Soil Monitoring Methods to Assess Immediately Available Soil N for Fertigated Sweet Pepper
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Crops
2.2. Experimental Design and Treatments
2.3. Obtaining and Analysis of Samples of Soil Solution and 1:2 Soil to Water (v/v) Extract
2.3.1. Soil Solution
2.3.2. The 1:2 Soil to Water (v/v) Extract Method
2.4. Determination of Crop Nitrogen Nutrition Index (NNI)
2.5. Data Analysis
3. Results
3.1. Soil Solution [NO3−]
3.1.1. Responses of Soil Solution [NO3−] to N Treatments
3.1.2. Response of NNI to N Treatments
3.1.3. Relationship between NNI and Soil Solution [NO3−]
3.1.4. Sufficiency Values of Soil Solution [NO3−] for Optimal N Nutrition
3.2. [NO3−] in the 1:2 Soil to Water (v/v) Extract
3.2.1. Response of [NO3−] in the 1:2 Soil to Water (v/v) Extract to N Treatments
3.2.2. Response of NNI to N Treatments
3.2.3. Relationship between NNI and [NO3−] of the 1:2 Soil to Water (v/v) Extract
3.2.4. Sufficiency Values of [NO3−] of the 1:2 Soil to Water (v/v) Extract for Optimal N Nutrition
3.3. Relationship between Soil Solution [NO3−] and Applied Nutrient Solution [NO3−]
3.4. Relationship between [NO3−] of the 1:2 Soil to Water (v/v) Extract and the Applied Nutrient Solution [NO3−]
3.5. Relationship between Soil Solution [NO3−] and [NO3−] of the 1:2 Soil to Water (v/v) Extract
3.6. Variability of the Measurements of the Soil Solution [NO3−] and [NO3−] of the 1:2 Soil to Water (v/v) Extract
4. Discussion
4.1. Relationships of [NO3−] in Soil Solution and 1:2 Soil to Water (v/v) Extract, to N Supply and NNI
4.2. Sufficiency Values
4.3. General Considerations of the Use of the Soil Solution and 1:2 Soil to Water (v/v) Extract Methods
4.4. General Application of Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pardossi, A.; Tognoni, F.; Incrocci, L. Mediterranean Greenhouse Technology. Chron. Horticult. 2004, 44, 28–34. [Google Scholar]
- Tei, F.; De Neve, S.; de Haan, J.; Kristensen, H.L. Nitrogen management of vegetable crops. Agric. Water Manag. 2020, 240, 106316. [Google Scholar] [CrossRef]
- Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
- Fernández, M.D.; González, A.M.; Carreño, J.; Pérez, C.; Bonachela, S. Analysis of on-farm irrigation performance in Mediterranean greenhouses. Agric. Water Manag. 2007, 89, 251–260. [Google Scholar] [CrossRef]
- Peña-Fleitas, M.T.; Thompson, R.B.; Gallardo, M.; Fernández-Fernández, M.D. Regional model of nitrate leaching for an intensive vegetable production system. In Nitrogen, Environment and Vegetables, Proceedings of the NEV 2013, Turín, Italy, 15–17 April 2013; Fontana, E., Grignani, C., Nicola, S., Eds.; Università degli Studi di Torino, 10095 Grugliasco: Turín, Italy, 2013; pp. 73–74. [Google Scholar]
- Thompson, R.B.; Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M. Reducing nitrate leaching losses from vegetable production in Mediterranean greenhouses. Acta Hortic. 2020, 1268, 105–117. [Google Scholar] [CrossRef]
- Thompson, R.B.; Gallardo, M.; Fernández-Fernández, M.D. Measurement of Nitrate Leaching in Commercial Vegetable Production in SE Spain. In Nitrogen, Environment and Vegetables, Proceedings of the NEV 2013, Turín, Italy, 15–17 April 2013; Fontana, E., Grignani, C., Nicola, S., Eds.; Università degli Studi di Torino, 10095 Grugliasco: Turín, Italy, 2013; pp. 67–69. [Google Scholar]
- Pulido-Bosch, A.; Rigol-Sanchez, J.P.; Vallejos, A.; Andreu, J.M.; Ceron, J.C.; Molina-Sanchez, L.; Sola, F. Impacts of agricultural irrigation on groundwater salinity. Environ. Earth Sci. 2018, 77, 1–14. [Google Scholar] [CrossRef]
- Valera, L.D.; Belmonte, L.J.; Molina, F.D.; López, A. Greenhouse Agriculture in Almeria. A Comprehensive Techno-Economic Analysis; Cajamar Caja Rural: Almeria, Spain, 2016. [Google Scholar]
- Junta de Andalucía. Cartografía de Invernaderos en Almería, Granada y Málaga. Año. 2019. Available online: https://www.juntadeandalucia.es/export/drupaljda/Cartografia_inv_AL_GR_MA_180725.pdf (accessed on 13 May 2020).
