Programmed Cell Death Facilitates the Formation of Unisexual Male and Female Flowers in Persimmon (Diospyros kaki Thunb.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Hematoxylin and Eosin (H&E) Staining
2.3. Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick-End Labeling (TUNEL) Assay
2.4. Immunohistochemistry (IHC) Assay
2.5. Transmission Electron Microscopy (TEM) Observation
2.6. Real-Time Quantitative Polymerase Chain Reaction
2.7. Statistical Analysis
3. Results
3.1. Hematoxylin and eosin (H&E) Assay
3.2. TUNEL Assay
3.3. IHC Assay
3.4. TEM Observation
3.5. Abortion of Male Floral Organs
3.6. Abortion of Female Floral Organs
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Luo, Z.R.; Wang, R.Z. Persimmon in China: Domestication and traditional utilizations of genetic resources. Adv. Hort. Sci. 2008, 22, 239–243. [Google Scholar]
- Sun, P.; Li, J.R.; Du, G.G.; Han, W.J.; Fu, J.M.; Diao, S.F.; Suo, Y.J.; Zhang, Y.; Li, F.D. Endogenous phytohormone profiles in male and female floral buds of the persimmons (Diospyros kaki Thunb.) during development. Sci. Hortic. 2017, 218, 213–221. [Google Scholar] [CrossRef]
- Yonemori, K.; Sugiura, A.; Tanaka, K.; Kameda, K. Floral ontogeny and sex determination in monoecious-type persimmons. J. Am. Soc. Hortic. Sci. 1993, 118, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.Q.; Zhang, Q.L.; Luo, Z.R. Pollen-related characteristics of Diospyros Linn. (Ebenaceae) androecious germplasms newly found in China. Acta. Hortic. 2013, 996, 199–206. [Google Scholar] [CrossRef]
- Akagi, T.; Henry, I.M.; Kawai, T.; Comai, L.; Tao, R. Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. Plant Cell 2016, 28, 2905–2915. [Google Scholar] [CrossRef] [Green Version]
- Li, J.R.; Sun, P.; Han, W.J.; Li, F.D.; Fu, J.M.; Diao, S.F. Morphological key period study on floral sex differentiation in pollination-constant and non-astringent persimmon ‘Zenjimaru’. Acta Horticulturae Sinica 2016, 43, 451–461, (In Chinese with English abstract). [Google Scholar]
- Mohamed, A.K.; Magdy, M. Caspase 3 role and immunohistochemical expression in assessment of apoptosis as a feature of H1N1 vaccine-caused drug-induced liver injury (DILI). Electron Physician 2017, 9, 4261–4273. [Google Scholar] [CrossRef] [Green Version]
- Widjiati, W.; Aulanni, A.; Hendrawan, V.F. The effect of vitrification of oocytes cumulus complex apoptosis of mice (Mus musculus) to apoptosis, rate of fertilization and embryo quality. J. Int. Med. Res. 2017, 9, 179–182. [Google Scholar] [CrossRef]
- Zhou, H.; Li, J. Study on a new male sterile gene and apoptosis. Maize Genet. Coop. Newsl. 1997, 71, 8–9. [Google Scholar]
- Plackett, A.R.G.; Thomas, S.G.; Wilson, Z.A.; Hedden, P. Gibberellin control of stamen development: A fertile field. Trends Plant Sci. 2011, 16, 568–578. [Google Scholar] [CrossRef]
