Effect of Pterocladia capillacea Seaweed Extracts on Growth Parameters and Biochemical Constituents of Jew’s Mallow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweed
2.1.1. Sampling
2.1.2. Biochemical Composition
2.1.3. Seaweed Liquid Extracts Preparation
2.2. Experimental Design
2.3. Treatments
2.4. Measurements
2.4.1. Agronomic and Physiological
2.4.2. Nutrient Contents
2.4.3. Antioxidant Activities
2.5. CROPWAT Model
- −
- The daily climatic (Tmax, Tmin, RH, daylight hours, and u2) and P data for the seasons of 2016 and 2017 were accessed from the Meteorological Data of Central Laboratory for Agricultural Climate (Figure 1).
- −
- A cropping pattern consisting of the crop type, planting date, growing stage (20, 20, 25, and 8 days for initial, development, mid-season, and late-season stages, respectively), Kc (0.7 for initial, 1.15 for mid-, and 0.95 for late-season stage) and critical depletion fraction; P (0.3 for initial and development, 0.45 for mid-season stages, and 0.5 for late season stage), rooting depth; Zr (0.18 m for initial stage and 0.5 m for maximum (mid- and late-season)), and yield response factor; ky (0.8 for initial, 0.4 for development, 1.2 for mid-, and 1 for late-season). The crop values were assumed as data for a small vegetable according to Allen, et al. [54].
- −
- Soil type: Total available soil moisture, maximum infiltration rate and initial soil moisture depletion were obtained from measured data (Table 1).
2.6. Statistical Analyses
3. Results
3.1. Biochemical Composition Seaweed P. Capillacea
3.2. Agronomic Traits
3.3. Water Productivity
3.4. Physiological Traits
3.5. N, P, and K
3.6. Antioxidant Activity
3.7. CROPWAT Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Butnariu, M.; Butu, A. Chemical Composition of Vegetables and Their Products. In Handbook of Food Chemistry; Cheung, P.C.K., Mehta, B.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 627–692. [Google Scholar]
- Tang, L.; Hamid, Y.; Sahito, Z.A.; Gurajala, H.K.; He, Z.; Feng, Y.; Yang, X. Evaluation of variation in essential nutrients and hazardous materials in spinach (Spinacia oleracea L.) genotypes grown on contaminated soil for human consumption. J. Food Compos. Anal. 2019, 79, 95–106. [Google Scholar] [CrossRef]
- Hassan, S.M.; Abd Alhafez, Z.A. Efficiency of plastic cover types on essential oil composition and vegetative growth of dill (Anethum graveolens L.). In Proceedings of the ISHS Acta horticulturae, VIII International Symposium on Light in Horticulture, East Lansing, MI, USA, 22 May 2016. [Google Scholar]
- Oke, J.M.; Hamburger, M.O. Screening of some nigerian medicinal plants for antioxidant activity using 2, 2, diphenyl-picryl-hydrazyl radical. Afr. J. Biomed. Res. 2002, 5, 77–79. [Google Scholar]
- Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. JAPI 2004, 52, 794–804. [Google Scholar] [PubMed]
- Yoshikawa, T.; Toyokuni, S.; Yamamoto, Y.; Naito, Y. Free Radicals in Chemistry, Biology and Medicine; OICA International: London, UK, 2000. [Google Scholar]
- Oboh, G.; Raddatz, H.; Henle, T. Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of Jute (Corchorus olitorius) leaf. Int. J. Food Sci. Nutr. 2009, 60, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Shittu, T.A.; Ogunmoyela, O.A. Water blanching treatment and nutrient retention in some Nigerian green leafy vegetables. In Proceedings of the 25th Annual Conference of the Nigerian Institute of Food Science and Technology, Lagos, Nigeria, 5–9 November 2001; pp. 64–65. [Google Scholar]
