Trends on Advanced Information and Communication Technologies for Improving Agricultural Productivities: A Bibliometric Analysis
Abstract
:1. Introduction
2. Method
2.1. Bibliographic Recovery
2.2. Country First Author Papers
2.3. Co-Word, Collaboration, and Co-Citations Networks
2.4. Theme Selection
2.5. Strategic Diagrams
3. Results and Discussion
3.1. Performance Analysis
3.1.1. Publications Dynamics
3.1.2. Most Relevant Countries
3.1.3. Most Relevant Institutions
3.1.4. Most Relevant Journals
3.1.5. Most Cited Papers
3.2. Science Mapping
3.2.1. Institution Collaboration Network
3.2.2. Sources Co-Citation Networks
3.2.3. Word Co-Occurrence Networks
3.2.4. Country Collaboration Network
3.2.5. Strategic Diagrams by Period
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dimitri, C.; Effland, A.; Conklin, N.C. The 20th Century Transformation of U.S. Agriculture and Farm Policy; Economic Research Service; USDA: Washington, DC, USA, 2005; pp. 1–14.
- Khush, G.S. Green revolution: The way forward. Nat. Rev. Genet. 2001, 2, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D. Green revolution agriculture and chemical hazards. Sci. Total Environ. 1996, 188, S86–S98. [Google Scholar] [CrossRef]
- Tilman, D. The greening of the green revolution. Nature 1998, 396, 211–212. [Google Scholar] [CrossRef]
- Pretty, J.N. Participatory learning for sustainable agriculture. World Dev. 1995, 23, 1247–1263. [Google Scholar] [CrossRef]
- Taylor, M. Climate-smart agriculture: What is it good for? J. Peasant Stud. 2018, 45, 89–107. [Google Scholar] [CrossRef]
- Oliver, M.A. Geostatistical Applications for Precision Agriculture; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Dewi, C.; Chen, R.C. Decision making based on IoT data collection for precision agriculture. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Yogyakarta, Indonesia, 8–11 April 2019; pp. 31–42. [Google Scholar]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Carreira, E.; Pereira, A.; Carvalho, M. Climate changes challenges to the management of Mediterranean montado ecosystem: Perspectives for use of precision agriculture technologies. Agronomy 2020, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Rodríguez, M.A.; Cuenca, L.; Ortiz, Á. Big Data Transformation in Agriculture: From Precision Agriculture Towards Smart Farming. In Proceedings of the Working Conference on Virtual Enterprises, Turin, Italy, 23–25 September 2019; pp. 467–474. [Google Scholar]
- Martinho, V.J.P.D. Agricultural Entrepreneurship in the European Union: Contributions for a Sustainable Development. Appl. Sci. 2020, 10, 2080. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, A.; Dinis, I.; Simões, O.; Gomes, G. Success factors for small rural tourism units: An exploratory study in the Portuguese region of Serra da Estrela. Eur. J. Tour. Res. 2017, 17, 136–148. [Google Scholar]
- Zhuang, Y.; Liu, X.; Nguyen, T.; He, Q.; Hong, S. Global remote sensing research trends during 1991–2010: A bibliometric analysis. Scientometrics 2013, 96, 203–219. [Google Scholar] [CrossRef]
- Pallottino, F.; Biocca, M.; Nardi, P.; Figorilli, S.; Menesatti, P.; Costa, C. Science mapping approach to analyze the research evolution on precision agriculture: World, EU and Italian situation. Precis. Agric. 2018, 19, 1011–1026. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT Technology in Agriculture: A Systematic Literature Review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Chernyi, A. The ISI Web of Knowledge, a modern system for the information support of scientific research: A review. Sci. Tech. Inf. Process. 2009, 36, 351–358. [Google Scholar] [CrossRef]
- Setti, G. Bibliometric indicators: Why do we need more than one? IEEE Access 2013, 1, 232–246. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Tippmann, S. Programming tools: Adventures with R. Nat. News 2015, 517, 109. [Google Scholar] [CrossRef]
- Börner, K.; Chen, C.; Boyack, K.W. Visualizing knowledge domains. Annu. Rev. Inf. Sci. Technol. 2003, 37, 179–255. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.P.; Laville, F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Michelet, B. L’analyse des Associations. Ph.D. Thesis, Paris 7, Paris, France, 1988. [Google Scholar]
