Influence of Burner Position on Temperature Distribution in Soybean Flaming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Flame Cultivator
2.2. Experimental Design and Treatments
2.2.1. Flame Temperature Measurements
2.2.2. Soybean Case Study
2.3. Statistical Analysis
2.3.1. Flame Temperature Distribution—Response Surface
2.3.2. Soybean Case Study—Dose Response
3. Results
3.1. Flame Temperature Distribution
3.2. Within-Row Flame Temperature Patterns
- 100 ℃ temperature (i.e., lethal temperature), defined as a temperature sufficient to cause lethal effect on most plants [29]. It provides a range of propane doses and canopy heights where lethal effect is observed.
- 50 kg/ha (i.e., lethal dose), defined as a propane dose sufficient to provide 90% control of most grass and broadleaf weeds commonly found in temperate cropping systems [30]. It describes changes in flame temperatures throughout the canopy at propane doses most commonly used in cropping systems.
3.3. Soybean Case Study Results
4. Discussion
4.1. Importance of Flame Temperature Measurements
4.2. Designing Selective Flaming Equipment
4.3. Selective Flaming in Soybeans
4.4. Selective Flaming in Other Crops
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Milberg, P.; Hallgren, E. Yield loss due to weeds in cereals and its large-scale variability in Sweden. Field Crops Res. 2004, 86, 199–209. [Google Scholar] [CrossRef]
- Kruidhof, H.M.; Bastiaans, L.; Kropff, M.J. Ecological weed management by cover cropping: Effects on weed growth in autumn and weed establishment in spring. Weed Res. 2008, 48, 492–502. [Google Scholar] [CrossRef]
- Sumption, P.; Firth, C.; Davies, G. Observation on agronomic challenges during conversion to organic field vegetable production. In Proceedings of the BGS/AAB/COR Conference: Organic Farming: Science and Practice of Profitable Livestock and Cropping, Newport, Shropshire, UK, 20–22 April 2004; Hopkins, A., Ed.; UK British Grassland Society, Harper Adams University College. pp. 176–179. [Google Scholar]
- Liebman, M.; Davis, A.S. Managing Weeds in Organic Farming Systems: An Ecological Approach. In Organic Farming: The Ecological System; Agronomy Monograph 54; Francis, C., Ed.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2010; pp. 173–196. [Google Scholar]
- Gunsolus, J. Delayed Planting, Crop Rotation Keys to Weed Control in Organic Corn, Soybeans; Ag News Wire-University of Minnesota Extension: St. Paul, MN, USA, 2011; Available online: http://blog.lib.umn.edu/umnext/news/2011/06/delayed-planting-crop-rotation-keys-to-weed-control-in-organic-corn-soybeans.php (accessed on 17 November 2019).
- Nemming, A. Costs of flame cultivation. Acta Hort. 1994, 372, 205–212. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Ulloa, S. Potential new tool for weed control in organically grown agronomic crops. J. Agric. Sci. 2007, 52, 95–104. [Google Scholar] [CrossRef]
- Wszelaki, A.L.; Doohan, D.J.; Alexandrou, A. Weed control and crop quality in cabbage (Brassica oleracea (capitata group)) and tomato (Lycopersicon lycopersicum) using a propane flamer. Crop Prot. 2007, 26, 134–144. [Google Scholar] [CrossRef]
- Leroux, G.D.; Douheret, J.; Lanouette, M. Flame weeding in corn. In Physical Control Methods in Plant Protection; Vincent, C., Panneton, B., Fleurat Lessard, F., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2001; pp. 47–60. [Google Scholar]
- Ascard, J. Flame weeding: Effects of burner angle on weed control and temperature patterns. Acta Agric. Scand. B. Plant Soil Sci. 1998, 48, 248–254. [Google Scholar] [CrossRef]
- Holekamp, E.R. Weed Control by Flame Cultivation. Prog. Agric. Ariz 1954, 6, 4. [Google Scholar]
- Parish, S. A Review of Non-Chemical Weed Control Techniques. Biol. Agric. Hortic. 1990, 7, 117–137. [Google Scholar] [CrossRef]
- Ascard, J. Thermal Weed Control by Flaming. Ph.D. Thesis, Department of Agricultural Engineering, Swedish University of Agricultural Sciences, Alnarp, Sweden, 1995. [Google Scholar]
