“Are They Aware, and Why?” Bayesian Analysis of Predictors of Smallholder Farmers’ Awareness of Climate Change and Its Risks to Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Conceptual Framework
2.3. Empirical Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variable Name | District Name | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
District | Choma | Mpika | Nyimba | Petauke | Serenje | Sinazongwe | Zambia | |||||||
Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev. | Mean | Std. Dev | |
Dependent variable | ||||||||||||||
Climate change awareness | 0.66 | 0.47 | 0.87 | 0.32 | 0.54 | 0.49 | 0.91 | 0.28 | 0.89 | 0.30 | 0.75 | 0.43 | 0.77 | 0.41 |
Predictor variables | ||||||||||||||
Socio-demographic characteristics | ||||||||||||||
Gender | 0.84 | 0.36 | 0.78 | 0.41 | 0.78 | 0.41 | 0.82 | 0.38 | 0.80 | 0.39 | 0.79 | 0.40 | 0.80 | 0.39 |
Marital status | 0.85 | 0.34 | 0.78 | 0.41 | 0.78 | 0.41 | 0.84 | 0.36 | 0.82 | 0.38 | 0.80 | 0.40 | 0.81 | 0.38 |
Age of household head | 48.80 | 14.28 | 47.31 | 15.69 | 45.12 | 14.39 | 46.42 | 15.52 | 46.29 | 15.11 | 43.59 | 13.43 | 46.28 | 14.94 |
Household size | 6.53 | 6.53 | 6.12 | 2.43 | 6.16 | 2.40 | 5.46 | 2.25 | 6.72 | 2.43 | 6.03 | 2.13 | 6.07 | 2.41 |
No education | 0.02 | 0.16 | 0.04 | 0.20 | 0.15 | 0.36 | 0.28 | 0.45 | 0.05 | 0.23 | 0.10 | 0.31 | 0.13 | 0.34 |
Basic education | 0.65 | 0.47 | 0.55 | 0.49 | 0.55 | 0.49 | 0.57 | 0.49 | 0.57 | 0.49 | 0.56 | 0.49 | 0.57 | 0.49 |
High school education | 0.26 | 0.44 | 0.37 | 0.48 | 0.28 | 0.45 | 0.11 | 0.32 | 0.35 | 0.48 | 0.27 | 0.44 | 0.26 | 0.44 |
College education | 0.05 | 0.22 | 0.03 | 0.17 | 0.00 | 0.05 | 0.02 | 0.14 | 0.01 | 0.11 | 0.05 | 0.21 | 0.02 | 0.15 |
Access to farm credit | 0.06 | 0.25 | 0.00 | 0.00 | 0.15 | 0.36 | 0.33 | 0.47 | 0.01 | 0.12 | 0.11 | 0.32 | 0.14 | 0.34 |
Climate change information sources | ||||||||||||||
Radio | 0.63 | 0.48 | 0.61 | 0.48 | 0.51 | 0.50 | 0.65 | 0.47 | 0.64 | 0.47 | 0.55 | 0.49 | 0.60 | 0.48 |
Television | 0.23 | 0.42 | 0.18 | 0.38 | 0.19 | 0.39 | 0.15 | 0.36 | 0.28 | 0.45 | 0.17 | 0.38 | 0.19 | 0.39 |
Conservation agriculture advice | 0.61 | 0.48 | 0.59 | 0.49 | 0.61 | 0.48 | 0.68 | 0.46 | 0.59 | 0.49 | 0.58 | 0.49 | 0.62 | 0.48 |
Extension services | 0.95 | 0.19 | 0.88 | 0.31 | 0.83 | 0.37 | 0.90 | 0.29 | 0.84 | 0.36 | 0.93 | 0.25 | 0.88 | 0.31 |
Climate change adaptive factors | ||||||||||||||
Planting in basins | 0.14 | 0.34 | 0.01 | 0.11 | 0.19 | 0.39 | 0.12 | 0.32 | 0.11 | 0.32 | 0.09 | 0.28 | 0.11 | 0.32 |
Animal manure | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.15 | 0.00 | 0.00 | 0.02 | 0.14 | 0.00 | 0.00 | 0.01 | 0.09 |
Fundikila | 0.00 | 0.00 | 0.33 | 0.47 | 0.01 | 0.11 | 0.00 | 0.00 | 0.09 | 0.28 | 0.00 | 0.00 | 0.07 | 0.26 |
Agroforestry | 0.15 | 0.36 | 0.01 | 0.11 | 0.10 | 0.31 | 0.15 | 0.36 | 0.21 | 0.41 | 0.15 | 0.36 | 0.12 | 0.33 |
Changing planting dates | 0.06 | 0.23 | 0.20 | 0.40 | 0.37 | 0.48 | 0.58 | 0.49 | 0.42 | 0.49 | 0.26 | 0.44 | 0.35 | 0.47 |
Changing crop varieties | 0.10 | 0.30 | 0.25 | 0.43 | 0.49 | 0.50 | 0.56 | 0.49 | 0.55 | 0.49 | 0.38 | 0.48 | 0.41 | 0.49 |
Crop diversification | 0.06 | 0.24 | 0.22 | 0.41 | 0.27 | 0.44 | 0.10 | 0.31 | 0.49 | 0.50 | 0.40 | 0.49 | 0.23 | 0.42 |
Ownership of water wells | 0.03 | 0.18 | 0.1 | 0.11 | 0.00 | 0.06 | 0.01 | 0.08 | 0.04 | 0.21 | 0.01 | 0.09 | 0.01 | 0.12 |
Ownership of boreholes | 0.06 | 0.23 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.01 | 0.11 | 0.01 | 0.12 | 0.01 | 0.10 |
Ownership of water pumps | 0.05 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.18 | 0.01 | 010 | 0.01 | 0.10 |
Number of pipes | 2.88 | 0.69 | 0.00 | 0.00 | 1.00 | 0.02 | 1.78 | 0.46 | 0.00 | 0.00 | 0.99 | 0.09 | 2.44 | 3.44 |
Number of solar panels | 1.21 | 0.81 | 1.22 | 0.65 | 1.13 | 0.51 | 1.29 | 0.68 | 0.00 | 0.00 | 1.38 | 0.78 | 1.24 | 1.18 |