- De Meo, P.; Ferrara, E.; Fiumara, G.; Provetti, A. Generalized louvain method for community detection in large networks. In Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications, Cordoba, Spain, 22–24 November 2011; pp. 88–93. [Google Scholar]
- Courtial, J.P.; Michelet, B. A mathematical model of development in a research field. Scientometrics 1990, 19, 127–141. [Google Scholar] [CrossRef]
- López-Herrera, A.G.; Cobo, M.J.; Herrera-Viedma, E.; Herrera, F. A bibliometric study about the research based on hybridating the fuzzy logic field and the other computational intelligent techniques: A visual approach. Int. J. Hybrid Intell. Syst. 2010, 7, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Bouchet-Valat, M. SnowballC: Snowball Stemmers Based on the C Libstemmer UTF-8 Library, R Package Version 0.5. Available online: https://github.com/nalimilan/R.TeMiS/tree/master/SnowballC (accessed on 16 February 2020).
- Cahlik, T. Comparison of the maps of science. Scientometrics 2000, 49, 373–387. [Google Scholar] [CrossRef]
- Fuglie, K. The growing role of the private sector in agricultural research and development world-wide. Glob. Food Secur. 2016, 10, 29–38. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.; Santano, D.V.; Meroño, J.; De La Orden, M.S.; García-Ferrer, A. Open source hardware to monitor environmental parameters in precision agriculture. Biosyst. Eng. 2015, 137, 73–83. [Google Scholar] [CrossRef]
- Pardey, P.G.; Alston, J.M.; Chan-Kang, C.; Hurley, T.M.; Andrade, R.S.; Dehmer, S.P.; Lee, K.; Rao, X. The shifting structure of agricultural R&D: Worldwide investment patterns and payoffs. In From Agriscience to Agribusiness; Springer: Cham, Switzerland, 2018; pp. 13–39. [Google Scholar]
- Kushwaha, M.; Raghuveer, V. Survey of impact of technology on effective implementation of precision farming in India. Int. J. Recent Innov. Trends Comput. Commun. 2017, 5, 1300–1310. [Google Scholar]
- Chen, W.; Lin, Y.; Lin, Y.; Chen, R.; Liao, J.; Ng, F.; Chan, Y.; Liu, Y.; Wang, C.; Chiu, C.; et al. AgriTalk: IoT for Precision Soil Farming of Turmeric Cultivation. IEEE Internet Things J. 2019, 6, 5209–5223. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Wu, J.Z.; Han, S.; Liu, J. Application Progress of Agricultural Internet of Things in Major Countries. J. Phys. Conf. Ser. 2018, 1087, 032013. [Google Scholar] [CrossRef]
- Pardey, P.G.; Alston, J.M.; Chan-Kang, C. Public agricultural R&D over the past half century: An emerging new world order. Agric. Econ. 2013, 44, 103–113. [Google Scholar]
- Suebsombut, P.; Sekhari, A.; Sureepong, P.; Ueasangkomsate, P.; Bouras, A. The using of bibliometric analysis to classify trends and future directions on “smart farm”. In Proceedings of the 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), Chiang Mai, Thailand, 1–4 March 2017; pp. 136–141. [Google Scholar]
- Lakitan, B. Research and technology development in Southeast Asian economies are drifting away from agriculture and farmers’ needs. J. Sci. Technol. Policy Manag. 2019, 10, 251–272. [Google Scholar] [CrossRef]
- Dinçer, H.; Yüksel, S.; Adalı, Z.; Aydın, R. Evaluating the role of research and development and technology investments on economic development of E7 countries. In Organizational Transformation and Managing Innovation in the Fourth Industrial Revolution; IGI Global: Extremadura, Spain, 2019; pp. 245–263. [Google Scholar]
- Meo, S.A.; Al Masri, A.A.; Usmani, A.M.; Memon, A.N.; Zaidi, S.Z. Impact of GDP, spending on R&D, number of universities and scientific journals on research publications among Asian countries. PLoS ONE 2013, 8, e66449. [Google Scholar]
- Vinkler, P. Correlation between the structure of scientific research, scientometric indicators and GDP in EU and non-EU countries. Scientometrics 2008, 74, 237–254. [Google Scholar] [CrossRef]
- Schreyer, P. The Contribution of Information and Communication Technology to Output Growth: A Study of the G7 Countries; Technical Report; OECD Publishing: Paris, France, 2000. [Google Scholar]
- United States Department of Agriculture (USDA); Economic Research Service (ERS). U.S. Agricultural Trade Data Update. Available online: https://www.ers.usda.gov/data-products/foreign-agricultural-trade-of-the-united-states-fatus/us-agricultural-trade-data-update/ (accessed on 5 December 2020).