- Helaly, A.; Alkharpotly, A.E.-B.A.; Mady, E.; Craker, L.E. Characterization of Four Molokhia (Corchorus olitorius) Landraces by Morphology and Chemistry. J. Med. Act. Plants 2017, 5, 1–6. [Google Scholar]
- Oyedele, D.J.; Asonugho, C.; Awotoye, O.O. Heavy metals in soil and accumulation by edible vegetables after phosphate fertilizer application. Electron. J. Environ. Agric. Food Chem. 2006, 5, 1446–1453. [Google Scholar]
- Brkić, D.; Bošnir, J.; Bevardi, M.; Bošković, A.G.; Miloš, S.; Lasić, D.; Krivohlavek, A.; Racz, A.; Mojsović–Ćuić, A.; Trstenjak, N.U. Nitrate in leafy green vegetables and estimated intake. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 31–41. [Google Scholar]
- Ashour, M.; Elshobary, M.E.; El-Shenody, R.; Kamil, A.-W.; Abomohra, A.E.-F. Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass Bioenergy 2019, 120, 439–447. [Google Scholar] [CrossRef]
- Khairy, H.M.; El-Shafay, S.M. Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 2013, 55, 435–452. [Google Scholar] [CrossRef] [Green Version]
- El-Shenody, R.A.; Ashour, M.; Ghobara, M.M.E. Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa. Braz. J. Food Technol. 2019, 22, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Khairy, H.M.; El-Sheikh, M.A. Antioxidant activity and mineral composition of three Mediterranean common seaweeds from Abu-Qir Bay, Egypt. Saudi J. Biol. Sci. 2015, 22, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshobary, M.; El-Shenody, R.; Ashour, M.; Zabed, H.M.; Qi, X. Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum, a newly isolated green microalga. Food Biosci. 2020, in press. [Google Scholar]
- Abetz, P. Seaweed extracts: Have they a place in Australian agriculture or horticulture? J. Aust. Inst. Agric. Sci. 1980, 46, 23–29. [Google Scholar]
- Ferreira, M.I.; Lourens, A.F. The efficacy of liquid seaweed extract on the yield of canola plants. S. Afr. J. Plant Soil 2002, 19, 159–161. [Google Scholar] [CrossRef]
- Stirk, W.A.; Arthur, G.D.; Lourens, A.F.; Novák, O.; Strnad, M.; van Staden, J. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J. Appl. Phycol. 2004, 16, 31. [Google Scholar] [CrossRef]
- Booth, E. The Manurial Value of Seaweed. Bot. Mar. 1965, 8, 138–143. [Google Scholar] [CrossRef]
- Gandhiyappan, K.; Perumal, P. Growth promoting effect of seaweed liquid fertilizer (Enteromorpha intestinalis) on the sesame crop plant (Sesamum indicum L.). Seaweed Resour. Util 2001, 23, 23–25. [Google Scholar]
- Blunden, G. Agricultural uses of seaweeds and seaweed extracts. In Seaweed Resources in Europe: Uses and Potential; Guiry, M.D., Blunden, G., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 1991; pp. 65–81. [Google Scholar]
- Ajmal, M.; Ali, H.I.; Saeed, R.; Akhtar, A.; Tahir, M.; Mehboob, M.Z.; Ayub, A. Biofertilizer as an alternative for chemical fertilizers. J. Agric. Allied Sci. 2018, 7, 1–7. [Google Scholar]