Number of rippers | 1.08 | 0.28 | 0.00 | 0.00 | 1.02 | 0.10 | 1.12 | 0.16 | 0.00 | 0.00 | 1.01 | 0.02 | 1.05 | 0.97 |
Climate change impact-related shocks | ||||||||||||||
Increased irrigation reliance | 0.00 | 0.00 | 0.02 | 0.14 | 0.00 | 0.05 | 0.01 | 0.12 | 0.15 | 0.36 | 0.09 | 0.28 | 0.03 | 0.18 |
Reduced food consumption | 0.03 | 0.16 | 0.08 | 0.27 | 0.10 | 0.31 | 0.09 | 0.29 | 0.44 | 0.49 | 0.02 | 0.15 | 0.12 | 0.32 |
Droughts | 0.43 | 0.49 | 0.38 | 0.48 | 0.62 | 0.48 | 0.85 | 0.34 | 0.88 | 0.31 | 0.75 | 0.42 | 0.66 | 0.47 |
Floods | 0.38 | 0.48 | 0.04 | 0.20 | 0.01 | 0.11 | 0.03 | 0.17 | 0.03 | 0.18 | 0.12 | 0.33 | 0.08 | 0.27 |
Frost | 0.01 | 0.11 | 0.15 | 0.35 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.14 | 0.00 | 0.00 | 0.03 | 0.17 |
Heat wave | 0.02 | 0.14 | 0.05 | 0.21 | 0.00 | 0.05 | 0.00 | 0.06 | 0.01 | 0.11 | 0.00 | 0.00 | 0.01 | 0.12 |
Extreme heat | 0.08 | 0.28 | 0.32 | 0.47 | 0.30 | 0.46 | 0.10 | 0.30 | 0.02 | 0.16 | 0.01 | 0.09 | 0.17 | 0.37 |
Number of observations | 149 | 220 | 284 | 312 | 142 | 120 | 1,227 |
Variable | Posterior Mean | Standard Deviation | 95% Credible Interval | |
---|---|---|---|---|
Dependent variable | ||||
Awareness of climate change and its risks to agriculture | ||||
Predictor variables | ||||
Socio-demographic characteristics | ||||
Intercept | −0.952 | 0.532 | −2.084 | 0.112 |
Gender | 0.006 | 0.013 | −0.020 | 0.031 |
Marital status | 0.015 | 0.013 | −0.011 | 0.041 |
Age of household head | −0.007 | 0.000 | −0.008 | −0.007 |
Household size | 0.003 | 0.001 | 0.000 | 0.005 |
Basic education | 0.138 | 0.011 | 0.117 | 0.158 |
High school education | −0.012 | 0.012 | −0.036 | 0.011 |
College education | 0.591 | 0.023 | 0.545 | 0.637 |
Access to farm credit | −0.066 | 0.012 | −0.089 | −0.041 |
Climate change information sources | ||||
Radio | 0.259 | 0.007 | 0.245 | 0.272 |
Television | −0.280 | 0.009 | −0.298 | −0.262 |
Conservation agriculture advice | −0.048 | 0.007 | −0.061 | −0.035 |
Extension services | 0.545 | 0.010 | 0.526 | 0.563 |
Climate change adaptive factors | ||||
Planting in basins | 1.048 | 0.012 | 1.025 | 1.072 |
Animal manure | 4.218 | 0.092 | 4.042 | 4.403 |
Fundikila | 1.238 | 0.016 | 1.205 | 1.269 |
Agroforestry | 0.671 | 0.012 | 0.647 | 0.695 |
Changing planting dates | −0.188 | 0.008 | −0.204 | −0.172 |
Changing crop varieties | −0.038 | 0.008 | −0.053 | −0.023 |
Crop diversification | 0.502 | 0.010 | 0.484 | 0.521 |
Climate change adaptive factors | ||||
Ownership of water wells | −0.334 | 0.027 | −0.389 | −0.280 |
Ownership of boreholes | 1.619 | 0.041 | 1.539 | 1.700 |
Ownership of water pumps | −0.309 | 0.036 | −0.380 | −0.238 |
Number of pipes | 0.017 | 0.002 | 0.013 | 0.021 |
Number of solar panels | 0.151 | 0.006 | 0.139 | 0.162 |
Number of rippers | −0.159 | 0.021 | −0.200 | −0.117 |
Climate change impact-related shocks | ||||
Increased irrigation reliance | −0.557 | 0.020 | −0.596 | −0.518 |
Reduced food consumption | −0.009 | 0.012 | −0.032 | 0.013 |
Droughts | 1.963 | 0.013 | 1.938 | 1.988 |
Floods | 1.960 | 0.015 | 1.930 | 1.990 |
Frost | 2.625 | 0.034 | 2.556 | 2.693 |
Heat wave | 2.052 | 0.030 | 1.995 | 2.110 |
Extreme temperature | 0.405 | 0.014 | 0.377 | 0.432 |
Varying-intercept effects | ||||
Between-grade intercept variance | 1.210 | 0.488 | 0.627 | 2.505 |
References
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Urquhart, P. Impacts, adaptation, and vulnerability. Part B: Regional aspects, Africa. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. In Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. [Google Scholar]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Mastrandrea, M.D. Food security and food production systems. Part A: Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. In Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 485–533. [Google Scholar]