- Stepanovic, S.V.; Datta, A.; Neilson, B.; Bruening, C.; Shapiro, C.A.; Gogos, G.; Knezevic, S.Z. Effectiveness of flame weeding and cultivation for weed control in organic maize. Biol. Agric. Hortic. 2015, 32, 47–62. [Google Scholar] [CrossRef]
- Stepanovic, S.V.; Datta, A.; Neilson, B.; Bruening, C.; Shapiro, C.A.; Gogos, G.; Knezevic, S.Z. The effectiveness of flame weeding and cultivation on weed control, yield, and yield components of organic soybean as influenced by manure application. Renew. Agric. Food Syst. 2016, 31, 288–299. [Google Scholar] [CrossRef]
- Neilson, B. The Integration of Propane Flaming and Mechanical Cultivation for Effective Weed Control in Agriculture. Master’s Thesis, The University of Nebraska-Lincoln, Department of Mechanical and Materials Engineering, Lincoln, NE, USA, 2012. [Google Scholar]
- Bowman, G. (Ed.) Steel in the Field: A Farmer’s Guide to Weed Management Tools; Sustainable Agriculture Network: Beltsville, MD, USA, 2002. [Google Scholar]
- Storeheier, K.J. Basic investigations into flaming for weed control. Acta Hort. 1994, 372, 195–204. [Google Scholar] [CrossRef]
- Rajković, M.; Malidža, G.; Gvozdenović, Đ.; Vasić, M.; Gvozdanović-Varga, J. Susceptibility of bean and pepper to flame weeding. Acta Herbol. 2011, 19, 67–76. [Google Scholar]
- Childs, P.R.N.; Greenwood, J.R.; Long, C.A. Review of temperature measurement. Rev. Sci. Instrum. 2000, 71, 2959–2978. [Google Scholar] [CrossRef] [Green Version]
- Childs, P.R.N. Practical Temperature Measurement; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar]
- Van der Burg, M.; Powell, L.A.; Tyre, A.J. Finding the smoothest path to success: Model complexity and the consideration of nonlinear patterns in nest-survival data. Condor 2010, 112, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N.; Augustine, N.H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 2002, 157, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer Science and Business Media: New York, NY, USA, 2002. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.org (accessed on 19 November 2019).
- Ritz, C.; Streibig, J.C. Bioassay analysis using R. J. Stat Softw. 2005, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Knezevic, S.Z.; Streibig, J.C.; Ritz, C. Utilizing R software package for dose-response studies: The concept and data analysis. Weed Technol. 2007, 21, 840–848. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- Vester, J. Flame cultivation for weed control-2 years’ results. Proceedings of a Meeting of the EC Experts’ Group, Weed Control in Vegetable Production, Commission of the European Communities Directorate-General Agriculture in collaboration with Landesanstalt Tür Pflanzenschutz Federal State of Baden-Württemberg, Stuttgart, Germany, 28–31 October 1986; pp. 153–167. [Google Scholar]
- Knezevic, S.Z.; Datta, A.; Bruening, C.; Gogos, G.; Stepanovic, S.; Neilson, B.; Nedeljkovic, D. Propane-Fueled Flame Weeding in Corn, Soybean, and Sunflower; University of Nebraska: Lincoln, NE, USA, 2012; pp. 1–32. [Google Scholar]
- Laguë, C.; Gill, J.; Péloquin, G. Engineering performances of propane flamers used for weed, insect pest, and plant disease control. Appl. Eng. Agric. 1997, 13, 7–16. [Google Scholar] [CrossRef]
- Ascard, J. Comparison of flaming and infrared radiation techniques for thermal weed control. Weed Res. 1998, 38, 69–76. [Google Scholar] [CrossRef]
- Carter, L.M.; Colwick, R.F.; Tavernetti, J.R. Evaluating flame-burner design for weed control in cotton. Trans. Amer. Soc. Agric. Eng. 1960, 3, 125–127. [Google Scholar] [CrossRef]
- Chilcote, D.O.; Youngberg, H.W. Propane flamer burning of grass seed field stubble. Agron. Crop Sci. 1975, 3, 1–5. [Google Scholar]
- Bruening, C.A. Development of Propane Flaming Equipment for Thermal Weed Control in Agronomic Crops. Master’s Thesis, University of Nebraska, Lincoln, NE, USA, 2009. [Google Scholar]
