Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Location
2.2. Sampling and Data Collection
2.3. Characterization and Sociodemographic Indices
2.4. Assessment of Agricultural Sustainability
2.5. The State and Driving Force for Calculating the Degree of Sustainability
2.6. Hierarchical Cluster Analysis
3. Results
3.1. Sociodemographic and Agricultural Characterization
3.2. Cluster Analysis and Sustainability Indicators
3.2.1. Values in Sector A
3.2.2. Values in Sector B
4. Discussion
4.1. Socio-Demographic and Agricultural Characterization of the Indigenous Kichwa Population
4.2. Evaluation of Sustainability Based on the RISE Methodology
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burger, J. Report from the Frontier: The State of the World’s Indigenous Peoples; Cultural Survival Inc.: London, UK, 1987. [Google Scholar]
- Toledo, V.M. Indigenous Peoples and Biodiversity. Encycl. Biodivers. 2013, 3, 269–278. [Google Scholar] [CrossRef]
- Persoon, G.A.; Minter, T.; Slee, B.; van der Hammen, C. The Position of Indigenous Peoples in the Management of Tropical Forests; Tropenbos: Wageningen, The Netherlands, 2004. [Google Scholar]
- Mittermeier, R.A. Biodiversity. In Primate Diversity and the Tropical Forest. Case Studies from Brazil and Madagascar and the Importance of the Megadiversity Countries; Wilson, E.O., Peter, F.M., Eds.; National Academy Press: Washington, DC, USA, 1998; pp. 145–154. [Google Scholar]
- Myers, N. Threatened biotas:“Hot spots” in tropical forests. Environmentalist 1988, 8, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Dangles, O.; Nowicki, F. Biota Maxima: Ecuador Biodiverso; Pontificia Universidad Catolica del Ecuador (PUCE): Quito, Ecuador; Institut de Recherche pour le Developpment: Quito, Ecuador, 2010. [Google Scholar]
- Steege, H.T.; Pitman, N.C.A.; Sabatier, D.; Castellanos, H.; van der Hout, P.; Daly, D.C.; Silveira, M.; Phillips, O.; Vasquez, R.; Van Andel, T.; et al. A spatial model of tree α-diversity and β-density for the Amazon Region. Biodivers. Conserv. 2003, 12, 2255–2276. [Google Scholar] [CrossRef]
- Erwin, T.L.; Pimienta, M.C.; Murillo, O.E.; Aschero, V. Mapping patterns of β-diversity for beetles across the western Amazon Basin: A preliminary case for improving conservation strategies. Proc. Calif. Acad. Sci. 2004, 56, 72–85. [Google Scholar]
- Ceballos, G.; Ehrlich, P.R. Global mammal distributions, biodiversity hotspots, and conservation. Proc. Natl. Acad. Sci. USA 2006, 103, 19374–19379. [Google Scholar] [CrossRef] [Green Version]
- Killeen, T.J.; Douglas, M.; Consiglio, T.; Jørgensen, P.M.; Meika, J. Dry spots and wet spots in the Andean hotspot. J. Biogeogr. 2007, 34, 1357–1373. [Google Scholar] [CrossRef]
- Napolitano, D.A.; Ryan, A.S. The dilemma of contact: Voluntary isolation and the impacts of gas exploitation on health and rights in the Kugapakori Nahua Reserve, Peruvian Amazon. Environ. Res. Lett. 2007, 2, 1–12. [Google Scholar] [CrossRef]
- Gamboa Balbín, C.; Santillán Bartra, A. Régimen Especial Transectorial de Protección a Favor de Pueblos Indígenas en Aislamiento y en Contacto Inicial; Bellido Ediciones EIRL: Lima, Peru, 2006. [Google Scholar]
- Heredia Rengifo, M.G.; Hernández Díaz-Ambrona, C.G. Comportamiento demográfico: Dinámico–Probabilístico de los pueblos indígenas en aislamiento de la amazonía ecuatoriana. Revista Científica Axioma 2019, 20, 25–34. [Google Scholar]
- Inec. Ecuadorencifras.Gob.Ec. (En Línea). 2010. Available online: http://www.ecuadorencifras.gob.ec/estadisticas/ (accessed on 20 March 2020).
- Torres, B.; Günter, S.; Acevedo-Cabra, R.; Knoke, T. Livelihood strategies, ethnicity and rural income: The case of migrant settlers and indigenous populations in the Ecuadorian Amazon. For. Policy Econ. 2018, 86, 22–34. [Google Scholar] [CrossRef]
- Uzendoski, M.; Whitten, N.E., Jr. From “Acculturated Indians” to “Dynamic Amazonian Quichua-Speaking Peoples. Tipití J. Soc. Anthropol. Lowl. South Am. 2014, 12, 1–13. [Google Scholar]
- Muratorio, B. Rucuyaya Alonso y la Historia Social y Económica del Alto Napo; Docutech: Quito, Ecuador, 1998; pp. 1850–1950. [Google Scholar]
- Finer, M.; Jenkins, C.N.; Pimm, S.L.; Keane, B.; Ross, C. Oil and Gas Projects in the Western Amazon: Threats to Wilderness, Biodiversity, and Indigenous Peoples. PLoS ONE 2008, 3, e2932. [Google Scholar] [CrossRef] [PubMed]
- Juteau-Martineau, G.; Becerra, S.; Maurice, L. Ambiente, petróleo y vulnerabilidad política en el oriente ecuatoriano:¿ hacia nuevas formas de gobernanza energética? Am. Lat. Hoy 2014, 67, 119–137. [Google Scholar] [CrossRef] [Green Version]
- Bilsborrow, R.E.; Barbieri, A.F.; Pan, W. Changes in population and land use over time in the Ecuadorian Amazon. Acta Amazonica 2004, 34, 635–647. [Google Scholar] [CrossRef]
- Lu, F.; Bilsborrow, R.E. A Cross-Cultural Analysis of Human Impacts on the Rainforest Environment in Ecuador. In Human Population; Springer: Berlin, Germany, 2011; pp. 127–151. [Google Scholar]
- Vasco, C.; Bilsborrow, R.; Torres, B.; Griess, V. Agricultural land use among mestizo colonist and indigenous populations: Contrasting patterns in the Amazon. PLoS ONE 2018, 137, e0199518. [Google Scholar] [CrossRef]
- Torres, B.; Vasco, C.; Günter, S.; Knoke, T. Determinants of agricultural diversification in a hotspot area: Evidence from colonist and indigenous communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon. Sustainability 2018, 10, 1432. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.L.; Bilsborrow, R.E.; Bremner, J.L.; Flora, L. Indigenous Land Use in the Ecuadorian Amazon: A Cross-cultural and Multilevel Analysis. Hum. Ecol. 2008, 36, 97–109. [Google Scholar] [CrossRef]
- Lu, H.F. Integration into the market among indigenous peoples: A cross-cultural perspective from the Ecuadorian Amazon. Curr. Anthropol. 2007, 48, 593–602. [Google Scholar] [CrossRef]
