Crop and Residue Management Improves Productivity and Profitability of Rice–Maize System in Salt-Affected Rainfed Lowlands of East India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study and Soil Characteristics
2.2. Experimental Design and Treatments
2.3. Observations
2.3.1. Crop Growth, Yield Attributes, and Yield
2.3.2. Weed Biomass (g m−2)
2.3.3. Normalized Difference Vegetation Index (NDVI) and Photosynthesis Rate
2.3.4. Soil Salinity, Moisture Content, Bulk Density, Organic Carbon, and N Status
2.3.5. Soil Enzymes
2.3.6. Irrigation Scheduling and Water Productivity (kg m−3)
2.4. Economics of Different Treatments
2.5. Statistical Analysis
3. Results
3.1. Performance of Rice in the Wet Season
3.2. Soil Salinity and Soil Moisture during the Wet Season
3.3. Economics of the Wet Season Rice Crop
3.4. Performance of Maize Crop during the Dry Season
3.5. Soil Salinity during the Dry Season
3.6. Effects on Irrigation Water Requirement and Weed Biomass in Maize during the Dry Season
3.7. Soil Enzymes and Microbial Biomass Carbon in Maize as Affected by Crop Establishment, Residue Management Strategies, and N Levels during the Dry Season
3.8. Effect of Crop Establishment, Residue Management, and N on Soil Bulk Density, Organic Carbon, and Available N during Maize Dry Season
3.9. Economics of the Maize Crop Grown during the Dry Season with Different Management Options
3.10. Economics of the Rice–Maize Cropping System in the Coastal Rainfed Environment
4. Discussion
4.1. Crop Establishment Practices for Rice during the Wet Season
4.2. Crop Residue Management in Rice–Maize Cropping System Affects Yield, Soil Salinity, and Soil Physical Properties
4.3. Nitrogen Requirements for Hybrid Maize in the Dry Season
4.4. Irrigation Requirement of Maize during the Dry Season
4.5. Economics of the Rice–Maize Cropping System in Coastal Rainfed Areas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
BCR | benefit/cost ratio |
BD | bulk density |
C:N ratio | carbon:nitrogen ratio |
CR | crop residues |
CSSRI | Central Soil Salinity Research Institute |
CV | coefficient of variation |
DAS | days after sowing |
DHA | dehydrogenase |
DSR | direct-seeded rice |
dS | deci Siemens |
ECe | electrical conductivity of the saturation extract |
FYM | farmyard manure |
GHG | greenhouse gas |
GR | gross return |
ha | hectare |
ICAR | Indian Council of Agricultural Research |
INR | Indian rupees |
IRRI | International Rice Research Institute |
IW | irrigation water |
IWp | irrigation water productivity |
kPa | kilopascal |
LSD | least significant difference |
MBC | microbial biomass carbon |
M | meter |
MG | megagrams |
MGNREGA | The Mahatma Gandhi National Rural Employment Guarantee Act 2005 |
MT | million tones |
N | nitrogen |
NDVI | normalized difference vegetation index |
NI | net income |
NS | not significant |
NUE | nitrogen use efficiency |
OC | organic carbon |
P | phosphorus |
Pn | net photosynthesis rate |
p-NP | para-nitrophenol |
PTR | puddled transplanted rice |
RBS | raised bed sowing |
RRS | Regional Research Station |
SES | standard evaluation score |
SOC | soil organic carbon |
STAR | Statistical Tool for Agricultural Research |
TPF | triphenyl formazan |
µg | microgram |
References
- Patra, B.C.; Ray, S.; Nagangham, U.; Mohapatra, T. Rice. In Genetic and Genomic Resources for Grain Cereals Improvement; Singh, M., Upadhyaya, H.D., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–80. [Google Scholar]
- Singleton, G. Impacts of Rodents on Rice Production in Asia; IRRI Discussion Paper 45; International Rice Research Institute: Manila, Philippines, 2003; pp. 1–30. Available online: http://books.irri.org/971220183X_content.pdf (accessed on 7 October 2020).
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice-wheat rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Srinivasarao, C.; Kundu, S.; Lakshmi, C.S.; Rani, Y.S.; Nataraj, K.C.; Gangaiah, B.; Laxmi, M.J.; Babu, M.V.S.; Rani, U.; Nagalakshmi, S.; et al. Soil health issues for sustainability of South Asian agriculture. EC Agric. 2019, 5, 310–326. [Google Scholar]
- Serraj, R.; McNally, K.L.; Slamet-Loedin, I.; Kohli, A.; Haefele, S.M.; Atlin, G.; Kumar, A. Drought resistance improvement in rice: An integrated genetic and resource management strategy. Plant Prod. Sci. 2011, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sarangi, S.K.; Singh, S.; Kumar, V.; Srivastava, A.K.; Sharma, P.C.; Johnson, D.E. Tillage and crop establishment options for enhancing the productivity, profitability, and resource use efficiency of rice-rabi systems of the salt-affected coastal lowlands of eastern India. Field Crops Res. 2020, 247, 107494. [Google Scholar] [CrossRef]
- Available online: https://economictimes.indiatimes.com/news/economy/agriculture/west-bengal-govt-to-raise-cultivation-of-maize-by-33/articleshow/71971381.cms (accessed on 7 October 2020).