- Bokil, K.K.; Mehta, V.C.; Datar, D.S. Seaweeds as manure: II. Pot culture manurial experiments on wheat [India]. Phykos 1974, 13, 1–5. [Google Scholar]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Chapman, V.J.; Chapman, D.J. Seaweed as Animal Fodder, Manure and for Energy. In Seaweeds and Their Uses; Chapman, V.J., Chapman, D.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1980; pp. 30–61. [Google Scholar] [CrossRef]
- Aguilera-Morales, M.; Casas-Valdez, M.; Carrillo-Domínguez, S.; González-Acosta, B.; Pérez-Gil, F. Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. J. Food Compos. Anal. 2005, 18, 79–88. [Google Scholar] [CrossRef]
- Arunkumar, K.; Puhazhendi, T.; Subramanian, S.; Thangaraj, N.; Rengaswamy, R. Alleviating effect of seaweed liquid fertilizer on water stressed black gram Vigna mungo (L.) Hepper. Seaweed. Res. Utlin 2002, 24, 151–158. [Google Scholar]
- Rama Rao, K. Effect of seaweed liquid fertilizer on the yield of Zizyphus rugosa (Bores). In Proceedings of the International Symposium on Marine Algae, Bhavnagar, India, 9–12 January 1979; p. 27. [Google Scholar]
- Wijesinghe, W.A.J.P.; Jeon, Y.-J. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia 2012, 83, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Klejdus, L.; Lojková, L.; Vlcek, J. Hyphenated Solid Phase Extraction/Supercritical Fluid Extraction Methods for Extraction of Phenolic Compounds from Algae. Curr. Anal. Chem. 2014, 10, 86–98. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochem. 2014, 23, 308–316. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for bioactive from marine algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwarim, B.K.; Smyth, T.J.; O’Connell, S.; O’Donnell, C.P. Effect of Ultrasound Pretreatment on the Extraction Kinetics of Bioactives from Brown Seaweed (Ascophyllum nodosum). J. Sep. Sci. Technol. 2015, 50, 670–675. [Google Scholar] [CrossRef]
- Asada, C.; Doi, K.; Sasaki, C.; Nakamura, Y. Efficient extraction of starch from microalgae using ultrasonic homogenizer and its conversion into ethanol by simultaneous saccharification and fermentation. Nat. Resour. 2012, 3, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.-Q.; Chen, J.-C.; Liu, D.; Ye, H.X.-Q. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrason. Sonochem. 2009, 16, 57–62. [Google Scholar] [CrossRef]
- Lianfu, Z.; Zelong, L. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 2008, 15, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Sun, Y.; Zhao, G.; Liao, X.; Hu, X.; Wu, J.; Wang, Z. Optimization of ltrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography–mass spectrometry. Ultrason. Sonochem. 2007, 14, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, W.A. Seaweeds in agriculture and horticulture. In Ratequer, Perumai Valley, 3rd ed.; Faber & Faber: London, UK, 1974; p. 241. [Google Scholar]
- Adeboye, O.B.; Schultz, B.; Adekalu, K.O.; Prasad, K. Crop water productivity and economic evaluation of drip-irrigated soybeans (Glyxine max L. Merr.). Agric. Food Secur. 2015, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Surendran, U.; Sushanth, C.M.; Joseph, E.J.; Al-Ansari, N.; Yaseen, Z.M. FAO CROPWAT Model-Based Irrigation Requirements for Coconut to Improve Crop and Water Productivity in Kerala, India. Sustainability 2019, 11, 5132. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.; Smith, M.; El-Askari, K. CropWat for Windows: User Guide. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 1 March 2016).