- Thomas, H. Senescence, ageing and death of the whole plant. New Phytol. 2003, 197, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Li, J.Y.; Jiang, A.L.; Cheng, Y.W.; Zhang, W. Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol. Biochem. 2009, 47, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Ubaidillah, M.; Safitri, F.A.; Jo, J.H.; Lee, S.K.; Hussain, A.; Mun, B.G.; Chung, I.K.; Yun, B.W.; Kim, K.M. Roles of plant hormones and anti-apoptosis genes during drought stress in rice (Oryza sativa L.). Biotech. 2016, 6, 247. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.T. Programmed cell death: A way of life for plants. Proc. Natl. Acad. Sci. USA 1996, 93, 12094–12097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, T.; Dengler, N.D. Leaf vascular pattern formation. Plant Cell 1997, 9, 1121–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleecker, A.B.; Patterson, S.E. Last exit: Senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 1997, 9, 1169–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olvera-Carrillo, Y.; Van, B.M.; Van, H.T.; Fendrych, M.; Huysmans, M.; Simaskova, M.; van Durme, M.; Rivas, S.; Coll, N.S.; Coppens, F.; et al. A conserved core of PCD indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiol. 2015, 169, 2684–2699. [Google Scholar] [CrossRef]
- MuÈller, F.; Xu, J.; Kristensen, L.; Wolters-Arts, M.; Groot, P.F.; Jansma, S.Y.; Mariani, C.; Park, S.; Rieu, I. High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-Class floral patterning genes. PLoS ONE 2016, 11, e0167614. [Google Scholar] [CrossRef] [Green Version]
- Coimbra, S.; Torrão, L.; Abreu, I. Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiol. Biochem. 2004, 42, 537–541. [Google Scholar] [CrossRef]
- Diggle, P.K.; Di Stilio, V.S.; Gschwend, A.R.; Golenberg, E.M.; Moore, R.C.; Russell, J.R.W.; Sinclair, J.P. Multiple developmental processes underlie sex differentiation in angiosperms. Trends Genet. 2011, 27, 368–376. [Google Scholar] [CrossRef]
- Li, S.Z.; Du, G.G.; Wang, L.Y.; Li, H.W.; Fu, J.M.; Suo, Y.J.; Han, W.J.; Diao, S.F.; Mai, Y.N.; Li, F.D. Transcriptome sequencing and comparative analysis between male and female floral buds of the persimmon (Diospyros kaki Thunb.). Sci. Hortic. 2019, 246, 987–997. [Google Scholar] [CrossRef]
- Guo, K.; Li, L.H.; Yin, G.; Zi, X.H.; Liu, L. Bag5 protects neuronal cells from amyloid β-induced cell death. J. Mol. Neurosci. 2015, 55, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.K.; Tahrir, F.G.; Knezevic, T.; White, M.K.; Gordon, J.; Cheung, J.Y.; Khalili, K.; Feldman, A.M. GRP78 interacting partner Bag5 responds to ER stress and protects cardiomyocytes from ER stress-induced apoptosis. J. Cell. Biochem. 2016, 117, 1813–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoldi, M.; Malavazi, I.; Soriani, F.M.; Capellaro, J.L.; Kitamoto, K.; Silva Ferreira, M.E.; Goldman, M.H.S.; Goldman, G.H. Farnesol induces the transcriptional accumulation of the Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase. Mol. Microbiol. 2008, 70, 44–59. [Google Scholar] [CrossRef]
- Dinamarco, T.M.; Pimentel, B.C.F.; Savoldi, M.; Malavazi, I.; Soriani, F.M.; Uyemura, S.A.; Ludovico, P.; Goldman, M.H.S.; Goldman, G.H. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance. Fungal Genet. Biol. 2010, 47, 1055–1069. [Google Scholar] [CrossRef]
- Uren, A.G.; O’Rourke, K.; Aravind, L.; Pisabarro, M.T.; Seshagiri, S.; Koonin, E.V.; Dixit, V.M. Identification of paracaspases and metacaspases: Two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 2000, 6, 961–967. [Google Scholar] [CrossRef]