- Ferrer Velasco, R.; Köthke, M.; Lippe, M.; Günter, S. Scale and context dependency of deforestation drivers: Insights from spatial econometrics in the tropics. PLoS ONE 2020, 151, e0226830. [Google Scholar] [CrossRef]
- Barlow, J.; Lennox, G.D.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Mac Nally, R.; Thomson, J.R.; de Barros Ferraz, S.F.; Louzada, J.; Oliveira, V.H.F.R.; et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 2016, 535, 144. [Google Scholar] [CrossRef] [Green Version]
- Torres, B.; Maza, O.J.; Aguirre, P.; Hinojosa, L.; Günter, S. The Contribution of Traditional Agroforestry to Climate Change Adaptation in the Ecuadorian Amazon: The Chakra System. In Handbook of Climate Change Adaptation; Springer: Berlin, Germany, 2015; pp. 1973–1994. [Google Scholar]
- Coq-Huelva, D.; Higuchi, A.; Alfalla-Luque, R.; Burgos-Morán, R.; Arias-Gutiérrez, R. Co-evolution and bio-social construction: The Kichwa agroforestry systems (chakras) in the Ecuadorian Amazonia. Sustainability 2017, 9, 1920. [Google Scholar] [CrossRef] [Green Version]
- Vera, V.R.R.; Cota-Sánchez, J.H.; Grijalva Olmedo, J.E. Biodiversity, dynamics, and impact of chakras on the Ecuadorian Amazon. J. Plant Ecol. 2019, 12, 34–44. [Google Scholar] [CrossRef]
- Irvine, D. Indigenous federations and the market: The Runa of Napo, Ecuador. In Indigenous People and Conservation Organizations Experiences in Collaborations; Weber, R., Butler, J., Larson, P., Eds.; World Wildlife Fund: Washington, DC, USA, 2000; pp. 21–46. [Google Scholar]
- Lu, F.; Bilsborrow, R.E.; Oña, A. Demography, Household Economics, and Land and Resource Use of Five Indigenous Populations in the Northern Ecuadorian Amazon: A Summary of Ethnographic Research; Occasional Paper; Carolina Population Centre, University of North Carolina: Chapel Hill, NC, USA, 2004. [Google Scholar]
- Whitten, N.E.; Whitten, D.S. Puyo Runa: Imagery and Power in Modern Amazonia; University of Illinois Press: Champaign, IL, USA, 2008. [Google Scholar]
- Coq-Huelva, D.; Torres-Navarrete, B.; Bueno-Suárez, C. Indigenous worldviews and Western conventions: Sumak Kawsay and cocoa production in Ecuadorian Amazonia. Agric. Hum. Values 2018, 35, 163–179. [Google Scholar] [CrossRef]
- GESOREN–GIZ. Fomento de la Cadena de Valor de Cacao en Organizaciones de Pequeños Productores de Esmeraldas y Napo; Análisis de Impactos del Programa, Fascículo 5; GIZ: Quito, Ecuador, 2011; p. 93. [Google Scholar]
- Lehmann, S.; Rodríguez, J. La Chakra Kichwa: Criterios para la Conservación y Fomento de un Sistema de Producción Sostenible en la Asociación Kallari y sus Organizaciones Socias; Serie de Sistematización 7, 201; GIZ: Quito, Ecuador, 2013; pp. 20–31. [Google Scholar]
- Reeve, M.E. Los Quichua del Curaray: El Proceso de Formación de la Identidad; Editorial Abya Yala: Quito, Ecuador, 2002; ISBN 9978-22-020-8. [Google Scholar]
- Santafe-Troncoso, V.; Loring, P.A. Indigenous food sovereignty and tourism: The Chakra Route in the Amazon region of Ecuador. J. Sustain. Tour. 2020, 29, 1–20. [Google Scholar] [CrossRef]
- Andy, P.; Calapucha, A.; Calapucha, L.; López, H.; Shiguango, K.; Tanguila, A.; Tanguila, A.; Yasacama, C. Sabiduría de la Cultura Kichwa de la Amazonía Ecuatoriana, 1st ed.; Tomo, I., Ed.; Universidad De Cuenca: Cuenca, Ecuador, 2012; ISBN 978-9978-14-000-0. [Google Scholar]
- Hingh, S.J.; Haas, W.; Fraňková, E. Conclusions: Promises and Challenges for Sustainable Agri-Food Systems. In Socio-Metabolic Perspectives on the Sustainability of Local Food Systems; Springer: Cham, Germany, 2017; pp. 345–356. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Gil, J.D.B.; Reidsma, P.; Giller, K.E.; Todman, L.C.; Whitmore, A.P.; Van Ittersum, M.K. Sustainable development goal 2: Improved targets and indicators for agriculture and food security. Ambio 2019, 48, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Pope, J.; Annandale, D.; Morrison-Saunders, A. Conceptualising sustainability assessment. Environ. Impact Assess. Rev. 2004, 24, 595–616. [Google Scholar] [CrossRef] [Green Version]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Valizadeh, N.; Hayati, D. Development and validation of an index to measure agricultural sustainability. J. Clean. Prod. 2021, 280, 123797. [Google Scholar] [CrossRef]
- Dufour, D.L. Use of Tropical Rainforests by Native Amazonians. Bioscience 1990, 40, 652–659. [Google Scholar] [CrossRef]
- Astier, M.; García-Barrios, L.; Galvan-Miyoshi, Y.; González-Esquivel, C.E.; Masera, O.R. Assessing the Sustainability of Small Farmer Natural Resource Management Systems. A Critical Analysis of the MESMIS Program (1995–2010). Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef] [Green Version]
- Ebel, R. Are Small Farms Sustainable by Nature?—Review of an Ongoing Misunderstanding in Agroecology. Challenges Sustain. 2020, 8, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- Schader, C.; Grenz, J.; Meier, M.S.; Stolze, M. Scope and precision of sustainability assessment approaches to food systems. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef]
- Talukder, B.; Blay-Palmer, A. Comparison of Methods to Assess Agricultural Sustainability. Sustain. Agricult. Rev. 2017, 47, 149–168. [Google Scholar] [CrossRef]
- Marchand, F.; Debruyne, L.; Triste, L.; Gerrard, C.L.; Padel, S.; Lauwers, L. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 2014, 19. [Google Scholar] [CrossRef] [Green Version]
- Halog, A.; Manik, Y. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment. Sustainability 2011, 3, 469–499. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, L.V.; Bierbaum, R.; Oldekop, J.A.; Agrawal, A. Bridging the practitioner-researcher divide: Indicators to track environmental, economic, and sociocultural sustainability of agricultural commodity production. Glob. Environ. Chang. 2017, 42, 33–46. [Google Scholar] [CrossRef]