- Moseki, O.; Murray-Hudson, M.; Kashe, K. Crop water and irrigation requirements of Jatropha curcas L. in semi-arid conditions of Botswana: Applying the CROPWAT model. Agric. Water Manag. 2019, 225, 105754. [Google Scholar] [CrossRef]
- Tsakmakis, I.D.; Zoidou, M.; Gikas, G.D.; Sylaios, G.K. Impact of Irrigation Technologies and Strategies on Cotton Water Footprint Using AquaCrop and CROPWAT Models. Environ. Process. 2018, 5, 181–199. [Google Scholar] [CrossRef]
- Studer, C.; Spoehel, S. Potential and Actual Water Savings through Improved Irrigation Scheduling in Small-Scale Vegetable Production. Agronomy 2019, 9, 888. [Google Scholar] [CrossRef] [Green Version]
- Flores-Velazquez, J.; Rojano, F.; Aguilar, E. ETo estimation to schedule irrigation in a green wall using Cropwat. In Proceedings of the 2019 ASABE Annual International Meeting, Boston, MA, USA, 7–10 July 2019. [Google Scholar]
- Rauch, T. The estimation of microalgal protein content, its meaning the evolution of algal biomass, comparison method for extracting for protein. Hydrobiologia 1981, 78, 237. [Google Scholar] [CrossRef]
- Hartree, E.F. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Riochem. 1972, 48, 422–427. [Google Scholar] [CrossRef]
- Myklestad, S.; Haug, A. Production of carbohydrates by the marine Chaetoceros affinis var. willei (Gran.) Hustedt. I. Effect of the concentration of nutrients in the culture medium. J. Exp. Mar. Biol. Ecol. 1972, 9, 125–136. [Google Scholar] [CrossRef]
- Dubois, M.; Giles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Calorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Page, A.L. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper No. 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Ghoneim, I.M.; El-araby, S.M. Effect of organic manure source and biofertilizer type on growth, productivity and chemical composition of Jew’s Mallow (Corchorus Olitorious L.) plants. J. Agric. Env. Sci. Alex. Univ. Egypt 2003, 2, 88–105. [Google Scholar]
- Dere, Ş.; Güneş, T.; Sivaci, R. Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turkish J. Bot. 1998, 22, 13–18. [Google Scholar]
- Evenhuis, B. Simplified Methods for Foliar Analysis Vol. Communication 70; Department of Agriculture Research Product, Research Division, Koninklijk Institut voor den Tropen: Amsterdam, NL, USA, 1978. [Google Scholar]
- Cottenie, A.; Verloo, M.; Kiekens, L.; Velghe, G.; Camerlynck, R. Chemical Analysis of Plants and Soils, Laboratory of Analytical and Agrochemistry; State University of Ghent: Ghent, Belgium, 1982. [Google Scholar]
- Kumar, G.S.; Antony Muthu Prabhu, A.; Seethalashmi, P.G.; Bhuvanesh, N.; Kumaresan, S. Self-catalyzed syntheses, structural characterization, DPPH radical scavenging-, cytotoxicity-, and DFT studies of phenoxyaliphatic acids of 1,8-dioxo-octahydroxanthene derivatives. J. Mol. Struct. 2014, 1059, 51–60. [Google Scholar] [CrossRef]
- Ahmad, M.Z.; Ali, M.; Mir, S.R. Anti-diabetic activity of Ocimum sanctum L. roots and isolation of new phytoconstituents using two-dimensional nuclear magnetic resonance spectroscopy. J. Pharmacogn. Phytother. 2012, 4, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Swennenhuis, J. CROPWAT Version 8.0; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Grieser, J. Climwat 2.0 for CROPWAT; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1989. [Google Scholar]