- García, M.C.; Céspedes, A.J.; Pérez, J.J.; Lorenzo, P. El Sistema de la Producción Hortícola Protegido de la Provincia de Almería; IFAPA: Almeria, España, 2016. [Google Scholar]
- BOJA. Orden de 7 de Julio de 2009, por el que se Designan las Zonas Vulnerables y se Establecen Medidas Contra la Contaminación por Nitratos de Origen Agrario. Boletín Oficial de la Junta de Andalucía. N°157, 48–51. Año. 2009. Available online: http://www.juntadeandalucia.es/agriculturaypesca/cocow/archivos/orden_7_julio_2009_modificacion_decreto_36_2008.pdf (accessed on 22 October 2020).
- Anonymous. Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. J. Eur. Commun. 1991, L375, 1–8. [Google Scholar]
- Domínguez, P. Estado Actual de los Acuíferos del Sur de la Sierra de Gádor-Campo de Dalías. Instituto Geológico y Minero de España. Ministerio de Economía y Competitividad. Año. 2014. Available online: http://info.igme.es/ConsultaSID/presentacion.asp?Id=166757 (accessed on 21 May 2019).
- BOJA. Orden de 1 de Junio de 2015, por la que se Aprueba el Programa de Actuación Aplicable en las Zonas Vulnerables a la Contaminación por Nitratos de Fuentes Agrarias Designadas en Andalucía, Boletín Oficial de la Junta de Andalucía. N°111. Año. 2015. Available online: https://www.juntadeandalucia.es/boja/2015/111/index.html (accessed on 22 October 2020).
- Thompson, R.B.; Incrocci, L.; van Ruijven, J.; Massa, D. Reducing contamination of water bodies from European vegetable production systems. Agric. Water Manag. 2020, 240, 106258. [Google Scholar] [CrossRef]
- Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J. Sustainable irrigation and nitrogen management of fertigated vegetable crops. Acta Hortic. 2017, 363–378. [Google Scholar] [CrossRef]
- Thompson, R.B.; Tremblay, N.; Fink, M.; Gallardo, M.; Padilla, F.M. Tools and Strategies for Sustainable Nitrogen Fertilisation of Vegetable Crops. In Advances in Research on Fertilization Management of Vegetable Crops; Tei, F., Nicola, S., Benincasa, P., Eds.; Springer: Heidelberg, Germany, 2017; pp. 11–63. [Google Scholar]
- Padilla, F.M.; Farneselli, M.; Gianquinto, G.; Tei, F.; Thompson, R.B. Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management. Agric. Water Manag. 2020, 241, 106356. [Google Scholar] [CrossRef]
- Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B.; Farneselli, M.; Padilla, F.M. Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Ann. Appl. Biol. 2015, 167, 387–405. [Google Scholar] [CrossRef] [PubMed]
- Granados, M.R.; Thompson, R.B.; Fernández, M.D.; Martínez-Gaitán, C.; Gallardo, M. Prescriptive-corrective nitrogen and irrigation management of fertigated and drip-irrigated vegetable crops using modeling and monitoring approaches. Agric. Water Manag. 2013, 119, 121–134. [Google Scholar] [CrossRef]
- Thompson, R.B.; Gallardo, M.; Joya, M.; Segovia, C.; Martínez-Gaitán, C.; Granados, M.R. Evaluation of rapid analysis systems for on-farm nitrate analysis in vegetable cropping. Spanish J. Agric. Res. 2009, 7, 200–211. [Google Scholar] [CrossRef]