- Maas, E.V. Salt tolerance of plants. Appl. Agril. Res. 1986, 1, 12–26. [Google Scholar]
- Gao, Y.; Lu, Y.; Wu, M.; Liang, E.; Li, Y.; Zhang, D.; Yin, Z.; Ren, X.; Dai, Y.; Deng, D.; et al. Ability to remove Na+ and retain K+ correlates with salt tolerance in two maize inbred lines seedlings. Front. Plant Sci. 2016, 7, 1716. [Google Scholar] [CrossRef] [Green Version]
- Hema, K.; Lakshmi, G.V.; Latha, M.; Sambaiah, A.; Meena, R.L. Screening of maize (Zea mays L.) hybrids for salt tolerance under drip irrigation in Krishna zone of Andhra Pradesh. J. Soil Sal. Water Qual. 2016, 8, 45–50. [Google Scholar]
- Raghu, P.T.; Erenstein, O.; Bober, C.; Krishna, V.V. Adoption and outcomes of hybrid maize in the marginal areas of India. Q. J. Int. Agric. 2015, 54, 189–214. [Google Scholar]
- Dey, P.; Sekhon, B.S. Nitrogen fertility status of the Indian soils vis-à-vis the world soils. Indian J. Fert. 2016, 12, 36–43. [Google Scholar]
- Rao, P.L.; Jayasree, G.; Pratibha, G.; Prakash, T.R. Impact of soil amendments on greenhouse gas emissions in maize (Zea mays L.). Int. J. Chem. Stud. 2017, 5, 1–6. [Google Scholar]
- Hoben, J.P.; Gehl, R.J.; Millar, N.; Grace, P.R.; Robertson, G.P. On-farm nitrous oxide response to nitrogen fertilizer in corn cropping system. Glob. Chang. Biol. 2010. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Burman, D.; Mandal, S.; Maji, B.; Tuong, T.P.; Humphreys, E.; Bandyopadhyay, B.K.; Sharma, D.K. Reducing irrigation water requirement of dry season rice (boro) in coastal areas using timely seeding and short duration varieties. In Proceedings of the International Conference on Revitalizing the Ganges Costal Zone: Turning Science into Policy and Practices, Dhaka, Bangladesh, 21–23 October 2014; Humphreys, E., Tuong, T.P., Buisson, M.C., Pukinskis, I., Phillips, M., Eds.; CGIAR Challenge Program on Water and Food (CPWF): Colombo, Sri Lanka, 2015; pp. 68–79. [Google Scholar]
- Pathak, H.; Pramanik, P.; Khanna, M.; Kumar, A. Climate change and water availability in Indian Agriculture: Impacts and adaptation. Indian J. Agric. Sci. 2014, 84, 671–679. [Google Scholar]
- Zwart, S.J.; Bastiaanssen, W.G.M. Review of measured crop water productivity values of irrigated wheat, rice, cotton and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Erenstein, O. The evolving maize sector in Asia: Challenges and opportunities. J. New Seeds. 2010, 11, 1–15. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. Stable high yields with zero tillage and permanent bed planting? Field Crops Res. 2005, 94, 33–42. [Google Scholar] [CrossRef]
- Yu, Y.; Mainuddin, M.; Maniruzzaman, M.; Mandal, U.K.; Sarangi, S.K. Rainfall and temperature characteristics in the coastal zones of Bangladesh and West Bengal, India. J. Indian Soc. Coastal Agric. Res. 2019, 37, 12–23. [Google Scholar]
- International Rice Research Institute (IRRI). Standard Evaluation System for Rice (SES). 2002, p. 38. Available online: http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf (accessed on 7 October 2020).
- Gee, G.W.; Bauder, J.W. Particle size analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd ed.; Agronomy Monograph, 9, Klute, A., Eds.; ASA and SSSA: Madison, WI, USA, 1986; pp. 404–408. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd ed.; Agronomy Monograph 9; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 364–367. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; p. 183. [Google Scholar]
- Subbaiah, B.V.; Asija, G.I. A rapid procedure for determination of available nitrogen in soils. Curr. Sci. 1973, 28, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.W.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soil by Extracting with NaHCO3; U.S.D.A. Circular: Washington, DC, USA, 1954; p. 939.