- Ashour, M.; Abo-Taleb, H.A.; Abou-Mahmoud, M.M.; El-Feky, M.M.M. Effect of the integration between plankton natural productivity and environmental assessment of irrigation water, El-Mahmoudia Canal, on aquaculture potential of Oreochromis niloticus. Turk. J. Fish. Aquat. Sci. 2018, 18, 1163–1175. [Google Scholar] [CrossRef]
- Ashour, M.; Kamel, A. Enhance growth and biochemical composition of Nannochloropsis oceanica cultured under nutrient limitation using commercial agricultural fertilizers. J. Mar. Sci. Res. Dev. 2017, 7, 233. [Google Scholar] [CrossRef] [Green Version]
- Nour, M.A.; Zaki, M.A.; Ashour, M.; Kamel, A.; Taha, S.M.; Omar, E. Effect of different Nannochloropsis oculata diets (cultured under different nitrogen and phosphorus regime) on growth and biochemical composition of rotifers Brachionus plicatilis. In Proceedings of the 12th International Congress on Microbial Interaction and Applications of Beneficial Microbes, Munich, Germany, 17–18 July 2017. [Google Scholar]
- Omar, E.; Zaki, M.; Ashour, M.; Kamel, A.; Taha, S.M.; Nour, M.A. Effect of nutrient limitations on growth and biochemical composition of outdoor cultured Chaetoceros calcitrans. In Proceedings of the 12th International Congress on Microbial Interaction and Applications of Beneficial Microbes, Munich, Germany, 17–18 July 2017. [Google Scholar]
- Nour, A.M.; Ashour, M.; Kamil, A.; Taha, S.M.; Zaki, M.A.; Omar, E. The use of artificial fertilizers for culture of marine microalgae: 1. Growth and biochemical constituents of Nannochloropsis oculata. World Congress and Expo on Applied Microbiology, Munich, Germany. J. Microb. Biochem. Technol. 2015, 5, 120. [Google Scholar]
- Nour, A.M.; Ashour, M.; Kamil, A.; Taha, S.M.; Zaki, M.A.; Omar, E. The use of artificial fertilizers for culture of marine microalgae: 2. Growth and biochemical constituents of Chaetoceros calcitrans. World Congress and Expo on Applied Microbiology, Munich, Germany, 2015. J. Microb. Biochem. Technol. 2015, 5, 119. [Google Scholar]
- Sharawy, Z.Z.; Ashour, M.; Abbas, E.; Ashry, O.; Helal, M.; Nazmi, H.; Kelany, M.; Kamel, A.; Hassaan, M.; Rossi, W.J.; et al. Effects of dietary marine microalgae, Tetraselmis suecica on production, gene expression, protein markers and bacterial count of Pacific white shrimp Litopenaeus vannamei. Aquac. Res. 2020, in press. [Google Scholar]
- Soliman, H.A.; Fatma, A.A.; AbouZeid, A.E.; Ashour, M. Optimum growth conditions of three isolated diatoms species; Skeletonema costatum, Chaetoceros calcitrans and Detonula confervacea and their utilization as feed for marine penaeid shrimp larvae. EJAR 2010, 36, 161–183. [Google Scholar]
- Soliman, H.A.; Fatma, A.A.; AbouZeid, A.E.; Ashour, M. Population growth rate, fecundity, filtration and ingestion rate of marine rotifer Brachionus plicatilis fed with motile and immotile microalgae. EJAR 2008, 34, 426–439. [Google Scholar]