- Sonneveld, C.; Van den Ende, J.; De Bes, S.S. Estimating the chemical compositions of soil solutions by obtaining saturation extracts or specific 1:2 by volume extracts. Plant Soil 1990, 122, 169–175. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Sonneveld, C.; Van den Ende, J. Soil Analysis by Means of a 1:2 Volume Extract. Plant Soil 1971, 505–516. [Google Scholar] [CrossRef]
- Gysi, C. A simple procedure to express results of soil analysis (1:2 volume extract) on a volume basis. Plant Soil. 1981, 63, 523–526. [Google Scholar] [CrossRef]
- Incrocci, L.; Massa, D.; Pardossi, A. New trends in the fertigation management of irrigated vegetable crops. Horticulturae 2017, 3, 37. [Google Scholar] [CrossRef]
- De Kreij, C.; Kavvadias, V.; Assimakopoulou, A.; Paraskevopoulos, A. Development of Fertigation for Trickle Irrigated Vegetables under Mediterranean Conditions. Int. J. Veg. Sci. 2007, 13, 81–99. [Google Scholar] [CrossRef]
- Incrocci, L. (University of Pisa, Pisa, Italy). Personal communication, 2020.
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Lemaire, G.; Gastal, F. N uptake and distribution in plant canopies. In Diagnosis of Nitrogen Status in Crops; Lemaire, G., Ed.; Springer: Berlin, Germany, 1997; pp. 3–41. [Google Scholar]
- Greenwood, D.J.; Lemaire, G.; Gosse, G.; Cruz, P.; Draycott, A.; Neeteson, J.J. Decline in Percentage N of C3 and C4 Crops with Increasing Plant Mass. Ann. Bot. 1990, 66, 425–436. [Google Scholar] [CrossRef]
- de Souza, R.; Peña-Fleitas, M.T.; Thompson, R.B.; Gallardo, M.; Grasso, R.; Padilla, F.M. The Use of Chlorophyll Meters to Assess Crop N Status and Derivation of Sufficiency Values for Sweet Pepper. Sensors 2019, 19, 2949. [Google Scholar] [CrossRef] [PubMed]
- Padilla, F.M.; de Souza, R.; Peña-Fleitas, M.T.; Gallardo, M.; Giménez, C.; Thompson, R.B. Different responses of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Front. Plant Sci. 2018, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Determination of sufficiency values of canopy reflectance vegetation indices for maximum growth and yield of cucumber. Eur. J. Agron. 2017, 84, 1–15. [Google Scholar] [CrossRef]
- Gázquez, J.C.; Pérez, C.; Meca, D.E.; Segura, M.D.; Domene, M.A.; De La Cruz, E.; López, J.C.; Buendía, D. Comparative study of tomato production strategies for long-cycle crop in enarenado and for inter-planting in different substrates systems in the Mediterranean area. Acta Hortic. 2017, 1170, 773–776. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. Eur. J. Agron. 2014, 58, 39–52. [Google Scholar] [CrossRef]
- Rodríguez, A.; Peña-Fleitas, M.T.; Gallardo, M.; de Souza, R.; Padilla, F.M.; Thompson, R.B. Sweet pepper and nitrogen supply in greenhouse production: Critical nitrogen curve, agronomic responses and risk of nitrogen loss. Eur. J. Agron. 2020, 117, 126046. [Google Scholar] [CrossRef]