- Masipa, T.S. The impact of climate change on food security in South Africa: Current realities and challenges ahead. Jàmbá J. Disaster Risk Stud. 2017, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hamududu, B.H.; Ngoma, H. Impacts of climate change on water resources availability in Zambia: Implications for irrigation development. Environ. Dev. Sustain. 2019, 1–22. [Google Scholar] [CrossRef]
- Bounoua, L. Climate Change is Hitting African Farmers the Hardest of All: The Conversation. 2015. Available online: http://theconversation.com/climate-change-is-hitting-african-farmers-the-hardest-of-all-40845 (accessed on 24 January 2020).
- Ubisi, N.R.; Mafongoya, P.L.; Kolanisi, U.; Jiri, O. Smallholder farmer’s perceived effects of climate change on crop production and household livelihoods in rural Limpopo province, South Africa. Chang. Adapt. Socio Ecol. Syst. 2017, 3, 27–38. [Google Scholar] [CrossRef]
- Wu, J.; Qu, J.; Li, H.; Xu, L.; Zhang, H.; Aryal, S.; Zeng, J.; Fan, Y.; Wei, Q.; Liu, X. What Affects Chinese Residents’ Perceptions of Climate Change? Sustainability 2018, 10, 4712. [Google Scholar] [CrossRef] [Green Version]
- Waldman, K.B.; Vergopolan, N.; Attari, S.Z.; Sheffield, J.; Estes, L.D.; Caylor, K.K.; Evans, T.P. Cognitive biases about climate variability in smallholder farming systems in Zambia. Weather Clim. Soc. 2019, 11, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Wineman, A.; Crawford, E.W. Climate change and crop choice in Zambia: A mathematical programming approach. NJAS Wagening. J. Life Sci. 2017, 81, 19–31. [Google Scholar] [CrossRef]
- Roco, L.; Engler, A.; Bravo-Ureta, B.E.; Jara-Rojas, R. Farmers’ perception of climate change in Mediterranean Chile. Reg. Environ. Chang. 2015, 15, 867–879. [Google Scholar] [CrossRef]
- Nyanga, P.H.; Johnsen, F.H.; Aune, J.B. Smallholder farmers’ perceptions of climate change and conservation agriculture: Evidence from Zambia. J. Sustain. Dev. 2011, 4, 73. [Google Scholar] [CrossRef]
- Wheelan, C. Naked Statistics: Stripping the Dread from the Data; WW Norton & Company: New York, NY, USA, 2013. [Google Scholar]
- Mulenga, B.P.; Wineman, A.; Sitko, N.J. Climate trends and farmers’ perceptions of climate change in Zambia. Environ. Manag. 2017, 59, 291–306. [Google Scholar] [CrossRef]
- Assan, E.; Suvedi, M.; Schmitt Olabisi, L.; Allen, A. Coping with and adapting to climate change: A gender perspective from smallholder farming in Ghana. Environments 2018, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Arslan, A.; McCarthy, N.; Lipper, L.; Asfaw, S.; Cattaneo, A.; Kokwe, M. Climate smart agriculture? Assessing the adaptation implications in Zambia. J. Agric. Econ. 2015, 66, 753–780. [Google Scholar] [CrossRef]
- Kuntashula, E.; Chabala, L.M.; Chibwe, T.K.; Kaluba, P. The effects of household wealth on adoption of agricultural related climate change adaptation strategies in Zambia. Sustain. Agric. Res. 2015. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Hottle, R. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Khonje, M.; Manda, J.; Alene, A.D.; Kassie, M. Analysis of adoption and impacts of improved maize varieties in eastern Zambia. World Dev. 2015, 66, 695–706. [Google Scholar] [CrossRef]
- Ngoma, H.; Mason, N.M.; Sitko, N.J. Does minimum tillage with planting basins or ripping raise maize yields? Meso-panel data evidence from Zambia. Agric. Ecosyst. Environ. 2015, 212, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, C.; Dougill, A.J.; Quinn, C.H. Evidence and perceptions of rainfall change in Malawi: Do maize cultivar choices enhance climate change adaptation in sub-Saharan Africa? Reg. Environ. Chang. 2016, 16, 1215–1224. [Google Scholar] [CrossRef] [Green Version]
- Ng’ombe, J.N.; Kalinda, T.H.; Tembo, G. Does adoption of conservation farming practices result in increased crop revenue? Evidence from Zambia. Agrekon 2017, 56, 205–221. [Google Scholar] [CrossRef]