- De Olde, E. Sustainable Development of Agriculture: Contribution of Farm-Level Assessment Tools. Ph.D. Thesis, Wageningen University and Research, Wageningen, The Netherlands, 2017. [Google Scholar]
- De Olde, E.M.; Oudshoorn, F.W.; Sørensen, C.G.; Bokkers, E.A.M.; De Boer, I.J. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing farm sustainability with the IDEA method–From the concept of agriculture sustainability to case studies on farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- FAO. Sustainability Assessment of Food and Agriculture Systems SAFA. Guidelines; Version 3.0; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Häni, F.; Braga, A.; Stämpfli Keller, T.; Fischer, M.; Porsche, H. RISE, a tool for holistic sustainability assessment at the farm level. Int. Food Agribus. Manage. Rev. 2003, 6, 78–90. [Google Scholar]
- Meul, M.; Passel, S.; Nevens, F.; Dessein, J.; Rogge, E.; Mulier, A.; Hauwermeiren, A. MOTIFS: A monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 2008, 28, 321–332. [Google Scholar] [CrossRef] [Green Version]
- Paracchini, M.L.; Bulgheroni, C.; Borreani, G.; Tabacco, E.; Banterle, A.; Bertoni, D.; Rossi, G.; Parolo, G.; Origgi, R.; De Paola, C. A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agric. Syst. 2015, 133, 35–53. [Google Scholar] [CrossRef]
- Jawtusch, J.; Schader, C.; Stolze, M.; Baumgart, L.; Niggli, U. Sustainability Monitoring and Assessment Routine: Results from pilot applications of the FAO SAFA Guidelines. In Proceedings of the Symposium International sur L’Agriculture Biologique Méditerranénne et Les Signes Distinctifs de Qualité liée à l’Origine, Agadir, Morocco, 2–4 December 2013. [Google Scholar]
- Röös, E.; Fischer, K.; Tidåker, P.; Källström, H.N. How well is farmers’ social situation captured by sustainability assessment tools? A Swedish case study. Int. J. Sustain. Dev. World Ecol. 2019, 26, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Berbeć, A.K.; Feledyn-Szewczyk, B.; Thalmann, C.; Wyss, R.; Grenz, J.; Kopiński, J.; Stalenga, J.; Radzikowski, P. Assessing the Sustainability Performance of Organic and Low-Input Conventional Farms from Eastern Poland with the RISE Indicator System. Sustainability 2018, 10, 1792. [Google Scholar] [CrossRef] [Green Version]
- Heredia-R, M.; Bravo, C.; Vargas-B, J. Sostenibilidad y Manejo de Recursos Naturales a Nivel de Finca: Marco de Evaluación RISE; Torres, B., Radice, M., Ochoa-Moreno, S., Cueva, K., Eds.; Universidad Estatal Amazónica: Puyo, Ecuador, 2017; pp. 120–133. [Google Scholar]
- De Olde, E.M.; Oudshoorn, F.W.; Bokkers, E.A.M.; Stubsgaard, A.; Sørensen, C.G.; De Boer, I.J.M. Assessing the Sustainability Performance of Organic Farms in Denmark. Sustainability 2016, 8, 957. [Google Scholar] [CrossRef] [Green Version]
- Pineau, M.; Ayalneh, W.; Studer, C.; Peden, D. Response-inducing sustainability evaluation (RISE) linking agricultural practices and water productivity. CGIAR Chall. Progr. Water Food 2009, 2, 110–114. [Google Scholar]
- Häni, F.; Gerber, T.F.; Stämpfli, A.; Porsche, H.; Thalmann, C.; Studer, C. RISE: A tool for improving sustainability in agriculture: A case study with tea farmers in southern India. In Sustainable Agriculture: From Common Principles to Common Practice; Häni, F.J., Pintér, L., Herren, H.R., Eds.; International Institute of Sustainable Development and Swiss College of Agriculture: Bern, Switzerland, 2007; pp. 121–148. [Google Scholar]
- Thalmann, C.; Urutyan, V.; Porsche, H.; Grigoryan, A.; Studer, C. Sustainability of Agricultural Production in Armenia. Interim Report. España. 2007. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.618.809&rep=rep1&type=pdf (accessed on 4 April 2007).
- Häni, F.; Stämpfli, A.; Tello, J.R.; Braga, F. Sustainability Assessment of Six Brazilian Coffee Farms in Bahia and Minas Gerais; Swiss College of Agriculture: Zollikofen, Switzerland; University of Applied Sciences Bern: Bern, Switzerland; University of Guelph: Guelph, ON, Canada, 2005. [Google Scholar]
- Le Gal, P.-Y.; Dugué, P.; Faure, G.; Novak, S. How does research address the design of innovative agricultural production systems at the farm level? A review. Agric. Syst. 2011, 104, 714–728. [Google Scholar] [CrossRef]
- De Olde, E.M.; Sautier, M.; Whitehead, J. Comprehensiveness or implementation: Challenges in translating farm-level sustainability assessments into action for sustainable development. Ecol. Indic. 2018, 85, 1107–1112. [Google Scholar] [CrossRef]
- Van Meensel, J.; Lauwers, L.; Kempen, I.; Dessein, J.; Van Huylenbroeck, G. Effect of a participatory approach on the successful development of agricultural decision support systems: The case of Pigs2win. Decis. Support Syst. 2012, 54, 164–172. [Google Scholar] [CrossRef]
- Villaverde, X.; Ormaza, F.; Marcial, V.; Jorgenson, J. Parque Nacional Yasuní: Historia, Problema y Perspectivas; WCS–Programa Ecuador: Quito, Ecuador, 2005. [Google Scholar]
- Uzendoski, M. The Napo Runa of Amazonian Ecuador; University of Illinois Press: Champaign, IL, USA, 2005; Volume 57. [Google Scholar]
- Bass, M.S.; Finer, M.; Jenkins, C.N.; Kreft, H.; Cisneros-Heredia, D.F.; McCracken, S.F.; Pitman, N.C.A.; English, P.H.; Swing, K.; Villa, G.; et al. Global Conservation Significance of Ecuador’s Yasuní National Park. PLoS ONE 2010, 5, e8767. [Google Scholar] [CrossRef] [PubMed]
- Finer, M.; Babbitt, B.; Novoa, S.; Ferrarese, F.; Pappalardo, S.E.; De Marchi, M.; Saucedo, M.; Kumar, A. Future of oil and gas development in the western Amazon. Environ. Res. Lett. 2015, 10, 024003. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Mittermeier, C.; Pil, P.R. Megadiversity: Naciones Biológicamente más ricas de la Tierra; Cemex: Ciudad de México, Mexico, 1997. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. MAB Directorio de Reservas de Biosfera. 1989. Available online: http://www.unesco.org/mabdb/br/brdir/directory/biores.asp?mode=gen&code=ecu+02 (accessed on 29 November 2019).