- Gallardo, M.; Thompson, R.B.; López-Toral, J.R.; Fernández, M.D.; Granados, R. Effect of Applied N Concentration in a Fertigated Vegetable Crop on Soil Solution Nitrate and Nitrate Leaching Loss. Acta Hortic. 2006, 700, 221–224. [Google Scholar] [CrossRef]
- Hartz, T.K.; Hochmuth, G.J. Fertility Management of Drip-Irrigated Vegetables; UC Davis, Vegetable Research and Information Center: Davis, CA, USA, 1991. [Google Scholar]
- Burt, C.; O’Connor, K.; Ruehr, T. Fertigation; Irrigation Training and Research Center, California Polytechnic State University: San Luis Obisbo, CA, USA, 1995. [Google Scholar]
- Magán, J.J.; Gallardo, M.; Fernández, M.D.; García, M.L.; Granados, M.R.; Padilla, F.M.; Thompson, R.B. Showcasing a fertigation management strategy for increasing water and nitrogen use efficiency in soil-grown vegetable crops in the FERTINNOWA project. Acta Hortic. 2019, 1253, 17–24. [Google Scholar] [CrossRef]
- Hartz, T.K. The assessment of soil and crop nutrient status in the development of efficient fertilizer recommendations. Acta Hortic. 2003, 627, 231–240. [Google Scholar] [CrossRef]
Crop Year | Date of Transplanting | Date End of the Crop (Duration) | N Treatment a | Mineral N Applied (kg N ha−1) b | Irrigation Amount (mm) c | [N] in Nutrient Solution (mmol L−1) b | DMP (t ha−1) | TY (t ha−1) |
---|---|---|---|---|---|---|---|---|
2014 | 12 August 2014 | 29 January 2015 | N1 | 64 | 190 | 2.4 | 5.7 | 38.7 |
(170 days) | N2 | 189 | 216 | 6.2 | 7.9 | 52.2 | ||
N3 | 516 | 294 | 12.6 | 8.6 | 52.9 | |||
N4 | 804 | 357 | 16.1 | 9.7 | 51.1 | |||
N5 | 990 | 354 | 20.0 | 9.3 | 46.4 | |||
2016 | 19 July 2016 | 24 March 2017 | N1 | 88 | 319 | 2.0 | 8.8 | 67.2 |
(248 days) | N2 | 302 | 404 | 5.3 | 12.6 | 86.4 | ||
N3 | 561 | 414 | 9.7 | 15.2 | 91.5 | |||
N4 | 1052 | 557 | 13.5 | 14.4 | 94.2 | |||
N5 | 1320 | 532 | 17.7 | 13.6 | 89.7 | |||
2017 | 21 July 2017 | 20 February 2018 | N1 | 86 | 304 | 2.0 | 5.1 | 33.3 |
(214 days) | N2 | 304 | 383 | 5.7 | 9.3 | 54.4 | ||
N3 | 519 | 383 | 9.7 | 10.5 | 61.0 | |||
N4 | 870 | 475 | 13.1 | 12.6 | 65.1 | |||
N5 | 1198 | 513 | 16.7 | 12.6 | 68.9 |
Data | Segmented Equation | Value [NO3−] (mmol L−1) | Maximum NNI Value | R2 | SE | |
---|---|---|---|---|---|---|
Pepper crop | ||||||
2014 | y = 0.1408x + 0.6602 | 2.8 | 1.05 | 0.81 | 0.09 | 93 |
2016 | y = 0.0302x + 0.7999 | 8.4 | 1.05 | 0.66 | 0.10 | 130 |
2017 | y = 0.1915x + 0.5868 | 2.3 | 1.03 | 0.81 | 0.09 | 80 |
Combined crops | y = 0.1116x + 0.7029 | 3.1 | 1.05 | 0.70 | 0.10 | 303 |
Phenological stage | ||||||
Vegetative | y = 0.1412x + 0.6264 | 2.9 | 1.04 | 0.72 | 0.10 | 45 |
Flowering and early fruit growth | y = 0.1723x + 0.6804 | 2.3 | 1.08 | 0.76 | 0.09 | 95 |
Harvest | y = 0.1034x + 0.7229 | 3.0 | 1.03 | 0.68 | 0.09 | 163 |
Data | Segmented Equation | Value [NO3−] (mmol L−1) | Maximum NNI Value | R2 | SE | |