- Khalatbary, A.R.; Mohammadnegad, B.; Goudarzi, G. Immunohistochemical and electron microscopic study of the inhibitory effects of olive oil polyphenol on dexamethasone-induced apoptosis. Iran J. Pathol. 2017, 12, 45–52. [Google Scholar]
- Viaene, T.; Vekemans, D.; Irish, V.F.; Geeraerts, A.; Huysmans, S.; Janssens, S.; Smets, E.; Geuten, K. Pistillata-duplications as a mode for floral diversification in (basal) asterids. Mol. Biol. Evol. 2009, 26, 2627–2645. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, C.A.; Hu, Y.; Ma, H. Specific expression of AGL1 MADS box gene suggests regulatory roles in gynoecium and ovule development. Plant Mol. Biol. 2010, 10, 343–353. [Google Scholar]
- Wang, X.; Feng, H.; Zhao, S.; Xu, J.; Wu, X.; Cui, J.; Zhang, Y.; Qin, Y.; Liu, Z.; Gao, T.; et al. SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: From bench to clinic. Oncotarget 2017, 12, 20476–20495. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.M.; Coimbra, S.; Fath, A.; Sottomayor, M. Programmed cell death assays for plants in various methods for study of cell death in plants. Methods Cell Biol. 2001, 66, 437–451. [Google Scholar] [PubMed]
- Ly, J.D.; Grubb, D.R.; Lawen, A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 2003, 8, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhou, H.F.; Wu, J.; Liu, W.T.; Li, Y.Q.; Shi, G.Y.; Yue, X.L.; Sun, X.W.; Zhao, Y.B.; Hu, X.W.; et al. Infection by Cx43 adenovirus increased chemotherapy sensitivity in human gastric cancer BGC-823 cells: Not involving in induction of cell apoptosis. Gene 2015, 574, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Song, X.F.; Tian, H.; Zhang, P.; Zhang, Z.X. Expression of cyt-c-mediated mitochondrial apoptosis-related proteins in rat renal proximal tubules during development. Nephron 2017, 135, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Heath, J.D.; Boulton, M.I.; Raineri, D.M.; Doty, S.L.; Mushegian, A.R.; Charles, T.C.; Davies, J.W.; Nester, E.W. Discrete regions of the sensor protein Vira determine the strain-specific ability of Agrobacterium to agroinfect maize. Mol. Plant-Microbe Interact. 1997, 10, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.L.; Cui, J.X.; Gu, H.T.; Xu, L.Y.; Li, Y.Q.; Xu, Z.H.; Bai, S.N. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 2004, 220, 230–240. [Google Scholar] [CrossRef]
- Van, D.W.G.; Woltering, E.J. Many ways to exit? Cell death categories in plants. Trends Plant Sci. 2005, 10, 117–122. [Google Scholar]
- Su, L.J.; Jin, Y.; Lv, L.; Liu, J.X. Programmed cell death during sexual reproduction process in plants. J. Cap. Norm. Univ. 2005, 26, 69–76, (In Chinese with English abstract). [Google Scholar]
- Bell, P.R. Megaspore abortion: A consequence of selective apoptosis. Int. J. Plant Sci. 1996, 157, 1–7. [Google Scholar] [CrossRef]
- Tanimoto, T.; Tsuda, H.; Imazeki, N.; Ohno, Y.; Imoto, I.; Inazawa, J.; Matsubara, O. Nuclear expression of cIAP-1, an apoptosis inhibiting protein, predicts lymph node metastasis and poor patient prognosis in head and neck squamous cell carcinomas. Cancer Lett. 2005, 224, 141–151. [Google Scholar] [CrossRef]