- Rhoades, J.D.; Chanduvi, F.; Lesch, S. Soil Salinity Assessment—Methods and Interpretation of Electrical Conductivity Measurements; FAO Irrigation and Drainage Paper 57; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999; pp. 5–14. [Google Scholar]
- Casida, L.E., Jr.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; SSSA Special Publication, 49; Soil Science Society of America: Madison, WI, USA, 1996; pp. 247–272. [Google Scholar]
- Vance, F.; Brookes, P.; Jenkinson, D. Microbial biomass measurements in forest soil: The use of the chloroform fumigation incubation method in strongly acid soils. Soil Biol. Biochem. 1987, 19, 697–702. [Google Scholar] [CrossRef]
- Douglas, L.A.; Bremner, J.M. Extraction and colorimetric determination of urea in soils. Soil Sci. Soc. Am. J. 1970, 34, 859–862. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Ramos, M.M.; Acquino, L.A. Irrigation management. In Sugarcane: Agricultural Production, Bioenergy and Ethanol; Santos, F., Borem, A., Caldas, C., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2015; pp. 161–183. [Google Scholar] [CrossRef]
- Stirzaker, R.J. A Traffic Light Soil Water Sensor for Resource Poor Farmers: Proof of Concept. 2014. Available online: https://aifsc.aciar.gov.au/projects/traffic-light-soil-water-sensor-resource-poor-farmers.html (accessed on 7 October 2020).
- Panse, V.G.; Sukhatme, P.V. Statistical Methods for Agricultural Workers; ICAR: New Delhi, India, 1978; pp. 145–156. [Google Scholar]
- Available online: http://bbi.irri.org/products (accessed on 3 July 2019).
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1984; pp. 304–306. [Google Scholar]
- Bhatt, R.; Kukal, S.S.; Busari, M.A.; Arora, S.; Yadav, M. Sustainability issues on rice-wheat cropping system. Int. Soil Water Conserv. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.M.; Johnson, D.E.; Ella, E.S.; Vergara, G.V.; Baltazar, A.M. Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB Plants 2012, 2012, pls019. [Google Scholar] [CrossRef]
- Ismail, A.M.; Ella, E.S.; Vergara, G.V.; Mackill, D.J. Mechanisms associated with tolerance of flooding during germination and early seedling growth in rice (Oryza sativa). Ann. Bot. 2009, 103, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandan, R.; Singh, V.; Singh, S.S.; Kumar, V.; Hazra, K.K.; Nath, C.P.; Poonia, S.P.; Malik, R.K.; Singh, S.K.; Singh, P.K. Comparative assessment of different tillage-cum-crop establishment practices and crop-residue management on crop and water productivity and profitability of rice (Oryza sativa)—Wheat (Triticum aestivum) cropping system. Indian J. Agron. 2018, 63, 1–7. [Google Scholar]
- Sarangi, S.K.; Maji, B.; Sharma, P.C.; Digar, S.; Mahanta, K.K.; Burman, D.; Mandal, U.K.; Mandal, S.; Mainuddin, M. Potato (Solanum tuberosum L.) cultivation by zero tillage and paddy straw mulching in the saline soils of the Ganges Delta. Pot. Res. 2020. [Google Scholar] [CrossRef]
- Carvalho, K.S.; Vianna, M.S.; Nassif, D.S.P.; Costa, L.G.; Folegatti, M.V.; Marin, F.R. Effects of soil straw cover on evaporation, transpiration, and evapotranspiration in sugarcane cultivation. Aust. J. Crop Sci. 2019, 13, 1362–1368. [Google Scholar] [CrossRef]