---|---|---|---|---|---|---|
Pepper crop | ||||||
2016 | y = 0.2056x + 0.7471 | 1.55 | 1.07 | 0.64 | 0.09 | 40 |
2017 | y = 1.0310x + 0.5278 | 0.49 | 1.03 | 0.83 | 0.09 | 35 |
Combined crops | y = 0.4132x + 0.6588 | 0.93 | 1.04 | 0.68 | 0.10 | 75 |
Phenological stage | ||||||
Vegetative | y = 0.7659x + 0.4835 | 0.60 | 0.94 | 0.42 | 0.12 | 10 |
Flowering and early fruit growth | y = 0.6619x + 0.6005 | 0.67 | 1.04 | 0.74 | 0.10 | 20 |
Harvest | y = 0.2452x + 0.7079 | 1.42 | 1.06 | 0.68 | 0.10 | 45 |
Crop Year | Entire Crop | R2 | ±SE | Crop after 70 DAT | R2 | ±SE | ||
---|---|---|---|---|---|---|---|---|
2014 | y = 1.6565x − 6.3849 | 0.71 | 6.2 | 93 | y = 1.9555x − 6.6405 | 0.86 | 4.8 | 48 |
2016 | y = 1.6959x − 1.5405 | 0.56 | 8.0 | 130 | y = 1.8308x − 1.5868 | 0.61 | 7.6 | 110 |
2017 | y = 2.2113x − 7.2355 | 0.77 | 6.8 | 80 | y = 2.4963x − 8.3451 | 0.85 | 5.7 | 60 |
Combined crops | y = 1.7146x − 3.6156 | 0.62 | 7.6 | 303 | y = 1.9800x − 3.8567 | 0.72 | 6.9 | 218 |
Crop Year | Entire Crop | R2 | ±SE | Crop after 70 DAT | R2 | ±SE | ||
---|---|---|---|---|---|---|---|---|
2016 | y = 0.1591x − 0.0773 | 0.66 | 0.5 | 40 | y = 0.1899x − 0.1338 | 0.82 | 0.4 | 30 |
2017 | y = 0.2226x − 0.7094 | 0.82 | 0.6 | 35 | y = 0.2576x − 1.0090 | 0.87 | 0.5 | 25 |
Combined crops | y = 0.1923x − 0.3819 | 0.74 | 0.6 | 75 | y = 0.2185x − 0.4792 | 0.82 | 0.5 | 55 |
Crop Year | Entire Crop | R2 | ±SE | |
---|---|---|---|---|
2016 | y = 0.0705x + 0.3621 | 0.84 | 0.4 | 40 |
2017 | y = 0.0917x + 0.1337 | 0.93 | 0.3 | 35 |
Combined crops | y = 0.0824x + 0.2408 | 0.89 | 0.4 | 75 |
[NO3−] Extract Method | Coefficient of Variation (CV) | |
---|---|---|
Average (%) | Range (%) | |
Soil solution | ||
2014 crop | 11.4 | 1.6–49.3 |
2016 crop | 13.7 | 0.2–65.2 |
2017 crop | 18.0 | 0.1–51.4 |
1:2 soil to water (v/v) | ||
2016 crop | 17.0 | 2.7–49.1 |
2017 crop | 11.0 | 2.1–33.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, A.; Peña-Fleitas, M.T.; Padilla, F.M.; Gallardo, M.; Thompson, R.B. Soil Monitoring Methods to Assess Immediately Available Soil N for Fertigated Sweet Pepper. Agronomy 2020, 10, 2000. https://doi.org/10.3390/agronomy10122000
Rodríguez A, Peña-Fleitas MT, Padilla FM, Gallardo M, Thompson RB. Soil Monitoring Methods to Assess Immediately Available Soil N for Fertigated Sweet Pepper. Agronomy. 2020; 10(12):2000. https://doi.org/10.3390/agronomy10122000
Chicago/Turabian StyleRodríguez, Alejandra, M. Teresa Peña-Fleitas, Francisco M. Padilla, Marisa Gallardo, and Rodney B. Thompson. 2020. "Soil Monitoring Methods to Assess Immediately Available Soil N for Fertigated Sweet Pepper" Agronomy 10, no. 12: 2000. https://doi.org/10.3390/agronomy10122000
APA StyleRodríguez, A., Peña-Fleitas, M. T., Padilla, F. M., Gallardo, M., & Thompson, R. B. (2020). Soil Monitoring Methods to Assess Immediately Available Soil N for Fertigated Sweet Pepper. Agronomy, 10(12), 2000. https://doi.org/10.3390/agronomy10122000