Lantana camara L. | 1.15 abc | 1 a | 1.21 abc | 1.27 abc |
Carica papaya L. | 1.13 abc | 1 a | 1.28 abc | 1.33 abc |
Tagetes minuta L. | 1.10 ab | 1 a | 1.37 bc | 1.12 ab |
Capsicum annuum L. | 1.23 abc | 1 a | 1.44 c | 1.27 abc |
Least Significant Difference | 0.26 |
Treatment | First Harvest (kg) | Second Harvest (kg) | Third Harvest (kg) | Total Average Harvest (kg) |
---|---|---|---|---|
Control | 2058 a | 3906 a | 3801 a | 3255 a |
Mercaptothion | 1915 a | 3924 ab | 3786 a | 3208 a |
Nicotiana tabacum L. | 2295 b | 4068 abc | 4032 ab | 3465 b |
Lantana Camara L. | 2357 b | 4080 bc | 4217 b | 3551 bc |
Carica papaya L. | 2380 b | 4148 c | 4390 b | 3640 c |
Tagetes minuta L. | 2398 b | 4123 c | 4272 b | 3598 bc |
Pepper | 2353 b | 4079 bc | 4221 b | 3551 bc |
Least Significant Difference | 90.8 | 94.2 | 209.6 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murovhi, J.; Phophi, M.M.; Mafongoya, P. Efficacy of Plant Materials in Controlling Aphids on Okra (Abelmoschus esculentus L. Moench) in Limpopo Province of South Africa. Agronomy 2020, 10, 1968. https://doi.org/10.3390/agronomy10121968
Murovhi J, Phophi MM, Mafongoya P. Efficacy of Plant Materials in Controlling Aphids on Okra (Abelmoschus esculentus L. Moench) in Limpopo Province of South Africa. Agronomy. 2020; 10(12):1968. https://doi.org/10.3390/agronomy10121968
Chicago/Turabian StyleMurovhi, Jeremia, Mutondwa Masindi Phophi, and Paramu Mafongoya. 2020. "Efficacy of Plant Materials in Controlling Aphids on Okra (Abelmoschus esculentus L. Moench) in Limpopo Province of South Africa" Agronomy 10, no. 12: 1968. https://doi.org/10.3390/agronomy10121968
APA StyleMurovhi, J., Phophi, M. M., & Mafongoya, P. (2020). Efficacy of Plant Materials in Controlling Aphids on Okra (Abelmoschus esculentus L. Moench) in Limpopo Province of South Africa. Agronomy, 10(12), 1968. https://doi.org/10.3390/agronomy10121968