- Huang, J.k.; Wei, W.; Qi, C.; Wei, X. The prospects for China’s food security and imports: Will China starve the world via imports? J. Integr. Agric. 2017, 16, 2933–2944. [Google Scholar] [CrossRef]
- Qiu, Z.; He, Y.; Li, W. A note on the adoption of precision agriculture in eastern China. Outlook Agric. 2007, 36, 255–257. [Google Scholar] [CrossRef]
- Hopkins, M. Precision Agriculture In China—PrecisionAg. Available online: https://www.precisionag.com/market-watch/precision-agriculture-in-china/ (accessed on 16 February 2020).
- Guanziroli, C.E. Agronegócio no Brasil: Perspectivas e limitações. Economia Texto para Discussão 2006, 186, 1–59. [Google Scholar]
- Pivoto, D.; Waquil, P.D.; Talamini, E.; Finocchio, C.P.S.; Dalla Corte, V.F.; de Vargas Mores, G. Scientific development of smart farming technologies and their application in Brazil. Inf. Process. Agric. 2018, 5, 21–32. [Google Scholar] [CrossRef]
- Egea, F.J.; Torrente, R.G.; Aguilar, A. An efficient agro-industrial complex in Almería (Spain): Towards an integrated and sustainable bioeconomy model. New Biotechnol. 2018, 40, 103–112. [Google Scholar] [CrossRef]
- Robinson, D. How Spanish Bank Ibercaja Built a Precision Farming Platform to Save Water. Available online: https://www.nsagriculture.com/analysis/ibercaja-farming-iot/ (accessed on 16 February 2020).
- Hunt, W.; Birch, C.; Coutts, J.; Vanclay, F. The many turnings of agricultural extension in Australia. J. Agric. Educ. Ext. 2012, 18, 9–26. [Google Scholar] [CrossRef]
- Court, C.D.; Hodges, A.W.; Rahmani, M.; Spreen, T.H. Economic Contributions of the Florida Citrus Industry in 2015-2016. EDIS 2018, 2018. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA); National Agricultural Statistics Service Information (NASS). State Agriculture Overview for Florida. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=FLORIDA (accessed on 3 February 2020).
- United States Department of Agriculture (USDA); National Agricultural Statistics Service Information (NASS). State Agriculture Overview for Nebraska. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA (accessed on 3 February 2020).
- Herian, M.; Thomspon, E. The 2016 Nebraska Manufacturing Report; Nebraska Manufacturing Extension Partnership: Lincoln, NE, USA, 2016. [Google Scholar]
- Hoy, R.M.; Kocher, M.F. The Nebraska Tractor Test Laboratory: 100 Years of Service. ASABE Disting. Lect. Ser. 2020, 41, 1–14. [Google Scholar]
- Stackpole, A.; Michlberger, A.; Mardula, P.; Hoy, R.; Geyer, J.; Triplett, D. Farm Tractor Efficiency Gains through Optimized Heavy-Duty Diesel Engine Oils; Technical Report, SAE Technical Paper; SAE International: Heidelberg, Germany, 2018. [Google Scholar]
- United States Department of Agriculture (USDA); National Agricultural Statistics Service Information (NASS). State Agriculture Overview for Missouri. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MISSOURI (accessed on 3 February 2020).