- Seifert, S.; Snipes, C.E. Influence of flame cultivation on mortality of cotton (Gossypium hirsutum) pests and beneficial insects. Weed Technol. 1996, 10, 544–549. [Google Scholar] [CrossRef]
- Anderson, J. Experimental trials and modeling of hydrogen and propane burners for use in selective flaming. Biol. Agric. Hortic. 1997, 14, 207–219. [Google Scholar] [CrossRef]
- Stephenson, K.O. Mechanized Weed Control in Cotton. Arkanses Agricultural Experiment. Arcansas Farm Res. 1962, 10, 3. [Google Scholar]
- Ulloa, S.M.; Datta, A.; Malidza, G.; Leskovsek, R.; Knezevic, S.Z. Yield and yield components of soybean (Glycine max (L.) Merr.) are influenced by the timing of broadcast flaming. Field Crop Res. 2010, 119, 348–354. [Google Scholar] [CrossRef]
- Ulloa, S.M.; Datta, A.; Bruening, C.; Neilson, B.; Miller, J.; Gogos, G.; Knezevic, S.Z. Maize response to broadcast flaming at different growth stages: Effects on growth, yield and yield components. Eur. J. Agron. 2011, 34, 10–19. [Google Scholar] [CrossRef]
- Ulloa, S.M.; Datta, A.; Knezevic, S.Z. Growth stage-influenced differential response of foxtail and pigweed species to broadcast flaming. Weed Technol. 2010, 24, 319–325. [Google Scholar] [CrossRef]
Burner Orientation | Candidate Models | K | AICc | Deltas | Wi |
---|---|---|---|---|---|
Cross | additive | 23 | 2563 | 0 | 1.00 × 100 |
third-order polynomial | 8 | 2592 | 29 | 5.84 × 10−7 | |
second−order polynomial | 6 | 2652 | 88 | 6.19 × 10−20 | |
first−order polynomial | 4 | 2659 | 96 | 1.66 × 10−21 | |
Back | additive | 17 | 2279 | 0 | 9.93 × 10−1 |
third−order polynomial | 8 | 2289 | 10 | 6.47 × 10−1 | |
second−order polynomial | 6 | 2404 | 125 | 6.19 × 10−20 | |
first−order polynomial | 4 | 2613 | 334 | 1.66 × 10−21 | |
Parallel | additive | 8 | 2226 | 0 | 9.93 × 10−1 |
third−order polynomial | 8 | 2235 | 10 | 7.43 × 10−3 | |
second−order polynomial | 6 | 2342 | 116 | 6.49 × 10−26 | |
first−order polynomial | 4 | 2352 | 126 | 4.56 × 10−28 |
Evaluated Parameter | Burner Orientation | Regression Parameters (±SE) | Predicted Response at 50 kg/ha (%) | |
---|---|---|---|---|
B | I50 | |||
Crop injury (%) 28 DAT | Cross | −2.7 (0.3) | 118 (5) | 8 |
Back | −3.2 (0.4) | 92 (3) | 12 | |
Parallel | −3.3 (0.5) | 107 (4) | 8 | |
Crop height reduction (%) 28 DAT | Cross | −3.6 (1.0) | 0.20 (0.02) | 5 (3.45 cm) |
Back | 7.32 (2.1) | 0.20 (0.04) | 16 (11.04 cm) | |
Parallel | 2.66 (0.9) | 0.18 (0.02) | 10 (69.00 cm) | |
Dry matter reduction (%) 28 DAT | Cross | −1.8 (0.4) | 73 (6) | 32 |
Back | −2.6 (0.5) | 64 (4) | 32 | |
Parallel | −1.9 (0.3) | 57 (7) | 40 | |
Grain Yield Reduction (%) | cross | −3.1 (0.7) | 119 (11) | 6 (210 kg/ha) |
back | −3.6 (0.6) | 80 (4) | 16 (560 kg/ha) | |
parallel | −1.8 (0.5) | 136 (23) | 11 (374 kg/ha) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajković, M.; Malidža, G.; Stepanović, S.; Kostić, M.; Petrović, K.; Urošević, M.; Vrbničanin, S. Influence of Burner Position on Temperature Distribution in Soybean Flaming. Agronomy 2020, 10, 391. https://doi.org/10.3390/agronomy10030391
Rajković M, Malidža G, Stepanović S, Kostić M, Petrović K, Urošević M, Vrbničanin S. Influence of Burner Position on Temperature Distribution in Soybean Flaming. Agronomy. 2020; 10(3):391. https://doi.org/10.3390/agronomy10030391
Chicago/Turabian StyleRajković, Miloš, Goran Malidža, Strahinja Stepanović, Marko Kostić, Kristina Petrović, Mirko Urošević, and Sava Vrbničanin. 2020. "Influence of Burner Position on Temperature Distribution in Soybean Flaming" Agronomy 10, no. 3: 391. https://doi.org/10.3390/agronomy10030391
APA StyleRajković, M., Malidža, G., Stepanović, S., Kostić, M., Petrović, K., Urošević, M., & Vrbničanin, S. (2020). Influence of Burner Position on Temperature Distribution in Soybean Flaming. Agronomy, 10(3), 391. https://doi.org/10.3390/agronomy10030391