- Woltering, E.J.; Bent, A.; Hoeberichts, F.A. Hoeberichts. Do plant caspases exist? Plant Physiol. 2002, 130, 1764–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woltering, E.J. Death proteases come alive. Trends Plant Sci. 2004, 9, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Hoeberichts, F.A.; Ten, H.A.; Woltering, E.J. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 2003, 217, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Lam, E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysinespecific cysteine proteases and activate apoptosis-like cell death in yeast. J. Biol. Chem. 2005, 280, 14691–14699. [Google Scholar] [CrossRef] [Green Version]
- Doorn, W.G.; Beers, E.P.; Dangl, J.L.; Franklin-Tong, V.E.; Gallois, P.; Hara-Nishimura, I.; Jones, A.M.; Kawai-Yamada, M.; Lam, E.; Mundy, J.; et al. Morphological classification of plant cell deaths. Cell Death Differ. 2011, 18, 1241–1246. [Google Scholar] [CrossRef] [Green Version]
Stage | Time | Sexuality | Morphological Description | Length of Floral Bud (cm) | Sample Figure |
---|---|---|---|---|---|
1 | June 3, 2014 | Male | Initiation of bract primordia | 0.4 | Figure 1-1 |
June 3, 2014 | Female | 0.4 | Figure 2-1 | ||
2 | June 17, 2014 | Male | Development of two lateral flower primordia; initiation of inflorescence primordium of a three-flower cyme; differentiation of four sepal primordia around the terminal flower | 0.5 | Figure 1-2 |
June 17, 2014 | Female | Arrest of two lateral flower primordia; initiation of inflorescence primordium of solitary female flower; differentiation of four sepal primordia around the terminal flower | 0.4 | Figure 2-2 | |
3 | March 3, 2015 | Male | Initiation of petal primordia | 0.6 | Figure 1-3 |
March 3, 2015 | Female | 0.6 | Figure 2-3 | ||
4 | March 19, 2015 | Male | 4-1: Initiation of outside stamen primordia | 0.6 | Figure 1-4-1 |
March 21, 2015 | 4-2: Initiation of inner stamen primordia | 1.0 | Figure 1-4-2 | ||
March 24, 2015 | Female | Initiation of one whorl of stamen primordia | 1.3 | Figure 2-4 | |
5 | March 28, 2015 | Male | Initiation of carpel primordia | 1.7 | Figure 1-5 |
March 30, 2015 | Female | 2.5 | Figure 2-5 | ||
6 | April 1, 2015 | Male | Initiation of anther primordia; slight elongation of pistil primordia | 2.6 | Figure 1-6 |
April 6, 2015 | Female | Initiation of cylindrical pistil; stamen primordia showed no obvious morphological change | 0.3 | Figure 2-6 | |
7 | April 10, 2015 | Male | Differentiation of filaments and locules in stamen; differentiation of stigma and style was observed | 0.6 | Figure 1-7 |
April 14, 2015 | Female | Differentiation of nectary tissues and ovule primordia in pistil; differentiation of filaments in stamen | 0.5 | Figure 2-7 | |
8 | April 17, 2015 | Male | Initiation of microsporocytes; arrest of carpel primordia indicated by limited size increase | 0.8 | Figure 1-8 |
April 17, 2015 | Female | Initiation of two integuments and megasporocytes; arrest of outside stamen primordia indicated by limited size increase | 0.8 | Figure 2-8 | |
9 | April 23, 2015 | Male | Appearance of tetrad period by meiosis of microsporocytes | 1.1 | Figure 1-9 |