- Heneash, A.; Ashour, M.; Matar, M. Effect of Un-live Microalgal diet, Nannochloropsis oculata and Arthrospira (Spirulina) platensis, comparing to yeast on population of rotifer, Brachionus plicatilis. Mediterr. Aquac. J. 2015, 7, 48–54. [Google Scholar] [CrossRef]
- Abo-Taleb, H.; Ashour, M.; El-Shafei, A.; Alataway, A.; Maaty, M.M. Biodiversity of Calanoida Copepoda in Different Habitats of the North-Western Red Sea (Hurghada Shelf). Water 2020, 12, 656. [Google Scholar] [CrossRef] [Green Version]
- Ashour, M. Marine Microalgae: Aquaculture and Biodiesel Production, 1st ed.; LAP Lambert Academic Publisher: Saarbrücken, Germany, 2015; pp. 1–240. ISBN 978-3659691683. [Google Scholar]
- Ashour, M. Sustainable development and the future of marine natural products in Egypt: SMIAF-Prototype project. In Proceedings of the 4th International Conference and Exhibition on Natural Products Medicinal Plants & Marine Drugs, Rome, Italy, 11 June 2018. [Google Scholar]
- Hassan, S.M.; Ashour, M.; Soliman, A.A.F. Anticancer activity, antioxidant activity, mineral contents, vegetative and yield of Eruca sativa using foliar application of autoclaved cellular extract of Spirulina platensis extract, comparing to N-P-K fertilizers. J. plant Prod. Mansoura Univ. 2017, 8, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Mohy El-Din, S.M.; El-Ahwany, A.M.D. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea. J. Taibah Univ. Sci. 2016, 10, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Tarakhovskaya, E.R.; Maslov, Y.I.; Shishova, M.F. Phytohormones in algae. Russ J. Plant Physiol. 2007, 54, 163. [Google Scholar] [CrossRef]
- Nelson, W.R.; van Staden, J. The Effect of Seaweed Concentrate on Wheat culms. J. Plant Physiol. 1984, 115, 433–437. [Google Scholar] [CrossRef]
- Sun, T.; Yuan, H.; Cao, H.; Yazdani, M.; Tadmor, Y.; Li, L. Carotenoid Metabolism in Plants: The Role of Plastids. Mol. Plant. 2018, 11, 58–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blunden, G.; Wildgoose, P.B. The effects of aqueous seaweed extract and kinetin on potato yields. J. Sci. Food Agric. 1977, 28, 121–125. [Google Scholar] [CrossRef]
- Mohan, V.R.; Venkataraman Kumar, V.; Murugeswari, R.; Muthuswami, S. Effect of crude and commercial seaweed extracts on seed germination and seedling growth in Cajanus cajan L. Phykos 1994, 33, 47–51. [Google Scholar]
- Thirumaran, G.; Arumugam, M.; Arumugam, R.; Anantharaman, P. Effect of seaweed liquid fertilizer on growth and pigment concentration of Cyamopsis tetrogonolaba (L) Taub. Am. Eurasian J. Agron. 2009, 2, 50–56. [Google Scholar]
- Whapham, C.A.; Blunden, G.; Jenkins, T.; Hankins, S.D. Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J. Appl. Phycol. 1993, 5, 231. [Google Scholar] [CrossRef]
- Kannan, L.; Selvan, T. Effect of seaweed biofertilizer on green gram. In Proceedings of the International Symposium on Phycology, Madras, India, 25 May–15 June 1987; p. 19. [Google Scholar]
- Subramanian, S.K. Studies on the Effect of Seaweed Liquid Fertilizer [SLF]. In Proceedings of the International Symposium on Phycology, Madras, India, 25 May–15 June 1987; p. 33. [Google Scholar]