- United States Department of Agriculture (USDA); National Agricultural Statistics Service Information (NASS). 2017 Census of Agriculture: State Level Data. Available online: https://www.nass.usda.gov/Publications/AgCensus/2017/ (accessed on 3 February 2020).
- Missouri Economic Indicator Brief: Manufacturing Manufacturig Industries. State Agriculture Overview for Nebraska. Available online: https://meric.mo.gov/media/pdf/manufacturing-industries-brief (accessed on 3 February 2020).
- Olmstead, A.L.; Rhode, P.W. A history of California agriculture. Giannini Found. Agric. Economics. Davis Univ. Calif. Agric. Nat. Resour. 2017, 17, 1–24. [Google Scholar]
- Morgan, N.; McNamee, G. California. Available online: https://www.britannica.com/place/California-state/Economy (accessed on 3 February 2020).
- Buzheng, W. Beijing Nongye Daxue Xiaoshi (1949–1987)(History of Beijing Agricultural University [1949–1987]); Beijing Nongye Daxue Chubanshe: Beijing, China, 1995. [Google Scholar]
- Borghi, E.; Avanzi, J.C.; Bortolon, L.; Luchiari Junior, A.; Bortolon, E.S. Adoption and use of precision agriculture in Brazil: Perception of growers and service dealership. In Embrapa Milho e Sorgo-Artigo em Periódico Indexado (ALICE); Canadian Center of Science and Education: Richmond Hill, ON, Canada, 2016. [Google Scholar]
- Hopkins, M. 25 Best Colleges for Precision Agriculture—PrecisionAg 2018. Available online: https://www.precisionag.com/market-watch/25-best-colleges-for-precision-agriculture/ (accessed on 16 February 2020).
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Stagakis, S.; González-Dugo, V.; Cid, P.; Guillén-Climent, M.L.; Zarco-Tejada, P.J. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS J. Photogramm. Remote Sens. 2012, 71, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Rossel, R.V.; Walvoort, D.; McBratney, A.; Janik, L.J.; Skjemstad, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Raitzer, D.A.; Kelley, T.G. Benefit–cost meta-analysis of investment in the International Agricultural Research Centers of the CGIAR. Agric. Syst. 2008, 96, 108–123. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, C.; Chapman, D.; Paine, M. Networks of practice for co-construction of agricultural decision support systems: Case studies of precision dairy farms in Australia. Agric. Syst. 2012, 108, 10–18. [Google Scholar] [CrossRef]
- Aisenberg, Igal. EMCompass, No. 46. International Finance Corporation, Washington, DC©. Precision Farming Enables Climate-Smart Agribusiness. Available online: https://openknowledge.worldbank.org/handle/10986/30372 (accessed on 16 February 2020).
- Ministero degli Affari Esteri e della Cooperazione Internazionale. Joint Declaration after the 12th U.S.-Italy Joint Comission Meeting on Science and Technology Cooperation. Available online: https://www.esteri.it/mae/resource/doc/2017/02/20160114it_us_s_t12%20jdannex4_%20actionplandef.pdf (accessed on 4 December 2020).