- Guevara, J.; Pitman, N.; Mogollón, H.; Cerón, C.; Palacios, W. Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental; Ministerio del Ambiente del Ecuador: Cuenca, Ecuador, 2013; pp. 178–180. [Google Scholar]
- Donoso, A. Parque Nacional Yasuní ha Despertado Gran Interés Científico. Ecuador. 2008. Available online: http://www.ambiente.gob.ec/wp-content/uploads/downloads/2012/07/ParqueNacional-Yasuní.pd (accessed on 4 December 2019).
- Atkinson, R.; Flint, J. Accessing hidden and hard-to-reach populations: Snowball research strategies. Soc. Res. Update 2001, 33, 1–4. [Google Scholar]
- Cohen, N.; Arieli, T. Field research in conflict environments: Methodological challenges and snowball sampling. J. Peace Res. 2011, 48, 423–435. [Google Scholar] [CrossRef]
- Kirchherr, J.; Charles, K. Enhancing the sample diversity of snowball samples: Recommendations from a research project on anti-dam movements in Southeast Asia. PLoS ONE 2018, 13, e0201710. [Google Scholar] [CrossRef] [Green Version]
- Vanclay, F.; Baines, J.T.; Taylor, C.N. Principles for ethical research involving humans: Ethical professional practice in impact assessment Part I. Impact Assess. Proj. Apprais. 2013, 31, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.T. Decolonizing Methodologie: Research and Indigenous Peoples; Zed Books: London, UK, 1999. [Google Scholar]
- Vasquez-Fernandez, A.M.; Hajjar, R.; Shuñaqui Sangama, M.I.; Lizardo, R.S.; Pérez Pinedo, M.; Innes, J.L.; Kozak, R.A. Co-creating and Decolonizing a Methodology Using Indigenist Approaches: Alliance with the Asheninka and Yine-Yami Peoples of the Peruvian Amazon. ACME Int. J. Crit. Geogr. 2017, 17, 720–749. [Google Scholar]
- Wilson, T. Visualising the demographic factors which shape population age structure. Demogr. Res. 2016, 35, 867–890. [Google Scholar] [CrossRef] [Green Version]
- Milovanovic, V.; Smutka, L. Populating Aging in Rural India: Implication for Agriculture and Smallholder Farmers. J. Popul. Ageing 2019, 13, 305–323. [Google Scholar] [CrossRef]
- Book Review: Donald Rowland, Demographic Methods and Concepts, Oxford: Oxford University Press, 2003, xiv + 546 pp. Eur. J. Popul. 2004, 20, 291–292. [CrossRef]
- Hinde, P.R.A. Demographic Methods. Population 2001, 56, 478. [Google Scholar] [CrossRef]
- Holdsworth, C.; Finney, N.; Marshall, A.; Norman, P. Population and Society; Sage: London, UK, 2013. [Google Scholar]
- Häni, F.; Stämpfli, A.; Tello, J.R.; Braga, F. Sustainability Assessment of Six Brazilian Coffee Farms in Bahia and Minas Gerais; Working Paper; Swiss College of Agriculture: Zollikofen, Switzerland; University of Applied Sciences Bern: Bern, Switzerland; University of Guelph: Guelph, ON, Canada, 2004. [Google Scholar]
- Porsche, H.; Fischer, M.; Braga, F.; Häni, F. Introduction of the sustainability assessment tool RISE into Canadian agriculture. Work. Pap. J. Univ. Guelph 2004, 11, 11–19. [Google Scholar]
- Grenz, J.; Thalmann, C.; Stämpfli, A.; Studer, C.; Häni, F. RISE—A method for assessing the sustainability of agricultural production at farm level. Rural Dev. News 2009, 1, 5–9. [Google Scholar]
- Grenz, J.; Mainiero, R.; Schoch, M.; Sereke, F.; Stalder, S.; Thalmann, C.; Wyss, R. RISE 3.0—Manual. Sustainability Themes and Indicators; HAFL: Zollikofen, Switzerland, 2016; p. 96. [Google Scholar]
- RISE, Response-Inducing Sustainability Evaluation. Version 3.0. 2000. Available online: http://rise.shl.bfh.ch (accessed on 10 October 2018).
- Pardo, C.E.; Del Campo, P.C. Combinación de métodos factoriales y de análisis de conglomerados en R: El paquete FactoClass. Revista Colombiana Estadística 2007, 30, 231–245. [Google Scholar]
- Afifi, A.; Clark, V.; May, S. Practical Multivariate Analysis; Chapman & Hall/CRC Texts in Statistical Science: London, UK, 2012. [Google Scholar]
- González de Miguel, C.; Hernández Díaz-Ambrona, C.G.; Postigo Sierra, J.L. Evaluación de la sostenibilidad agraria. El caso de La Concordia (Nicaragua); Ingeniería Sin Fronteras, Asociación para el Desarrollo: Barcelona, Spain, 2009. [Google Scholar]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Perez, C. Técnicas Estadísticas con SPSS; Prentice Hall: New Jersey, NJ, USA, 2001. [Google Scholar]
- Cuadras, C. Nuevos Mètodos de Analisis Multivariante; CMC Editions: Vancouver, BC, Canada, 2007. [Google Scholar]
- Leech, N.L.; Barrett, K.C.; Morgan, G.A. IBM SPSS for Intermediate Statistics: Use and Interpretation; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Davis, J.; Sellers, S.; Gray, C.; Bilsborrow, R. Indigenous Migration Dynamics in the Ecuadorian Amazon: A Longitudinal and Hierarchical Analysis. J. Dev. Stud. 2017, 53, 1849–1864. [Google Scholar] [CrossRef]
- INEC. Censo de Población y Vivienda; INEC: Quito, Ecuador, 2010. [Google Scholar]
- Jarrín-V, P.S.; Carrillo, L.T.; Zamora, G. Demografía y transformación territorial: Medio siglo de cambio en la región amazónica de Ecuador. EUTOPÍA. Revista Desarrollo Econ. Territorial 2017, 12, 81–100. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, K.; Arps, S. A “demographic turnaround”: The rapid growth of indigenous populations in lowland Latin America. Lat. Am. Res. Rev. JSTOR 2005, 40, 3–29. [Google Scholar] [CrossRef]
- Bremner, J.; Bilsborrow, R.; Feldacker, C.; Holt, F.L. Fertility beyond the frontier: Indigenous women, fertility, and reproductive practices in the Ecuadorian Amazon. Popul. Environ. 2009, 30, 93–113. [Google Scholar] [CrossRef]
- Wurtz, H. Indigenous women of Latin America: Unintended pregnancy, unsafe abortion, and reproductive health outcomes. Pimatisiwin 2012, 10, 271. [Google Scholar] [PubMed]
- Engelman, R.; Bremner, J.; De Souza, R.M.; Mogelgaard, K. Indigenous population, fertility, and reproductive intention in the lowland neotropics: Response to McSweeney. Conserv. Biol. 2006, 20, 1315–1317. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, K. Indigenous population growth in the lowland Neotropics: Social science insights for biodiversity conservation. Conserv. Biol. 2005, 19, 1375–1384. [Google Scholar] [CrossRef]
- Borman, R. Cofan: Story of the forest people and the outsiders. Cult. Surv. Q. 1999, 23, 48–50. [Google Scholar]