- Spear, D.; Chappel, A. Livelihoods on the Edge without a Safety Net: The case of Smallholder crop farming in north-central Namibia. Land 2018, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Tambo, J.A.; Abdoulaye, T. Smallholder farmers’ perceptions of and adaptations to climate change in the Nigerian savanna. Reg. Environ. Chang. 2013, 13, 375–388. [Google Scholar] [CrossRef]
- Masasi, B.; Ng’ombe, J.N. Does a market systems approach revitalize smallholder irrigation schemes? Evidence from Zimbabwe. Sustain. Agric. Res. 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Mulungu, K.; Ng’ombe, J.N. Climate Change Impacts on Sustainable Maize Production in Sub-Saharan Africa: A Review. Maize Prod. Use 2019. [Google Scholar] [CrossRef] [Green Version]
- Amadu, F.O.; Miller, D.C.; McNamara, P.E. Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecol. Econ. 2020, 167, 106443. [Google Scholar] [CrossRef]
- Hachigonta, S.; Nelson, G.C.; Thomas, T.S.; Sibanda, L.M. (Eds.) Southern African Agriculture and Climate Change: A Comprehensive Analysis; International Food Policy Research Institute: Washington, DC, USA, 2013; Volume 3. [Google Scholar]
- Mekonnen, Z.; Kassa, H.; Woldeamanuel, T.; Asfaw, Z. Analysis of observed and perceived climate change and variability in Arsi Negele District, Ethiopia. Environ. Dev. Sustain. 2018, 20, 1191–1212. [Google Scholar] [CrossRef]
- Hamilton, L.; Keim, B. Regional variation in perceptions about climate change. Int. J. Climatol. 2009, 29, 2348–2352. [Google Scholar] [CrossRef] [Green Version]
- Lata, S.; Nunn, P. Misperceptions of climate-change risk as barriers to climate-change adaptation: A case study from the Rewa Delta, Fiji. Clim. Chang. 2012, 110, 169–186. [Google Scholar] [CrossRef]
- Barnes, A.; Toma, L. A typology of dairy farmer perceptions toward climate change. Clim. Chang. 2012, 112, 507–522. [Google Scholar] [CrossRef]
- Hansen, J.; Marx, S.; Weber, E. The Role of Climate Perceptions, Expectations, and Forecasts in Farmer Decision Making: The Argentine Pampas and South Florida; IRI Technical Report 04-01; Academic Commons: New York, NY, USA, 2004. [Google Scholar]
- Woods, B.A.; Nielsen, H.Ø.; Pedersen, A.B.; Kristofersson, D. Farmers’ perceptions of climate change and their likely responses in Danish agriculture. Land Use Policy 2017, 65, 109–120. [Google Scholar] [CrossRef]
- Gbetibou, G.A. Understanding Farmers’ Perceptions and Adaptations to Climate Change and Variability: The Case of the Limpopo Basin, South Africa. Environment and Production Technology Division; Discussion Paper 00849; IFPRI (International Food Policy Research Institute): Washington, DC, USA, 2009. [Google Scholar]
- Habtemariam, L.T.; Gandorfer, M.; Kassa, G.A.; Heissenhuber, A. Factors influencing smallholder farmers’ climate change perceptions: A study from farmers in Ethiopia. Environ. Manag. 2016, 58, 343–358. [Google Scholar] [CrossRef]
- Uddin, M.N.; Bokelmann, W.; Dunn, E.S. Determinants of farmers’ perception of climate change: A case study from the Coastal Region of Bangladesh. Am. J. Clim. Chang. 2017, 6, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Smith, W.J.; Safi, A.S. Rancher and farmer perceptions of climate change in Nevada, USA. Clim. Chang. 2014, 122, 313–327. [Google Scholar] [CrossRef]
- Stevenson, K.T.; Peterson, M.N.; Bondell, H.D.; Moore, S.E.; Carrier, S.J. Overcoming skepticism with education: Interacting influences of worldview and climate change knowledge on perceived climate change risk among adolescents. Clim. Chang. 2014, 126, 293–304. [Google Scholar] [CrossRef]
- Rebetez, M. Public expectations as an element of human perception of climate change. Clim. Chang. 1996, 32, 495–509. [Google Scholar] [CrossRef]
- Rural Agricultural Livelihood Survey (RALS); Indaba Agricultural and Policy Research Institute (IAPRI): Lusaka, Zambia, 2012.