April 20, 2015 | Female | Appearance of tetrad period by meiosis of megasporocytes | 1.0 | Figure 2-9 | |
10 | April 25, 2015 | Male | Formation of uninuclear pollen | 1.3 | Figure 1-10 |
April 23, 2015 | Female | Formation of uninuclear embryo sac | 1.3 | Figure 2-10 | |
11 | May 3, 2015 | Male | Formation of mature pollen | 1.3 | Figure 1-11 |
May 3, 2015 | Female | Formation of mature embryo sac | 1.4 | Figure 2-11 |
Gene ID | Log2FC | P adj | Homologous Gene | Gene Function |
---|---|---|---|---|
c100711_g1 | −1.7395 | 1.48 × 10−40 | MeGI | Male growth inhibitor gene in Diospyros [5] |
c115962_g1 | −1.8116 | 6.14 × 10−5 | BAG5 | Stress-inducible gene [22,23] |
c86489_g1 | −1.0479 | 5.11 × 10−6 | AifA | Involving in the formation of large-scale DNA fragmentation [24,25] |
c104934_g1 | −2.3532 | 7.92 × 10−12 | HSP70 | Potential regulator of PCD [12] |
c109216_g1 | 1.0945 | 3.81 × 10−5 | AMC9 | Involving in the regulation of PCD in plants [26] |
c115753_g1 | 3.0444 | 0.00091305 | CDC2 | Antiapoptotic gene [27] |
c73805_g1 | 1.7734 | 3.61 × 10−8 | GLO | MADS-domain transcription factor (GLO) mRNA in Diospyros digyna [28] |
c117647_g3 | 1.4706 | 1.50 × 10−7 | AGL1 | Promoting the development of ovule and the formation of gynoecium [29] |
Gene ID (Homologous Gene) | Forward Primer Sequence (5′–3′) | Reverse Primer Sequence (5′–3′) | Product Size (bp) |
---|---|---|---|
GAPDH (reference gene) | AGCTCTTCCACCTCTCCAGT | TGCTAGCTGCACAACCAACT | 157 |
MeGI (c100711_g1) | GGAGTTGAACTTTGGGAACG | AAGGCGACACTTGTGGACGA | 199 |
BAG5 (c115962_g1) | GATACCTGTTCGCTTCGT | TCAACCGCCTCAACCTCT | 138 |
AifA (c86489_g1) | GTAACCTTTCACCCTCAA | CTATCAGAGCCGATTGTAT | 137 |
HSP70 (c104934_g1) | TTTTATGCGACGATTACCA | GCAATAGCTGCTGCACTTT | 175 |
AMC9 (c109216_g1) | CTGCTCCTTCTCCTTGTCTATG | GTGGACTTCCGTCAACTGG | 105 |
CDC2 (c115753_g1) | TGGCTGACTTTGGATTGG | ATGGCAGACGAGTATTGGTG | 124 |
GLO (c73805_g1) | TCATTGCTCAGGTTCTCA | AATACTGTAGCCCTTCCA | 103 |
AGL1 (c117647_g3) | CGCCTTTATGAATACGCC | TCTCCAATCTTCCCTCCA | 241 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, H.; Suo, Y.; Han, W.; Diao, S.; Mai, Y.; Sun, P.; Li, F.; Fu, a.J. Programmed Cell Death Facilitates the Formation of Unisexual Male and Female Flowers in Persimmon (Diospyros kaki Thunb.). Agronomy 2020, 10, 234. https://doi.org/10.3390/agronomy10020234
Wang L, Li H, Suo Y, Han W, Diao S, Mai Y, Sun P, Li F, Fu aJ. Programmed Cell Death Facilitates the Formation of Unisexual Male and Female Flowers in Persimmon (Diospyros kaki Thunb.). Agronomy. 2020; 10(2):234. https://doi.org/10.3390/agronomy10020234
Chicago/Turabian StyleWang, Liyuan, Huawei Li, Yujing Suo, Weijuan Han, Songfeng Diao, Yini Mai, Peng Sun, Fangdong Li, and and Jianmin Fu. 2020. "Programmed Cell Death Facilitates the Formation of Unisexual Male and Female Flowers in Persimmon (Diospyros kaki Thunb.)" Agronomy 10, no. 2: 234. https://doi.org/10.3390/agronomy10020234
APA StyleWang, L., Li, H., Suo, Y., Han, W., Diao, S., Mai, Y., Sun, P., Li, F., & Fu, a. J. (2020). Programmed Cell Death Facilitates the Formation of Unisexual Male and Female Flowers in Persimmon (Diospyros kaki Thunb.). Agronomy, 10(2), 234. https://doi.org/10.3390/agronomy10020234