- Molazem, D.; Azimi, J. Morpho-physiological characterization in eight varieties of maize (Zea mays L.) under soil salinity. Pol. J. Environ. Stud. 2015, 24, 2537–2542. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Su, Y. Effects of soils and irrigation volume on maize yield, irrigation water productivity, and nitrogen uptake. Sci. Rep. 2019, 9, 7740. [Google Scholar] [CrossRef]
- Xia, L.; Xia, Y.; Li, B.; Wang, J.; Wang, S.; Zhou, W.; Yan, X. Integrating agronomic practices to reduce greenhouse gas emissions while increasing the economic return in a rice-based cropping system. Agric. Ecosyst. Environ. 2016, 231, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, J.; Chaudhary, A.; Pokhrel, D. Application of nitrogen fertilizer in maize in Southern Asia: A review. Peruv. J. Agron. 2018, 2, 22–26. [Google Scholar] [CrossRef]
- Bak, K.; Gaj, R.; Budka, A. Accumulation of nitrogen, phosphorus and potassium in mature maize under variable rates of mineral fertilization. Fragm. Agron. 2016, 33, 7–19. [Google Scholar]
- Timsina, J.; Jat, M.L.; Majumdar, K. Nutrient management research priorities in rice-maize systems of South Asia. Better Crop. 2010, 4, 4–6. [Google Scholar]
- Popin, G.V.; Santos, A.K.B.; Ferrao, E.; Lourenco, D.A.; Neto, M.S. Effect of organic N-sources on maize yield components. Aust. J. Crop. Sci. 2019, 13, 1215–1222. [Google Scholar] [CrossRef]
- Ahmad, S.; Khan, A.A.; Kamran, M.; Ahmad, I.; Ali, S.; Fahad, S. Response of maize cultivars to various nitrogen levels. Eur. J. Exp. Biol. 2018, 8, 1–4. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms and management—A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Chandrashekar, C.P. Precision nutrient management in maize (Zea mays L.) under northern transition zone of Karnataka. J. Farm. Sci. 2017, 30, 343–348. [Google Scholar]
- Singh, Y.; Sidhu, H.S. Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic plains of India. Proc. Indian Natl. Sci. Acad. 2014, 80, 95–114. [Google Scholar] [CrossRef]
- Ngosong, C.; Bongkisheri, V.; Tanyi, C.B.; Nanganoa, L.T.; Tening, A.S. Optimizing nitrogen fertilization regimes for sustainable maize (Zea mays L.) production on the volcanic soils of Buea Cameroon. Adv. Agric. 2019, 2019, 4681825. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, M.; Witzel, K.; Zorb, C.; Muhling, K.H. Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress. J. Agron. Crop Sci. 2012, 198, 46–56. [Google Scholar] [CrossRef]
- Choudhary, M.; Jat, H.S.; Datta, A.; Yadav, A.K.; Sapkota, T.B.; Mondal, S.; Meena, R.P.; Sharma, P.C.; Jat, M.L. Sustainable intensification influences soil quality, biota and productivity in cereal-based agroecosystems. Appl. Soil Ecol. 2018, 126, 189–198. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Yadav, A.K.; Choudhary, V.; Gathala, M.K.; Jat, M.L.; McDonald, A. Climate smart agriculture practice improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of North-West India. Catena 2019, 181, 104059. [Google Scholar] [CrossRef]
- Jat, H.S.; Choudhary, M.; Datta, A.; Yadav, A.K.; Meena, M.D.; Devi, R.; Gathala, M.K.; Jat, M.L.; McDonald, A.; Sharma, P.C. Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil Till. Res. 2020, 199, 104595. [Google Scholar] [CrossRef] [PubMed]