- Shuai, C. Sino–US agricultural trade potential: A gravity model approach. Outlook Agric. 2010, 39, 169–176. [Google Scholar] [CrossRef]
- Werner, D.; Newton, W.E. Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment; Springer Science & Business Media: Dordrecht, The Netherlands, 2005; Volume 4. [Google Scholar]
- Ribaudo, M.; Delgado, J.; Hansen, L.; Livingston, M.; Mosheim, R.; Williamson, J. Nitrogen in agricultural systems: Implications for conservation policy. USDA-ERS Econ. Res. Rep. 2011, 1, 127. [Google Scholar] [CrossRef] [Green Version]
- Ort, D.R.; Long, S.P. Limits on yields in the corn belt. Science 2014, 344, 484–485. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Rojas, J.; Vidal-Beltrán, S.; López-Bonilla, J.L.; Jimenez-Licea, M. Krige method application for the coverage analysis of a node-B in a WCDMA network. Int. J. Commun. Netw. Syst. Sci. 2011, 4, 180. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Xiong, X.; Adhikari, K.; Knadel, M.; Grunwald, S.; Greve, M.H. Modeling soil organic carbon at regional scale by combining multi-spectral images with laboratory spectra. PLoS ONE 2015, 10, e0142295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hank, T.B.; Berger, K.; Bach, H.; Clevers, J.G.; Gitelson, A.; Zarco-Tejada, P.; Mauser, W. Spaceborne imaging spectroscopy for sustainable agriculture: Contributions and challenges. Surv. Geophys. 2019, 40, 515–551. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.K.; Kuska, M.T.; Thomas, S.; Wahabzada, M.; Behmann, J.; Rascher, U.; Kersting, K. Quantitative and qualitative phenotyping of disease resistance of crops by hyperspectral sensors: Seamless interlocking of phytopathology, sensors, and machine learning is needed! Curr. Opin. Plant Biol. 2019, 50, 156–162. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Barcelo-Ordinas, J.M.; Chanet, J.P.; Hou, K.M.; García-Vidal, J. A survey of wireless sensor technologies applied to precision agriculture. In Precision Agriculture’13; Springer: Wageningen, The Netherlands, 2013; pp. 801–808. [Google Scholar]
Authors | Title | Topics | Applications |
---|---|---|---|
Zhang, C., Kovacs, J.M. | The application of small unmanned aerial systems for precision agriculture: a review | UAV, vision in agriculture, and decision support system. | Plant disease detection, crop monitoring, water stress detection, and vegetation index. |
Mulla, David J. | Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps | Remote sensing, satellite images, UAV, and computer vision in agriculture. | Crop monitoring, soil properties determination, and crop indexes determination. |
Rossel, R. V., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., and Skjemstad, J. O. | Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties | Remote sensing, computer vision, soil study, and hyperspectral image analysis. | Analysis of soil properties. |
Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B. | Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture | Precision agriculture, leaf area index, hyperspectral images, and vision in agriculture. | Plant stress detects, detect vegetative, active and reproductive growth stages, plant stress detects, predict leaf area index, and crop canopy. |
Stagakis, S., González-Dugo, V., Cid, P., Guillén-Climent, M. L., and Zarco-Tejada, P. J. | Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices | UAV, airbone imagery, remote sensing, and vision in agriculture. | Water status, water stress, estimation crop evapotranspiration, and fruit quality. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armenta-Medina, D.; Ramirez-delReal, T.A.; Villanueva-Vásquez, D.; Mejia-Aguirre, C. Trends on Advanced Information and Communication Technologies for Improving Agricultural Productivities: A Bibliometric Analysis. Agronomy 2020, 10, 1989. https://doi.org/10.3390/agronomy10121989
Armenta-Medina D, Ramirez-delReal TA, Villanueva-Vásquez D, Mejia-Aguirre C. Trends on Advanced Information and Communication Technologies for Improving Agricultural Productivities: A Bibliometric Analysis. Agronomy. 2020; 10(12):1989. https://doi.org/10.3390/agronomy10121989
Chicago/Turabian StyleArmenta-Medina, Dagoberto, Tania A. Ramirez-delReal, Daniel Villanueva-Vásquez, and Cristian Mejia-Aguirre. 2020. "Trends on Advanced Information and Communication Technologies for Improving Agricultural Productivities: A Bibliometric Analysis" Agronomy 10, no. 12: 1989. https://doi.org/10.3390/agronomy10121989
APA StyleArmenta-Medina, D., Ramirez-delReal, T. A., Villanueva-Vásquez, D., & Mejia-Aguirre, C. (2020). Trends on Advanced Information and Communication Technologies for Improving Agricultural Productivities: A Bibliometric Analysis. Agronomy, 10(12), 1989. https://doi.org/10.3390/agronomy10121989