- Tembo, M.C.; Kuntashula, E.; Kalinda, T. Climate change awareness and joint decision to adopt agro forestry and conservation agriculture practices in Zambia. J. Sustain. Dev. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Haggblade, S.; Tembo, G. Conservation Farming in Zambia; International Food Policy Research Institute: Washington, DC, USA, 2003. [Google Scholar]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of multiple sustainable agricultural practices in rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Shiferaw, B.; Tesfaye, K.; Kassie, M.; Abate, T.; Prasanna, B.M.; Menkir, A. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim. Extrem. 2014, 3, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Ng’ombe, J.; Kalinda, T.; Tembo, G.; Kuntashula, E. Econometric analysis of the factors that affect adoption of conservation farming practices by smallholder farmers in Zambia. J. Sustain. Dev. 2014, 7, 124. [Google Scholar] [CrossRef]
- Abdulai, A.N.; Abdulai, A. Examining the impact of conservation agriculture on environmental efficiency among maize farmers in Zambia. Environ. Dev. Econ. 2017, 22, 177–201. [Google Scholar] [CrossRef] [Green Version]
- Elum, Z.A.; Modise, D.M.; Marr, A. Farmer’s perception of climate change and responsive Startegies in three selected provinces of South Africa. Clim. Risk Manag. 2017, 16, 246–257. [Google Scholar] [CrossRef]
- Samuel, O.O.; Micheal, A.; Nkonki-Mandleni, B. Determinants of climate change awareness among rural farming households in South Africa. J. Econ. Behav. Stud. 2018, 10, 116–124. [Google Scholar] [CrossRef]
- Ng’ombe, J.N. Impact of Conservation Farming on Smallholder Farm Household Incomes in Zambia: Evidence Using an Endogenous Switching Regression Model. Master’s Thesis, The University of Zambia, Lusaka, Zambia, 2013. Available online: https://pdfs.semanticscholar.org/0b39/07fa6894007787ae90704768fbe49aa2c426.pdf (accessed on 27 February 2020).
- Matthews, R.B.; Holden, S.T.; Volk, J.; Lungu, S. The potential of alley cropping in improvement of cultivation systems in the high rainfall areas of Zambia I. Chitemene and Fundikila. Agrofor. Syst. 1992, 17, 219–240. [Google Scholar] [CrossRef]
- Marx, S.M.; Weber, E.U.; Orlove, B.S.; Leiserowitz, A.; Krantz, D.H.; Roncoli, C.; Phillips, J. Communication and mental processes: Experiential and analytic processing of uncertain climate information. Glob. Environ. Chang. 2007, 17, 47–58. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis; Pearson Education India: Bengaluru, India, 2003. [Google Scholar]
- Shalizi, C.R. Advanced Data Analysis from an Elementary Point of View. 2013. Available online: http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/.GoogleScholar (accessed on 3 December 2019).