- Djaman, K.; O’Neill, M.; Owen, C.K.; Smeal, D.; Koudahe, K.; West, M.; Allen, S.; Lombard, K.; Irmak, S. Crop evapotranspiration, irrigation water requirement and water productivity of maize from meteorological data under semiarid climate. Water 2018, 10, 405. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.N.; Praharaj, C.S.; Kumar, R.; Singh, S.S.; Kumar, N.; Singh, U. Strengthening soil health under rice (Oryza sativa) fallows in Eastern Plateau of India with dwarf rice and moisture conservation practices. Indian J. Agric. Sci. 2018, 88, 61–70. [Google Scholar]
- Ismail, A.M.; Horie, M. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Ann. Rev. Plant Biol. 2017, 68, 405–434. [Google Scholar] [CrossRef] [Green Version]
- Abouziena, H.F.; El-Saeid, H.M.; Amin, A.A.E. Water loss by weeds: A review. Int. J. Chem. Tech. Res. 2014, 7, 323–336. [Google Scholar]
- Rudnick, D.; Irmak, S. Impact of water and nitrogen management strategies on maize yield and water productivity indices under linear-move sprinkler irrigation. Trans. ASABE 2013, 56, 1769–1783. [Google Scholar] [CrossRef] [Green Version]
- Jat, R.K.; Sapkota, T.B.; Singh, R.G.; Jat, M.L.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice-wheat rotation of Eastern Gangetic plains of South Asia: Yield trends and economic profitability. Field Crops Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
- Panwar, A.S.; Shamim, M.; Babu, S.; Ravishankar, N.; Prusty, A.S.; Alam, N.M.; Singh, D.K.; Bindhu, J.S.; Kaur, J.; Dashora, L.N.; et al. Enhancement in productivity, nutrients use efficiency, and economics of rice-wheat cropping systems in India through farmer’s participatory approach. Sustainability 2019, 11, 122. [Google Scholar] [CrossRef] [Green Version]
Treatment | Abbreviation | Rice * (Wet-Season) | Maize # (Dry-Season) |
---|---|---|---|
1 | DSR − R followed by (RBS − R) ψ | Direct-seeding of rice (DSR) sown after complete removal of previous maize crop residue | Raised bed sowing (RBS) without mulch |
2 | DSR + R followed by (RBS + R) | DSR with the incorporation of 40% residue of preceding maize crop | RBS with mulching using 40% straw residue of preceding rice |
3 | PTR − R followed by (RBS − R) | Puddled transplanting (PTR) with complete removal of previous maize crop residue | RBS without mulch |
4 | PTR + R followed by (RBS + R) | PTR with the incorporation of 40% residue of preceding maize crop | RBS with mulching using 40% straw residue of preceding rice |
Treatment | N Total (kg ha−1) | Basal (kg ha−1) | Four Leaf Stage (kg ha−1) | Eight Leaf Stage (kg ha−1) | Tasseling (kg ha−1) | Grain Filling (kg ha−1) |
---|---|---|---|---|---|---|
N0 | 0 | 0 | 0 | 0 | 0 | 0 |
N1 | 80 | 16 | 20 | 24 | 16 | 4 |
N2 | 120 | 24 | 30 | 36 | 24 | 6 |
N3 | 160 | 32 | 40 | 48 | 32 | 8 |
Treatment | 2016 | 2017 | 2018 | |||
---|---|---|---|---|---|---|
Grain Yield (t ha−1) | Straw Yield (t ha−1) | Grain Yield (t ha−1) | Straw Yield (t ha−1) | Grain Yield (t ha−1) | Straw Yield (t ha−1) | |
Crop establishment method and residue management (TR) during the wet season | ||||||
DSR * − R | 3.25 | 6.67 | 3.45 | 6.46 | 6.26 | 8.61 |
DSR + R | 3.71 | 7.32 | 3.98 | 7.16 | 7.33 | 9.72 |
PTR − R | 3.61 | 6.10 | 3.47 | 5.90 | 5.04 | 8.25 |
PTR + R | 3.91 | 5.98 | 3.94 | 6.76 | 5.88 | 8.45 |
LSD0.05 | ns # | ns | 0.39 | 0.57 | 0.82 | 0.40 |
Nitrogen doses in maize (N) during the dry season | ||||||
N0 $ | 3.63 | 6.51 | 3.68 | 6.56 | 5.21 | 8.84 |
N1 | 3.65 | 6.51 | 3.71 | 6.56 | 5.98 | 8.95 |
N2 | 3.64 | 6.52 | 3.71 | 6.57 | 6.51 | 8.38 |
N3 | 3.65 | 6.52 | 3.74 | 6.57 | 6.81 | 8.86 |
LSD0.05 | ns | ns | ns | ns | 0.50 | ns |