- Macdonald, T., Jr. Ethnicity and Culture amidst New “Neighbors”: The Runa of Ecuador’s Amazon Basin; Allyn and Bacon: Boston, MA, USA, 1999. [Google Scholar]
- Rival, L.M. Trekking through History: The Huaorani of Amazonian Ecuador; Columbia University Press: New York, NY, USA, 2002. [Google Scholar]
- Rudel, T.K.; Bates, D.; Machinguiashi, R. Ecologically noble Amerindians? Cattle ranching and cash cropping among Shuar and colonists in Ecuador. Lat. Am. Res. Rev. 2002, 37, 144–159. [Google Scholar]
- Sierra, R.; Rodriguez, F.; Losos, E. Forest resource use change during early market integration in tropical rain forests: The Huaorani of upper Amazonia. Ecol. Econ. 1999, 30, 107–119. [Google Scholar] [CrossRef]
- Pichón, F.J. Settler households and land-use patterns in the Amazon frontier: Farm-level evidence from Ecuador. World Dev. 1997, 25, 67–91. [Google Scholar] [CrossRef]
- Murphy, L.L. Colonist Farm Income, Off-Farm Work, Cattle, Differentiation in Ecuador’s Northern Amazon. Hum. Org. 2001, 60, 67–79. [Google Scholar] [CrossRef]
- Murphy, L.; Bilsborrow, R.; Pichón, F. Poverty and prosperity among migrant settlers in the Amazon rainforest frontier of Ecuador. J. Dev. Stud. 1997, 34, 35–65. [Google Scholar] [CrossRef]
- West, P. Conservation is Our Government Now: The Politics of Ecology in Papua New Guinea; Duke University Press: Durham, UK, 2006. [Google Scholar]
- Sterling, E.J.; Betley, E.; Sigouin, A.; Gomez, A.; Toomey, A.; Cullman, G.; Malone, C.; Pekor, A.; Arengo, F.; Blair, M.; et al. Assessing the evidence for stakeholder engagement in biodiversity conservation. Biol. Conserv. 2017, 209, 159–171. [Google Scholar] [CrossRef]
- Reimaan National Planning Team Reimaanlok. Looking to the Future: National Conservation Area Plan for the Marshall Islands; N. Baker: Melbourne, MEL, Australia, 2008. [Google Scholar]
- Preuss, K.; Dixon, M. ‘Looking after country two-ways’: Insights into indigenous community-based conservation from the Southern Tanami. Ecol. Manag. Restor. 2012, 13, 2–15. [Google Scholar] [CrossRef] [Green Version]
- Leenhardt, P.; Teneva, L.; Kininmonth, S.; Darling, E.; Cooley, S.; Claudet, J. Challenges, insights and perspectives associated with using social-ecological science for marine conservation. Ocean Coast. Manag. 2015, 115, 49–60. [Google Scholar] [CrossRef]
- Ens, E.J. Vital Landscapes, Indigenous Futures. In People on Country; Altman, J., Kerin, S., Eds.; The Federation Press: Leichhardt, SYD, Australia, 2012; pp. 45–64. [Google Scholar]
- Ens, E.J.; Daniels, C.; Nelson, E.; Roy, J.; Dixon, P. Creating multifunctional landscapes: Using exclusion fences to frame feral ungulate management preferences in remote Aboriginal-owned Northern Australia. Biol. Conserv. 2016, 197, 235–246. [Google Scholar] [CrossRef]
- Boserup, E. The Conditions of Agricultural Growth: The Economics of Agrarin Change under Population Pressure; Transaction Publishers: New Brunswick, NJ, USA, 2011. [Google Scholar]
- Schwartzman, S.; Moreira, A.; Nepstad, D. Rethinking tropical forest conservation: Perils in parks. Conserv. Biol. 2000, 14, 1351–1357. [Google Scholar] [CrossRef]
- Hvalkof, S. Progress of the victims: Political ecology in the Peruvian Amazon. In Reimagining Political Ecology; Biersack, A., Greenberg, J.B., Eds.; Duke University Press: Durham, NC, USA, 2006. [Google Scholar]
- Hicks, J.F.; Daly, H.E.; Davis, S.H.; de Freitas, M.D.L. Ecuador’s Amazon Region; Development Issues and Options; World Bank Discussion Paper 75; World Bank: Washington, DC, USA, 1990. [Google Scholar]
- Mainville, N.; Webb, J.; Lucotte, M.; Davidson, R.; Betancourt, O.; Cueva, E.; Mergler, D. Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador. Sci. Total Environ. 2006, 368, 88–98. [Google Scholar] [CrossRef]
- Torres, B.; Bilsborrow, R.; Barbieri, A.; Torres, A. Changes in income strategies of rural households in the Northern Ecuadorian Amazon. Revista Amazónica Ciencia Tecnologıa 2014, 3, 221–257. [Google Scholar]
- Hoffmann, U. Assuring Food Security in Developing Countries under the Challenges of Climate Change: Key Trade and Development Issues of a Fundamental Transformation of Agriculture. UNCTAD Discussion Papers. 2011, p. 50. Available online: http://www.unctad.org (accessed on 23 July 2020).
- Nicholls, C. Enfoques agroecologicos para incrementar la resiliencia de los sistemas agricolas al cambio climático. In Agroecología y Resiliencia Socioecológica Adaptándose al Cambio Climático; Nicholls, C., Rios, L., Altieri, M., Eds.; Socla: Medellin, Colombia, 2013; pp. 18–29. [Google Scholar]
- Montagnini, F.; Nair, P.K.R. Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agrofor. Syst. 2004, 1, 281–295. [Google Scholar]
- Stückelberger, C. Das Konzept der Nachhaltigen Entwicklung Um Zwei Dimensionen Erweitern; Verlag Paul Haupt: Bern, Switzerland, 1999; pp. 103–122. [Google Scholar]
- Loaiza, T.; Nehren, U.; Gerold, G. REDD+ and incentives: An analysis of income generation in forest-dependent communities of the Yasuní Biosphere Reserve, Ecuador. Appl. Geogr. 2015, 62, 225–236. [Google Scholar] [CrossRef]
- Guzmán Gallegos, M.A. Para Que la Yuca Beba Nuestra Sangre: Trabajo, Género y Parentesco en Una Comunidad Quichua de la Amazonía Ecuatoriana; Abya-Yala: Quito, Ecuador, 1997. [Google Scholar]
- Martínez Novo, R. Del tiempo insostenible y del sentido del tiempo en las comunidades kichwa canelos. Desacatos 2012, 40, 111–126. [Google Scholar]
- Pérez, C.V.; Bilsborrow, R.; Torres, B. Income diversification of migrant colonists vs. indigenous populations: Contrasting strategies in the Amazon. J. Rural Stud. 2015, 42, 1–10. [Google Scholar] [CrossRef]
- Mejía, E.; Pacheco, P.; Muzo, A.; Torres, B. Smallholders and timber extraction in the Ecuadorian Amazon: Amidst market opportunities and regulatory constraints. Int. For. Rev. 2015, 17, 38–50. [Google Scholar] [CrossRef]
- EP. Gestión Social. Reporte Gerencial 2018, Petroamazonas EP. 2018. Available online: https://www.petroamazonas.gob.ec/wp-content/uploads/downloads/2019/04/INF-PRC-POR-PROVINCIA_2018.pdf (accessed on 20 August 2020).