- Ng’ombe, J.N. Technical efficiency of smallholder maize production in Zambia: A stochastic meta-frontier approach. Agrekon 2017, 56, 347–365. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2013. [Google Scholar]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
- Baldos, U.L.C.; Viens, F.G.; Hertel, T.W.; Fuglie, K.O. R&D spending, knowledge capital, and agricultural productivity growth: A Bayesian approach. Am. J. Agric. Econ. 2019, 101, 291–310. [Google Scholar] [CrossRef]
- Ng’ombe, J.N.; Boyer, T.A. Determinants of earthquake damage liability assignment in Oklahoma: A Bayesian Tobit censored approach. Energy Policy 2019, 131, 422–433. [Google Scholar] [CrossRef]
- Neal, R.M. MCMC using Hamiltonian Dynamics. In Handbook of Markov Chain Monte Carlo; Brooks, S., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 113–162. [Google Scholar]
- Hoffman, M.D.; Gelman, A. The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 2014, 15, 1593–1623. [Google Scholar]
- Bolstad, W.M.; Curran, J.M. Introduction to Bayesian Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Gill, J. Bayesian Methods: A Social and Behavioral Sciences Approach; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Skevas, I.; Emvalomatis, G.; Brümmer, B. Heterogeneity of long-run technical efficiency of German dairy farms: A Bayesian approach. J. Agric. Econ. 2018, 69, 58–75. [Google Scholar] [CrossRef] [Green Version]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Gelman, A.; Jakulin, A.; Pittau, M.G.; Su, Y.S.A. Weakly Informative Default Prior. Distribution for Logistic and Other Regression Models. Ann. Appl. Stat. 2008, 2, 1360–1383. [Google Scholar] [CrossRef]
- Gelman, A. Prior Choice Recommendations. Available online: https://github.com/standev/stan/wiki/Prior-Choice-Recommendations (accessed on 21 October 2019).
- Girolami, M.; Calderhead, B. Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods. J. R. Stat. Soc. Ser. B 2011, 73, 123–214. [Google Scholar] [CrossRef]
- Plastina, A.; Lence, S.H. A parametric estimation of total factor productivity and its components in US agriculture. Am. J. Agric. Econ. 2018, 100, 1091–1119. [Google Scholar] [CrossRef]
- Plastina, A.; Lence, S.H. Theoretical production restrictions and agricultural technology in the United States. Am. J. Agric. Econ. 2019, 101, 849–869. [Google Scholar] [CrossRef]
- Ng’ombe, J.N.; Brorsen, B.W. Using Hamiltonian Monte Carlo to Estimate Crop Response Functions with Stochastic Plateaus. In Proceedings of the Selected presentation at the 2020 Southern Agricultural Economics Association Annual Meeting, Louisville, Kentucky, 1–4 February 2020. [Google Scholar] [CrossRef]
- Stan Development Team. Stan Modeling Language Users Guide and Reference Manual, Version 2.18.0; Stan Development Team: 2018. Available online: http://mc-stan.org (accessed on 8 March 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bürkner, P.C. Brms: An R Package for Bayesian Multilevel Models using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Bürkner, P.C. Advanced Bayesian Multilevel Modeling with the R package brms. arXiv 2017, arXiv:1705.11123. [Google Scholar] [CrossRef]
- Gelman, A.; Rubin, D.B. Inference from iterative simulation using multiple sequences. Stat. Sci. 1992, 7, 457–472. [Google Scholar] [CrossRef]
- Ng’ombe, J.N. Economics of the Greenseeder Hand Planter, Discrete Choice Modeling, and On-Farm Field Experimentation. Ph.D. Dissertation, Oklahoma State University, Stillwater, OK, USA, 2019. [Google Scholar]
- Kruschke, J. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Kruschke, J.K.; Liddell, T.M. The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a bayesian perspective. Psychon. Bull. Rev. 2018, 25, 178–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makowski, D.; Ben-Shachar, M.S.; Lüdecke, D. bayestestR: Describing Effects and their Uncertainty, Existence and Significance within the Bayesian Framework. J. Open Source Softw. 2019, 4, 1541. [Google Scholar] [CrossRef]
- Holding, B.C.; Sundelin, T.; Cairns, P.; Perrett, D.I.; Axelsson, J. The effect of sleep deprivation on objective and subjective measures of facial appearance. J. Sleep Res. 2019, 28, e12860. [Google Scholar] [CrossRef]
- Van de Schoot, R.; Veen, D.; Smeets, L.; Winter, S.D.; Depaoli, S. A tutorial on using the WAMBS checklist to avoid the misuse of Bayesian statistics. In Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners; van de Schoot, R., Miocevic, M., Eds.; Routledge: Abingdon, UK, 2020; pp. 30–49. [Google Scholar]
- Goebbert, K.; Jenkins-Smith, H.C.; Klockow, K.; Nowlin, M.C.; Silva, C.L. Weather, climate, and worldviews: The sources and consequences of public perceptions of changes in local weather patterns. Weather Clim. Soc. 2012, 4, 132–144. [Google Scholar] [CrossRef]
- Krosnick, J.A.; Holbrook, A.L.; Lowe, L.; Visser, P.S. The origins and consequences of democratic citizens’ policy agendas: A study of popular concern about global warming. Clim. Chang. 2006, 77, 7–43. [Google Scholar] [CrossRef]
- Mpundu, L. Link between Farmers, Education. Zambia Daily Mail Ltd. Available online: http://www.daily-mail.co.zm/link-between-farming-education/ (accessed on 27 February 2020).