TR × N | ns | ns | ns | ns | ns | ns |
Treatment | Soil Moisture (%) | Soil Bulk Density (g cm−3) | ||
---|---|---|---|---|
0–15 cm Depth | 15–30 cm Depth | 0–15 cm Depth | 15–30 cm Depth | |
Crop establishment method and residue management (TR) during the wet season | ||||
DSR * − R | 32.32 | 29.36 | 1.31 | 1.45 |
DSR + R | 33.95 | 30.81 | 1.30 | 1.43 |
PTR − R | 35.67 | 26.58 | 1.38 | 1.51 |
PTR + R | 35.99 | 28.55 | 1.31 | 1.45 |
LSD0.05 | 2.40 | 2.50 | 0.03 | 0.05 |
Nitrogen doses in maize (N) | ||||
N0 $ | 35.37 | 28.50 | 1.33 | 1.48 |
N1 | 35.30 | 28.74 | 1.30 | 1.48 |
N2 | 35.01 | 29.02 | 1.31 | 1.45 |
N3 | 32.25 | 29.05 | 1.37 | 1.44 |
LSD0.05 | 1.33 | ns # | 0.03 | ns |
Treatment | 2016 | 2017 | 2018 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cost of Production | Net Income | BCR ψ | Cost of Production | Net Income | BCR | Cost of Production | Net Income | BCR | |
Crop establishment method and residue management (TR) during the wet season | |||||||||
DSR * − R | 461.4 | 216.5 | 1.47 | 484.0 | 172.6 | 1.36 | 602.6 | 575.6 | 1.96 |
DSR + R | 453.1 | 302.9 | 1.67 | 470.9 | 272.9 | 1.58 | 634.3 | 733.6 | 2.16 |
PTR − R | 550.1 | 197.5 | 1.36 | 578.0 | 80.3 | 1.14 | 710.4 | 243.5 | 1.34 |
PTR + R | 524.7 | 201.2 | 1.38 | 546.9 | 189.0 | 1.35 | 719.6 | 378.3 | 1.52 |
LSD0.05 | 1.5 | ns # | ns | 1.0 | 71.4 | 0.14 | 5.0 | 149.3 | 0.24 |
Nitrogen doses in maize (N) during the dry season | |||||||||
N0 $ | 497.3 | 229.6 | 1.47 | 519.9 | 172.5 | 1.34 | 666.8 | 314.2 | 1.49 |
N1 | 497.4 | 230.2 | 1.47 | 519.9 | 178.7 | 1.36 | 664.8 | 458.5 | 1.72 |
N2 | 497.3 | 229.6 | 1.47 | 520.0 | 179.3 | 1.36 | 667.6 | 550.5 | 1.85 |
N3 | 497.3 | 228.6 | 1.47 | 520.0 | 184.3 | 1.37 | 667.7 | 607.6 | 1.93 |
LSD0.05 | ns | ns | ns | ns | ns | ns | ns | 90.1 | 0.14 |
TR × N | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | 2016–2017 | 2017–2018 | 2018–2019 | |||
---|---|---|---|---|---|---|
Kernel Yield (t ha−1) | Stover Yield (t ha−1) | Kernel Yield (t ha−1) | Stover Yield (t ha−1) | Kernel Yield (t ha−1) | Stover Yield (t ha−1) | |
Crop establishment method and residue management (TR) during the wet season | ||||||
RBS ψ − R (DSR ∆ − R) | 3.06 | 5.01 | 5.04 | 8.11 | 4.48 | 7.95 |
RBS + R (DSR + R) | 3.71 | 6.54 | 5.98 | 9.52 | 5.07 | 8.95 |
RBS − R (PTR – R) | 3.06 | 3.81 | 4.68 | 7.88 | 3.59 | 6.85 |
RBS + R (PTR + R) | 3.52 | 5.93 | 5.87 | 8.27 | 4.36 | 7.88 |
LSD0.05 | 0.41 | 1.04 | 0.37 | 0.89 | 0.49 | 1.32 |
Nitrogen doses in maize (N) during the dry season | ||||||
N0 $ | 1.93 | 2.96 | 3.44 | 7.22 | 2.53 | 5.61 |
N1 | 3.41 | 5.42 | 5.53 | 8.19 | 4.15 | 7.80 |
N2 | 3.93 | 6.21 | 6.18 | 9.01 | 5.17 | 9.01 |
N3 | 4.07 | 6.70 | 6.41 | 9.36 | 5.66 | 9.21 |
LSD0.05 | 0.37 | 0.71 | 0.19 | 0.39 | 0.53 | 0.50 |
TR × N | ns # | ns | ** | * | ** | ** |
Treatment (TR) | N0 $ | N1 | N2 | N3 | Mean | Comparson | LSD0.05 |
---|---|---|---|---|---|---|---|
2017–2018 | |||||||
RBS ψ − R (DSR * − R) | 3.07 | 4.45 | 6.03 | 6.61 | 5.04 | TR means | 0.37 |
RBS + R (DSR + R) | 4.17 | 6.44 | 6.73 | 6.58 | 5.98 | N means | 0.19 |
RBS − R (PTR − R) | 2.61 | 4.98 | 5.33 | 5.79 | 4.68 | (TR × N) * | 0.37 |
RBS + R (PTR + R) | 3.90 | 6.27 | 6.64 | 6.65 | 5.87 | (TR × N) ** | 0.41 |
Mean | 3.44 | 5.53 | 6.18 | 6.41 | |||
2018–2019 | |||||||
RBS − R (DSR − R) | 3.06 | 4.58 | 4.79 | 5.50 | 4.48 | TR means | 0.49 |