- Durango-Cordero, J.; Saqalli, M.; Laplanche, C.; Locquet, M.; Elger, A. Spatial Analysis of Accidental Oil Spills Using Heterogeneous Data: A Case Study from the North-Eastern Ecuadorian Amazon. Sustainability 2018, 10, 4719. [Google Scholar] [CrossRef] [Green Version]
- Vargas, G.C.; Au, W.W.; Izzotti, A. Public health issues from crude-oil production in the Ecuadorian Amazon territories. Sci. Total Environ. 2020, 719, 134647. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.; Coomes, O.T.; Mergler, D.; Ross, N.A. Levels of 1-hydroxypyrene in urine of people living in an oil producing region of the Andean Amazon (Ecuador and Peru). Int. Arch. Occup. Environ. Health 2018, 91, 105–115. [Google Scholar] [CrossRef]
- Burgherr, P.; Eckle, P.; Hirschberg, S. Comparative assessment of severe accident risks in the coal, oil and natural gas chains. Reliab. Eng. Syst. Saf. 2012, 105, 97–103. [Google Scholar] [CrossRef]
- Burgherr, P.; Hirschberg, S. Comparative risk assessment of severe accidents in the energy sector. Energy Policy 2014, 74, S45–S56. [Google Scholar] [CrossRef]
- UN. Universal Declaration of Human Rights; United Nations: New York, NY, USA, 1948; Available online: http://www.un.org/en/documents/udhr/index.shtml (accessed on 20 August 2020).
- Suárez-Torres, J.; Suárez-López, J.R.; López-Paredes, D.; Morocho, H.; Cachiguango-Cachiguango, L.E.; Dellai, W. Agroecology and Health: Lessons from Indigenous Populations. Curr. Envir. H 2017, 4, 244–251. [Google Scholar] [CrossRef]
- Mistry, J.; Berardi, A. Bridging indigenous and scientific knowledge. Science 2016, 352, 1274–1275. [Google Scholar] [CrossRef] [Green Version]
- Tengö, M.; Hill, R.; Malmer, P.; Raymond, C.M.; Spierenburg, M.; Danielsen, F.; Elmqvist, T.; Folke, C. Weaving knowledge systems in IPBES, CBD and beyond-lessons learned for sustainability. Curr. Opin. Environ. Sustain. 2017, 26, 17–25. [Google Scholar] [CrossRef]
- Gratani, M.; Butler, J.R.A.; Royee, F.; Valentine, P.; Burrows, D.; Canendo, W.I.; Anderson, A.S. Is validation of indigenous ecological knowledge a disrespectful process? A case study of traditional fishing poisons and invasive fish management from the Wet Tropics, Australia. Ecol. Soc. 2011, 16, 25. [Google Scholar] [CrossRef]
- Berkes, F. Sacred Ecology, 4th ed.; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Donatuto, J.; Grossman, E.E.; Konovsky, J.; Grossman, S.; Campbell, L.W. Indigenous community health and climate change: Integrating biophysical and social science indicators. Coast. Manag. 2014, 42, 355–373. [Google Scholar] [CrossRef]
- Vasco, C.; Bilsborrow, R. Contribution of off-farm employment to income of indigenous and mestizo households in the Ecuadorian Amazon. Economía Agraria Recursos Natur. Agricult. Res. Econ. 2016, 16, 5–18. [Google Scholar]
- Ospina, V.; Torres, B.; Köthke, M.; Knapp, G.M.; Fisher, R.V.; Günter, S. Sistema socio-productivo y modelo de gobernanza en la comunidad kichwa “Shiwakucha”, Pastaza, Ecuador. Revista Amazónica Ciencia y Tecnología 2017, 6, 126–149. [Google Scholar]
- McNeely, J.A.; Schroth, G. Agroforestry and Biodiversity Conservation–Traditional Practices, Present Dynamics, and Lessons for the Future. Biodivers. Conserv. 2006, 15, 549–554. [Google Scholar] [CrossRef]
- Sahoo, G.; Wani, A.M. Multifunctional agroforestry systems in India for livelihoods. Ann. Horticult. 2019, 12, 139–149. [Google Scholar] [CrossRef]
- Almeida e Silva, J.V.; Gomes, F.A.; de Freitas, H.J.; Barbosa, M.; da Silva, J.C.T. Levels of cupuaçu seed by-product in feedstuff for free-range broilers reared in the Western Amazon. Arquivos Ciências Veterinárias Zoologia UNIPAR 2017, 20, 1–7. [Google Scholar]
- Chauhan, B.S.; Johnson, D.E. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 2010, 105, 221–262. [Google Scholar]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Alegre, J.; Lao, C.; Silva, C.; Schrevens, E. Recovering degraded lands in the Peruvian Amazon by cover crops and sustainable agroforestry systems. Peruv. J. Agron. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Gordon, L.J.; Finlayson, C.M.; Falkenmark, M. Managing water in agriculture for food production and other ecosystem services. Agricult. Water Manag. 2010, 97, 512–519. [Google Scholar] [CrossRef]
- León Alvear, V.; Torres, B.; Luna, M.; Torres, A.; Ramírez, P.; Andrade-Yucailla, V.; Muñoz-Rengifo, J.C.; Heredia, R.M. Percepción sobre cambio climático en cuatro comunidades orientadas a la ganadería bovina en la zona central de los Andes Ecuatorianos. Livest. Res. Rural. Develop. 2020, 32, 165. [Google Scholar]
- Toulkeridis, T.; Tamayo, E.; Simón, D.; Merizalde, M.J.; Reyes, D.F.; Viera, M.; Heredia, M. Climate Change according to Ecuadorian academics—Perceptions ver-sus facts. Granja Revista Ciencias Vida 2020, 31, 21–49. [Google Scholar] [CrossRef] [Green Version]
- Torres, B.; Starnfeld, F.; Vargas, J.C.; Ramm, G.; Chapalbay, R.; Rios, M.; Gómez, A.; Torricelli, Y.; Jurrius, I.; Tapia, A.; et al. Gobernanza Participativa en la Amazonía del Ecuador: Recursos Naturales y Desarrollo Sostenible; Universidad Estatal Amazónica: Puyo, Ecuador, 2013; 124p. [Google Scholar]
- Lowan-Trudeau, G. Indigenous Environmental Education: The Case of Renewable Energy Projects. Educ. Stud. 2017, 53, 601–613. [Google Scholar] [CrossRef]