- Adesina, A.A.; Mbila, D.; Nkamleu, G.B.; Endamana, D. Econometric analysis of the determinants of adoption of alley farming by farmers in the forest zone of southwest Cameroon. Agric. Ecosyt. Environ. 2000, 80, 255–265. [Google Scholar] [CrossRef]
- Giordano, M. Agricultural groundwater use and rural livelihoods in sub-Saharan Africa: A first-cut assessment. Hydrogeol. J. 2006, 14, 310–318. [Google Scholar] [CrossRef]
- Weber, E.U.; Stern, P.C. Public understanding of climate change in the United States. Am. Psychol. 2011, 66, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, T.W.; Fonta, W.M. Climate change and financing adaptation by farmers in northern Nigeria. Financ. Innov. 2018, 4, 11. [Google Scholar] [CrossRef]
- Munthali, C.K.; Kasulo, V.; Matamula, S. Smallholder farmers’ perception on climate change in Rumphi District, Malawi. J. Agric. Ext. Rural. Dev. 2016, 8, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Darnhofer, I. Strategies of family farms to strengthen their resilience. Environ. Policy Gov. 2010, 20, 212–222. [Google Scholar] [CrossRef]
Variable Name | Variable Description |
---|---|
Dependent variable | |
Awareness of climate change and its risk to agriculture | Household head expresses awareness of climate change and its risks on agricultural production; equals 1 if yes, 0 otherwise |
Predictor variables | |
Socio-demographic characteristics | |
Gender | Gender of household head; equals 1 if male, 0 if female |
Age of household head | Age of household head in years |
Household size | Number of members in a household |
No education | Household head received no formal education. Equals 1 if yes, 0 otherwise |
Basic education | Household head’s highest level of education is 9th grade |
High school education | Household head’s highest level of education is high school |
College education | Household head’s highest level of education is college education |
Access to farm credit | Household has access to farm credit; equals 1 if yes, 0 otherwise |
Climate change information sources | |
Radio | Household owns a radio; equals 1 if yes, 0 otherwise |
Television | Household owns a television; equals 1 if yes, 0 otherwise |
Conservation agriculture advice | Household received conservation agriculture advice; equals 1 if yes, 0 otherwise |
Extension services | Household has access to extension services; equals 1 if yes, 0 otherwise |
Climate change adaptive factors | |
Planting in basins | Household plants in basins; equals 1 if yes, 0 otherwise |
Animal manure | Household applies animal manure of their farm; equals 1 if yes, 0 otherwise |
Fundikila | Household practices fundikila; equals 1 if yes, 0 otherwise |
Agroforestry | Household practices agroforestry; equals 1 if yes, 0 otherwise |
Changing planting dates | Household change planting dates; equals 1 if yes, 0 otherwise |
Changing crop varieties | Household changes seed varieties; equals 1 if yes, 0 otherwise |
Crop diversification | Household adopts crop diversification; equals 1 if yes, 0 otherwise |
Ownership of water wells | Household owns water wells; equals 1 if yes, 0 otherwise |
Ownership of boreholes | Household owns boreholes; equals 1 if yes, 0 otherwise |
Ownership of water pumps | Household owns water pumps; equals 1 if yes, 0 otherwise |
Number of pipes | Number of water pipes owned by the household |
Number of solar panels | Number of solar panels owned by the household, |
Number of rippers | Number of rippers owned by the household |
Climate change impact-related shocks | |
Increased irrigation reliance | Household has increased reliance on crop irrigation; equals 1 if yes, 0 otherwise |
Reduced food consumption | Household reduced food consumption; equals to 1 if yes, 0 otherwise |
Floods | Area is experiencing floods; equals 1 if yes, 0 otherwise |
Frost | Area is experiencing frost; equals 1 if yes, 0 otherwise |
Heat wave | Area is experiencing heat waves; equals 1 if yes, 0 otherwise |
Districts | |
Choma | Household is located in Choma; equals 1 if yes, 0 otherwise |