RBS + R (DSR + R) | 3.28 | 5.22 | 5.81 | 5.97 | 5.07 | N means | 0.53 |
RBS − R (PTR − R) | 1.69 | 3.53 | 3.76 | 5.39 | 3.59 | (TR × N) * | 1.06 |
RBS + R (PTR + R) | 2.08 | 3.26 | 6.33 | 5.77 | 4.36 | (TR × N) ** | 0.87 |
Mean | 2.53 | 4.15 | 5.17 | 5.66 |
Treatment | Irrigation Water Requirement (cm) | |||
---|---|---|---|---|
2016–2017 | 2017–2018 | 2018–2019 | Mean | |
Crop establishment method and residue management (TR) during the preceding wet season rice | ||||
RBS ψ − R (DSR * − R) | 54.98 | 40.55 | 37.06 | 44.20 |
RBS + R (DSR + R) | 39.00 | 29.47 | 26.12 | 31.53 |
RBS − R (PTR − R) | 60.00 | 48.79 | 44.10 | 50.96 |
RBS + R (PTR + R) | 49.47 | 38.32 | 34.42 | 40.74 |
LSD0.05 | 1.68 | 2.05 | 1.24 | 1.59 |
Nitrogen doses in maize (N) during the dry season | ||||
N0 $ | 51.61 | 40.09 | 36.02 | 42.57 |
N1 | 50.51 | 39.11 | 35.08 | 41.57 |
N2 | 50.54 | 38.88 | 35.33 | 41.58 |
N3 | 50.78 | 39.05 | 35.27 | 41.70 |
LSD0.05 | ns # | ns | ns | 0.68 |
TR × N | ns | ns | ns | ns |
Treatment (TR) | N0 $ | N1 | N2 | N3 | Mean | Comparison | LSD0.05 |
---|---|---|---|---|---|---|---|
2016–2017 | |||||||
RBS ψ − R (DSR @ − R) | 0.38 | 0.61 | 0.60 | 0.65 | 0.56 | TR means | 0.14 |
RBS + R (DSR + R) | 0.61 | 0.81 | 1.21 | 1.22 | 0.96 | N means | 0.07 |
RBS − R (PTR − R) | 0.20 | 0.59 | 0.62 | 0.61 | 0.51 | (TR × N) * | 0.13 |
RBS + R (PTR + R) | 0.36 | 0.75 | 0.83 | 0.89 | 0.71 | (TR × N) ** | 0.15 |
Mean | 0.39 | 0.69 | 0.82 | 0.84 | 0.68 | ||
2017–2018 | |||||||
RBS − R (DSR − R) | 0.75 | 1.10 | 1.50 | 1.62 | 1.24 | TR means | 0.16 |
RBS + R (DSR + R) | 1.33 | 2.15 | 2.35 | 2.40 | 2.06 | N means | 0.09 |
RBS − R (PTR − R) | 0.53 | 1.03 | 1.10 | 1.18 | 0.96 | (TR × N) * | 0.18 |
RBS + R (PTR + R) | 1.01 | 1.66 | 1.75 | 1.73 | 1.53 | (TR × N) ** | 0.19 |
Mean | 0.90 | 1.48 | 1.67 | 1.73 | 1.45 | ||
2018–2019 | |||||||
RBS − R (DSR − R) | 0.81 | 1.24 | 1.30 | 1.40 | 1.19 | TR means | 0.15 |
RBS + R (DSR + R) | 1.20 | 2.02 | 2.27 | 2.33 | 1.96 | N means | 0.17 |
RBS − R (PTR − R) | 0.38 | 0.81 | 0.85 | 1.00 | 0.76 | (TR × N) * | 0.34 |
RBS + R (PTR + R) | 0.60 | 0.96 | 1.83 | 1.47 | 1.22 | (TR × N) ** | 0.27 |
Mean | 0.75 | 1.26 | 1.56 | 1.55 | 1.28 |
Treatment | BD (g cm−3) | OC (%) | Available N (kg ha−1) |
---|---|---|---|
Crop establishment method and residue management (TR) during the wet season | |||
RBS ψ − R (DSR ∆ − R) | 1.46 | 0.46 | 184.7 |
RBS + R (DSR + R) | 1.42 | 0.54 | 314.0 |
RBS − R (PTR − R) | 1.52 | 0.38 | 168.7 |
RBS + R (PTR + R) | 1.45 | 0.49 | 251.4 |
LSD0.05 | 0.05 | 0.03 | 24.75 |
Nitrogen treatments in maize (N) during the dry season | |||
N0 $ | 1.45 | 0.46 | 213.8 |
N1 | 1.47 | 0.46 | 225.8 |
N2 | 1.46 | 0.47 | 232.4 |
N3 | 1.47 | 0.48 | 246.7 |
LSD0.05 | ns # | ns | 10.17 |
TR × N | ns | ns | ** |
Treatment | 2016–2017 | 2017–2018 | 2018–2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cost of Production | Net Income | BCR ψ | Cost of Production | Net Income | BCR | Cost of Production | Net Income | BCR | |
Crop establishment method and residue management (TR) during the wet season | |||||||||
RBS @ − R (DSR ∆ − R) | 578.8 | 16.6 | 1.02 | 710.0 | 312.7 | 1.43 | 780.4 | 304.5 | 1.38 |
RBS + R (DSR + R) | 560.2 | 157.1 | 1.27 | 683.4 | 526.1 | 1.76 | 748.6 | 472.9 | 1.62 |
RBS − R (PTR − R) | 598.3 | –3.7 | 0.99 | 735.7 | 214.3 | 1.28 | 802.9 | 67.5 | 1.07 |