- Heredia, M.; Bravo, C.; Torres, B.; Alemán, R. Innovación para el fortalecimiento de capacidades sobre sostenibilidad de los recursos naturales en poblaciones indígenas y mestizas—Colonas: Reserva de Biosfera Yasuní. Revista Ibérica Sistemas Tecnologias Informação 2020, 25, 103–116. [Google Scholar]
- García, N.; Galeano, G.; Mesa, L.; Castaño, N.; Balslev, H.; Bernal, R. Management of the palm Astrocaryum chambira Burret (Arecaceae) in northwest Amazon. Acta Bot. Brasilica 2015, 29, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Innerhofer, S.; Bernhardt, K.G. Ethnobotanic garden design in the Ecuadorian Amazon. Biodivers. Conserv. 2011, 20, 429–439. [Google Scholar] [CrossRef]
- Turner, N.J.; Łuczaj, Ł.J.; Migliorini, P.; Pieroni, A.; Dreon, A.L.; Sacchetti, L.E.; Paoletti, M.G. Edible and tended wild plants, traditional ecological knowledge and agroecology. Crit. Rev. Plant Sci. 2011, 30, 198–225. [Google Scholar] [CrossRef]
- Leeuwis, C. Communication for Rural Innovation: Rethinking Agricultural Extension; John Wiley & Sons: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Hart, M.B.; Moore, M.J.; Laverty, M. Improving Indigenous health through education. Med. J. Aust. 2017, 207, 11–12. [Google Scholar] [CrossRef]
- Cortina, R. The Education of Indigenous Citizens in Latin America; Multilingual Matters: Bristol, USA, 2013; Volume 95. [Google Scholar]
- Heredia-R, M.; Falconí, A.K.; Barreto, D.; Amores, K.; Silva, J.H.; Torres, B. Conductas sustentables sobre el marco de evaluación SAFA–FAO: Un aporte para poblaciones rurales vulnerables de la Amazonía. Revista Ibérica Sistemas Tecnologias Informação 2020, 33, 312–326. [Google Scholar]
- Lawlor, K.; Madeira, E.M.; Blockhus, J.; Ganz, D.J. Community participation and benefits in REDD+: A review of initial outcomes and lessons. Forests 2013, 4, 296–318. [Google Scholar] [CrossRef] [Green Version]
- Chhatre, A.; Lakhanpal, S.; Larson, A.M.; Nelson, F.; Ojha, H.; Rao, J. Social safeguards and co-benefits in REDD+: A review of the adjacent possible. Curr. Opin. Environ. Sustain. 2012, 4, 654–660. [Google Scholar] [CrossRef]
- Arnés, E.; Díaz-Ambrona, C.G.; Marín-González, O.; Astier, M. Farmer Field Schools (FFSs): A tool empowering sustainability and food security in peasant farming systems in the Nicaraguan Highlands. Sustainability 2018, 10, 3020. [Google Scholar]
- Marinello, F.; Pezzuolo, A.; Chiumenti, A.; Sartori, L. Technical analysis of unmanned aerial vehicles (drones) for agricultural applications. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 25–27 May 2016; Volume 15. [Google Scholar]
- Aker, J.C. Dial “A” for agriculture: A review of information and communication technologies for agricultural extension in developing countries. Agricult. Econ. 2011, 42, 631–647. [Google Scholar] [CrossRef]
- Mittal, S.; Gandhi, S.; Tripathi, G. Socio-Economic Impact of Mobile Phones on Indian Agriculture; Indian Council for Research on International Economic Relations (ICRIER): New Delhi, India, 2010. [Google Scholar]
- Barreto-Álvarez, D.E.; Heredia-Rengifo, M.G.; Padilla-Almeida, O.; Toulkeridis, T. Multitemporal Evaluation of the Recent Land Use Change in Santa Cruz Island, Galapagos, Ecuador. In Information and Communication Technologies, TICEC 2020; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2020; Volume 1307. [Google Scholar] [CrossRef]
Evaluation Scenario | Country | Indigenous Peoples and/or Small Producers | References |
---|---|---|---|
Family farming | Sweden | No | [64] |
Organic and conventional farms | Poland | No | [65] |
Indigenous agriculture | Ecuador | Yes | [66] |
Organic farms | Denmark | No | [67] |
Agricultural and livestock production | Ethiopia | Yes | [68] |
Tea plantation | India | Yes | [69] |
Agricultural production | Spain | No | [70] |
Coffee cultivation | Brazil | Yes | [71] |
Indicators | Subtopics | |
---|---|---|
1. Land use | 1.1. Land management 1.2 Crop productivity 1.3 Soil organic matter 1.4 Soil reaction | 1.5 Soil contamination 1.6 Soil erosion 1.7 Soil compaction |
2. Livestock production | 2.1 Cattle management 2.2 Cattle productivity 2.3 Behavioral opportunity according to species | 2.4 Quality of animal housing 2.5 Animal health |
3. Use of materials and environmental protection | 3.1 Nitrogen balance 3.2 Phosphorous balance 3.3 Self-sufficiency of nitrogen and phosphorus | 3.4 Ammonia emissions (risk) 3.5 Waste management |
4. Water use | 4.1 Water management 4.2 Water supply | 4.3 Intensity of water use 4.4 Risks to water quality |
5. Energy and climate | 5.1 Energy management 5.2 Intensity of energy used in agricultural production | 5.3 Balance of greenhouse gases |
6. Biodiversity | 6.1 Management of crop protection 6.2 Areas of ecological priority 6.3 Intensity of agricultural production | 6.4 Quality of landscape 6.5 Diversity of agricultural production |
7. Working conditions | 7.1 Staff management 7.2 Working hours | 7.3 Health and safety 7.4 Salary and income levels |
8. Quality of life | 8.1 Occupation and education 8.2 Financial situation 8.3 Social relations | 8.4 Personal freedom and values 8.5 Health |
9. Economic viability | 9.1 Liquidity reserve 9.2 Level of debt 9.3 Economic vulnerability 9.4 Secureness of household livelihoods | 9.5 Cash flow, sales volume ratio 9.7 Exhaustion of the capacity to serve the capital of others (payment of interest and amortization) |