Mpika | Household is located in Mpika; equals 1 if yes, 0 otherwise |
Nyimba | Household is located in Nyimba; equals 1 if yes, 0 otherwise |
Petauke | Household is located in Petauke; equals 1 if yes, 0 otherwise |
Serenje | Household is located in Serenje; equals 1 if yes, 0 otherwise |
Sinazongwe | Household is located in Sinazongwe; equals 1 if yes, 0 otherwise |
Variable Name | Odds Ratios | Std Dev. | 95% High Density Interval (HDI) | Probability Effect within Region of Practical Equivalence (ROPE) (%) | Null Hypothesis Decision | |
---|---|---|---|---|---|---|
Dependent variable: Climate change awareness | ||||||
Predictor variables | ||||||
Socio-demographic characteristics | ||||||
Intercept | 0.39 | 0.17 | 0.13 | 1.17 | 4.18 | Undecided |
Gender | 1.01 | 0.01 | 0.98 | 1.03 | 100 | Accept |
Marital status | 1.02 | 0.01 | 0.99 | 1.04 | 100 | Accept |
Age | 0.99 | 0.00 | 0.99 | 1.01 | 100 | Accept |
Household size | 1.00 | 0.00 | 1.00 | 1.01 | 100 | Accept |
Basic education | 1.15 | 0.01 | 1.13 | 1.17 | 100 | Accept |
High school education | 0.99 | 0.01 | 0.96 | 1.01 | 100 | Accept |
College education | 1.81 | 0.04 | 1.72 | 1.90 | 0 | Reject |
Access to farm credit | 0.94 | 0.01 | 0.91 | 0.96 | 100 | Accept |
Climate change information sources | ||||||
Radio | 1.30 | 0.01 | 1.28 | 1.31 | 0 | Reject |
Television | 0.76 | 0.01 | 0.74 | 0.77 | 0 | Reject |
Conservation agriculture advice | 0.95 | 0.01 | 0.94 | 0.96 | 100 | Accept |
Extension services | 1.72 | 0.01 | 1.70 | 1.75 | 0 | Reject |
Climate change adaptive factors | ||||||
Planting in basins | 2.85 | 0.03 | 2.77 | 2.92 | 0 | Reject |
Animal manure | 67.72 | 6.18 | 56.26 | 80.64 | 0 | Reject |
Fundikila | 3.44 | 0.05 | 3.35 | 3.56 | 0 | Reject |
Agroforestry | 1.95 | 0.02 | 1.92 | 1.99 | 0 | Reject |
Changing planting dates | 0.82 | 0.01 | 0.82 | 0.84 | 19.84 | Undecided |
Climate change adaptive factors | ||||||
Changing crop varieties | 0.96 | 0.01 | 0.95 | 0.98 | 100 | Accept |
Crop diversification | 1.65 | 0.01 | 1.62 | 1.68 | 0 | Reject |
Ownership of water wells | 0.71 | 0.02 | 0.68 | 0.76 | 0 | Reject |
Ownership of boreholes | 5.04 | 0.21 | 4.66 | 5.47 | 0 | Reject |
Ownership of water pumps | 0.73 | 0.02 | 0.68 | 0.79 | 0 | Reject |
Number of pipes | 1.01 | 0.00 | 1.01 | 1.02 | 100 | Accept |
Number of solar panels | 1.16 | 0.00 | 1.15 | 1.17 | 100 | Accept |
Number of rippers | 0.85 | 0.01 | 0.82 | 0.89 | 86.66 | Undecided |
Climate change impact-related shocks | ||||||
Increased irrigation reliance | 0.57 | 0.01 | 0.55 | 0.59 | 0 | Reject |
Reduced food consumption | 0.99 | 0.01 | 0.97 | 1.01 | 100 | Accept |
Droughts | 7.12 | 0.09 | 6.96 | 7.32 | 0 | Reject |
Floods | 7.10 | 0.11 | 6.89 | 7.32 | 0 | Reject |
Frost | 13.80 | 0.46 | 12.94 | 14.73 | 0 | Reject |
Heat wave | 7.77 | 0.23 | 7.32 | 8.25 | 0 | Reject |
Extreme temperatures | 1.50 | 0.02 | 1.46 | 1.54 | 0 | Reject |
Varying-intercept effects | ||||||
Between-district intercept variance | 2.98 | 1.02 | 1.87 | 12.24 | 0 | Reject |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng’ombe, J.N.; Tembo, M.C.; Masasi, B. “Are They Aware, and Why?” Bayesian Analysis of Predictors of Smallholder Farmers’ Awareness of Climate Change and Its Risks to Agriculture. Agronomy 2020, 10, 376. https://doi.org/10.3390/agronomy10030376
Ng’ombe JN, Tembo MC, Masasi B. “Are They Aware, and Why?” Bayesian Analysis of Predictors of Smallholder Farmers’ Awareness of Climate Change and Its Risks to Agriculture. Agronomy. 2020; 10(3):376. https://doi.org/10.3390/agronomy10030376
Chicago/Turabian StyleNg’ombe, John N., Moses C. Tembo, and Blessing Masasi. 2020. "“Are They Aware, and Why?” Bayesian Analysis of Predictors of Smallholder Farmers’ Awareness of Climate Change and Its Risks to Agriculture" Agronomy 10, no. 3: 376. https://doi.org/10.3390/agronomy10030376
APA StyleNg’ombe, J. N., Tembo, M. C., & Masasi, B. (2020). “Are They Aware, and Why?” Bayesian Analysis of Predictors of Smallholder Farmers’ Awareness of Climate Change and Its Risks to Agriculture. Agronomy, 10(3), 376. https://doi.org/10.3390/agronomy10030376