RBS + R (PTR + R) | 573.2 | 107.4 | 1.18 | 699.7 | 485.0 | 1.69 | 760.0 | 290.6 | 1.37 |
LSD 0.05 (TR) | 3.3 | 81.0 | 0.14 | 6.7 | 74.5 | 0.11 | 5.9 | 115.5 | 0.15 |
Nitrogen treatment in maize (N) during the dry season | |||||||||
N0 $ | 553.1 | –179.9 | 0.68 | 680.8 | 17.6 | 1.03 | 739.6 | –128.9 | 0.83 |
N1 | 573.7 | 87.9 | 1.15 | 703.5 | 416.7 | 1.60 | 769.4 | 232.7 | 1.31 |
N2 | 586.6 | 175.9 | 1.30 | 716.7 | 534.6 | 1.75 | 785.0 | 464.2 | 1.60 |
N3 | 597.1 | 193.5 | 1.33 | 727.8 | 569.2 | 1.79 | 797.9 | 567.5 | 1.71 |
LSD0.05 (N) | 2.6 | 71.4 | 0.13 | 1.84 | 37.7 | 0.06 | 4.5 | 126.2 | 0.16 |
TR × N | ns # | ns | ns | ns | ** | ** | ns | * | ** |
Treatment | 2016–2017 | 2017–2018 | 2018–2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cost of Production | Net Income | BCR @ | Cost of Production | Net Income | BCR | Cost of Production | Net Income | BCR | |
Crop establishment method and residue management (TR) during the wet season | |||||||||
RBS ψ − R (DSR ∆ − R) | 1040.2 | 233.1 | 1.22 | 1194.0 | 485.4 | 1.40 | 1383.0 | 880.1 | 1.63 |
RBS + R (DSR + R) | 1013.3 | 460.0 | 1.45 | 1154.3 | 799.0 | 1.69 | 1382.9 | 1206.4 | 1.87 |
RBS − R (PTR − R) | 1148.4 | 193.8 | 1.17 | 1313.7 | 294.7 | 1.22 | 1513.3 | 311.0 | 1.20 |
RBS + R (PTR + R) | 1097.9 | 308.6 | 1.28 | 1246.6 | 674.0 | 1.54 | 1479.7 | 668.8 | 1.45 |
LSD0.05 | 4.4 | 164.1 | 0.16 | 6.1 | 61.1 | 0.05 | 7.6 | 221.5 | 0.16 |
Nitrogen doses in maize (N) | |||||||||
N0 $ | 1050.4 | 49.8 | 1.05 | 1200.7 | 190.1 | 1.17 | 1406.4 | 185.3 | 1.14 |
N1 | 1071.1 | 318.1 | 1.30 | 1223.4 | 595.4 | 1.49 | 1434.2 | 691.2 | 1.49 |
N2 | 1083.9 | 405.6 | 1.38 | 1236.8 | 713.9 | 1.58 | 1452.6 | 1014.8 | 1.71 |
N3 | 1094.4 | 422.1 | 1.39 | 1247.7 | 753.6 | 1.61 | 1465.6 | 1175.1 | 1.81 |
LSD0.05 | 2.4 | 71.3 | 0.07 | 2.1 | 38.4 | 0.03 | 9.0 | 139.8 | 0.10 |
TR × N | ns # | ns | ns | ns | ** | ** | ns | ** | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarangi, S.K.; Singh, S.; Srivastava, A.K.; Choudhary, M.; Mandal, U.K.; Lama, T.D.; Mahanta, K.K.; Kumar, V.; Sharma, P.C.; Ismail, A.M. Crop and Residue Management Improves Productivity and Profitability of Rice–Maize System in Salt-Affected Rainfed Lowlands of East India. Agronomy 2020, 10, 2019. https://doi.org/10.3390/agronomy10122019
Sarangi SK, Singh S, Srivastava AK, Choudhary M, Mandal UK, Lama TD, Mahanta KK, Kumar V, Sharma PC, Ismail AM. Crop and Residue Management Improves Productivity and Profitability of Rice–Maize System in Salt-Affected Rainfed Lowlands of East India. Agronomy. 2020; 10(12):2019. https://doi.org/10.3390/agronomy10122019
Chicago/Turabian StyleSarangi, Sukanta K., Sudhanshu Singh, Ashish K. Srivastava, Madhu Choudhary, Uttam K. Mandal, Tashi D. Lama, Kshirendra K. Mahanta, Virender Kumar, Parbodh C. Sharma, and Abdelbagi M. Ismail. 2020. "Crop and Residue Management Improves Productivity and Profitability of Rice–Maize System in Salt-Affected Rainfed Lowlands of East India" Agronomy 10, no. 12: 2019. https://doi.org/10.3390/agronomy10122019
APA StyleSarangi, S. K., Singh, S., Srivastava, A. K., Choudhary, M., Mandal, U. K., Lama, T. D., Mahanta, K. K., Kumar, V., Sharma, P. C., & Ismail, A. M. (2020). Crop and Residue Management Improves Productivity and Profitability of Rice–Maize System in Salt-Affected Rainfed Lowlands of East India. Agronomy, 10(12), 2019. https://doi.org/10.3390/agronomy10122019