10. Administration | 10.1 Strategies and planning 10.2 Guarantee of supply and performance | 10.3 Tools for planning and documenting 10.4 Administration of quality 10.5 Cooperation with others |
Variables | Sector A | Sector B | |||||||
---|---|---|---|---|---|---|---|---|---|
Pompeya | Indillama | Santa Elena | Itaya | Samona Yuturi | Chiru Isla | Sinchi Chicta Cari | San Vicente | ||
Household Size | Average (SD) | 5 (2.18) | 4 (2.37) | 4 (2.16) | 6 (2.20) | 6 (2.16) | 5 (2.17) | 4 (2.91) | 7 (2.47) |
Max | 10 | 9 | 7 | 10 | 9 | 9 | 11 | 9 | |
Min | 2 | 1 | 2 | 3 | 3 | 2 | 1 | 2 | |
Age of head of the household (years) | Average (SD) | 43 (10.80) | 45 (11.67) | 47 (10.24) | 35 (4.98) | 41 (11.69) | 44 (9.34) | 39 (8.04) | 44 (11.83) |
Max | 60 | 57 | 56 | 44 | 64 | 60 | 56 | 60 | |
Min | 29 | 26 | 34 | 28 | 29 | 27 | 25 | 27 | |
Education of head of the household (%) | Higher education | 8.57 | 0.00 | 0.00 | 8.33 | 0.00 | 3.23 | 0.00 | 8.33 |
High school | 48.57 | 60.00 | 0.00 | 16.67 | 35.71 | 32.26 | 60.00 | 25.00 | |
To middle school | 17.14 | 0.00 | 100.00 | 50.00 | 42.86 | 29.03 | 40.00 | 50.00 | |
None | 25.71 | 40.00 | 0.00 | 25.00 | 21.43 | 35.48 | 0.00 | 16.67 | |
Literate? | % (Yes) | 83 | 90 | 100 | 92 | 93 | 77 | 87 | 83 |
Existing species in the chakras | Cacao (Theobroma bicolor L.), coffee (Caffea sp.), manioc (Manihot esculenta), plantain banana (Musa paradisiaca), corn (Zea mays), sugar cane (Saccharum officinarum), annatto (Bixa orellana) and pacay (Inga spp.) | ||||||||
Animals | Poultry (laying hens, broilers, ducks) |
Indicators | Groups ** | Overall Mean of Sector A | |||||
---|---|---|---|---|---|---|---|
Group 1 (24) | Group 2 (24) | Group 3 (13) | |||||
Mean | SD | Mean | SD | Mean | SD | ||
Land use | 70.83 | 4.07 | 73.50 | 5.48 | 73.54 | 3.04 | 72.62 |
Animal production | 38.25 | 4.41 | 30.38 | 10.38 | 34.69 | 7.27 | 34.44 |
Use of materials and environmental protection | 36.54 | 7.60 | 46.58 | 7.15 | 42.69 | 9.68 | 41.94 |
Water use | 75.08 | 3.83 | 74.67 | 4.24 | 75.15 | 4.22 | 74.97 |
Energy and climate | 87.00 | 0.00 | 86.46 | 2.65 | 87.00 | 0.00 | 86.82 |
Biodiversity | 65.54 | 5.45 | 64.71 | 4.27 | 63.31 | 4.44 | 64.52 |
Working conditions | 76.83 | 4.95 | 80.46 | 2.06 | 76.38 | 5.41 | 77.89 |
Quality of life | 64.25 | 6.35 | 69.08 | 5.45 | 86.85 | 4.88 | 73.39 |
Economic viability | 29.79 | 6.95 | 28.71 | 3.70 | 29.08 | 6.74 | 29.19 |
Administration of the chakra | 24.33 | 2.76 | 22.79 | 2.48 | 23.85 | 2.88 | 23.66 |
Global indicator of sustainability | 56.84 | 57.73 | 59.25 | 57.94 |
Indicators | Groups ** | Overall Mean of Sector B | |||||
---|---|---|---|---|---|---|---|
Group 1 (21) | Group 2 (24) | Group 3 (27) | |||||
Mean | SD | Mean | SD | Mean | SD | ||
Land use | 67.38 | 3.22 | 67.13 | 2.11 | 67.18 | 4.99 | 67.23 |
Animal production | 41.00 | 9.23 | 38.58 | 3.11 | 34.11 | 5.93 | 37.90 |
Use of materials and environmental protection | 43.24 | 10.47 | 27.46 | 3.15 | 29.07 | 5.74 | 33.26 |
Water use | 80.29 | 3.89 | 80.83 | 2.55 | 79.43 | 2.6 | 80.18 |
Energy and climate | 92.14 | 2.15 | 92.04 | 3.00 | 93.00 | 0.00 | 92.39 |
Biodiversity | 70.10 | 5.58 | 67.42 | 3.48 | 65.57 | 3.49 | 67.70 |
Working conditions | 74.95 | 3.07 | 72.58 | 5.04 | 79.18 | 2.68 | 75.57 |
Quality of life | 61.05 | 14.68 | 65.67 | 3.42 | 73.57 | 6.47 | 66.76 |
Economic viability | 32.43 | 8.58 | 27.38 | 3.55 | 29.61 | 3.65 | 29.81 |
Administration of the chakra | 27.52 | 7.39 | 29.88 | 5.07 | 36.00 | 5.93 | 31.13 |
Global indicator of sustainability | 59.01 | 56.90 | 58.67 | 58.19 |
Indicators | Recommendation | Examples | Priority |
---|---|---|---|
Land use |
| [160,161] | Medium |
Animal production | 1. Seek advice on the proper handling of poultry and animals. | [162] | High |
Use of materials and environmental protection |
| [163,164,165] | Medium |
Water use | 1. Incorporate technologies to save water and make an inventory of good practices. | [166] | Low |
Energy and climate |
| [167,168,169,170] | Low |
Biodiversity |
| [171,172,173,174] | Medium |
Working conditions | 1. Training to maintain or improve working conditions. | [175] | Low |
Quality of life |
| [176,177,178] | Medium |
Economic viability |
| [143,177,179] | High |
Administration of the traditional agroforestry system (Chakra) |
| [180,181,182,183,184,185] | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heredia-R, M.; Torres, B.; Cayambe, J.; Ramos, N.; Luna, M.; Diaz-Ambrona, C.G.H. Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas. Agronomy 2020, 10, 1973. https://doi.org/10.3390/agronomy10121973
Heredia-R M, Torres B, Cayambe J, Ramos N, Luna M, Diaz-Ambrona CGH. Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas. Agronomy. 2020; 10(12):1973. https://doi.org/10.3390/agronomy10121973
Chicago/Turabian StyleHeredia-R, Marco, Bolier Torres, Jhenny Cayambe, Nadia Ramos, Marcelo Luna, and Carlos G. H. Diaz-Ambrona. 2020. "Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas" Agronomy 10, no. 12: 1973. https://doi.org/10.3390/agronomy10121973
APA StyleHeredia-R, M., Torres, B., Cayambe, J., Ramos, N., Luna, M., & Diaz-Ambrona, C. G. H. (2020). Sustainability Assessment of Smallholder Agroforestry Indigenous Farming in the Amazon: A Case Study of Ecuadorian Kichwas. Agronomy, 10(12), 1973. https://doi.org/10.3390/agronomy10121973