- Davidson, R.J. EEG Measures of Cerebral Asymmetry: Conceptual and Methodological Issues. Int. J. Neurosci. 1988, 39, 71–89. [Google Scholar] [CrossRef]
- Bennett, D.R.; Harms, T.E. Crop yield and water requirement relationships for major irrigated crops in southern Alberta. Can. Water Resour. J. 2011, 36, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Fereres, E.; Garda-Vila, M. Irrigation management for efficient crop production. Crop Sci. 2019. [Google Scholar] [CrossRef]
Soil Physical Properties | |||||
Season | 2016 | 2017 | Season | 2016 | 2017 |
---|---|---|---|---|---|
Sand (%) | 43.3 | 42.8 | Saturation moisture (m3 m−3) | 0.49 | 0.52 |
Silt (%) | 25.5 | 23.5 | Field capacity (m3 m−3) | 0.40 | 0.41 |
Clay (%) | 31.2 | 33.7 | Wilting point (m3 m−3) | 0.17 | 0.17 |
Soil texture | Clay loam | Clay loam | Total available moisture (m m−1) | 0.22 | 0.24 |
Bulk density (g cm−3) | 1.48 | 1.3 | Infiltration rate (mm h−1) | 3.44 | 3.20 |
Soil chemical properties | |||||
pH | 8.45 | 8.88 | Total Nitrogen (%) | 0.19 | 0.15 |
E.C. (dS m−1) | 3.01 | 3.0 | Phosphorus (ppm) | 0. 41 | 0.44 |
Soluble cations (meq L−1) | Soluble anions (meq L−1) | ||||
Ca+ | 2.08 | 1.97 | CO3−− | 0.0 | 0.0 |
Mg++ | 1.98 | 1.88 | HCO3− | 1.43 | 1.28 |
Na+ | 2.47 | 2.39 | Cl− | 2.05 | 1.95 |
K+ | 0.40 | 0.37 | SO2−− | 3.46 | 3.37 |
Treatment | Plant Height (cm) | Leaf Number (Plant−1) | Fresh Weight (kg m−2) | Dry Matter (%) | ||||
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Control | 42. 7 ± 0.5 d | 44. 7 ± 0.6 d | 9.3 ± 1.1 ab | 9.0 ± 1.0 b | 1.64 ± 0.1 d | 1.65 ± 0.1 e | 13.9 ± 1.1 c | 14.1 ± 1.6 b |
WE5 | 54.7 ± 2.0 b | 55.0 ± 2.3 ab | 10.7 ±0.5 a | 11.0 ± 0.2 a | 2.01 ± 0.1 c | 2.07 ± 0.1 bc | 16.4 ± 0.5 ab | 16.3 ± 0.4 a |
WE10 | 59. 7 ± 1.5 a | 57.3 ± 3.2 a | 10.6 ±1.1 a | 11.0 ± 1.0 a | 2.41 ± 0.1 a | 2.32 ± 0.1 a | 17.1 ± 1.0 a | 16.6 ± 0.4 a |
WE15 | 52.0 ± 2.0 c | 52.5 ± 2.2 abc | 9.0 ±0.1 b | 9.0 ± 0.1 b | 1.91 ± 0.1 c | 1.84 ± 0.1 de | 16.7 ± 0.9 ab | 16.2 ± 0.4 |
USWE5 | 44. 7 ± 0.5 d | 47.7 ± 1.8 cd | 9.3 ±0.6 ab | 9.3 ± 0.5 b | 2.09 ± 0.0 bc | 2.15 ± 0.2 ab | 16.1 ± 1.0 ab | 16.9 ± 1.1 a |
USWE10 | 44.6 ± 1.5 d | 45.0 ± 2.2 d | 9.0 ±0.2 b | 9.0 ± 0.1 b | 2.22 ± 0.1 ab | 2.16 ± 0.1 ab | 16.4 ± 0.2 ab | 16.6 ± 0.9 a |
USWE15 | 50.0 ± 1.0 c | 49.9 ± 0.4 bcd | 9.7 ±0.6 ab | 9.6 ± 0.6 b | 1.88 ± 0.2 c | 1.90 ± 0.1 cd | 14.9 ± 1.5 bc | 15.1 ± 1.5 b |
Treatment | Chlorophyll ‘a’ (μg g−1) | Chlorophyll ‘b’ (μg g−1) | Carotene (μg g−1) | |||
---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Control | 9.4 ± 1.9 d | 9.4 ± 1.9 d | 6.5 ± 0.2 bc | 6.5 ± 0.2 bc | 2.9 ± 0.2 d | 2.8 ± 0.2 d |
WE5 | 17.0 ± 0.7 a | 17.1 ± 0.7 a | 6.2 ± 0.0 bc | 6.2 ± 0.0 c | 3.1 ± 0.3 cd | 3.1 ± 0.3 cd |
WE10 | 17.8 ± 0.2 a | 17.8 ± 0.3 a | 13.0 ± 1.2 a | 12.9 ± 1.1a | 3.0 ± 0.2 d | 3.1 ± 0.2 cd |
WE15 | 17.7 ± 1.7 a | 17.5 ± 1.6 a | 13.3 ± 0.8 a | 13.3 ± 0.8 a | 3.1 ± 0.2 cd | 3.0 ± 0.2 cd |
USWE5 | 12.3 ± 0.1 c | 12.4 ± 0.0 c | 5.4 ± 2.3 c | 5.4 ± 2.3 c | 3.9 ± 0.3 bc | 3.8 ± 0.2 bc |
USWE10 | 10.3 ± 0.7 cd | 10.3 ± 0.7 cd | 4.8 ± 0.6 c | 4.7 ± 0.7 c | 4.9 ± 0.8 a | 4.9 ± 0.8 a |
USWE15 | 14. 7 ± 1.7 b | 14.8 ± 1.7 b | 8.5 ± 1.9 b | 8.5 ± 1.8 b | 4.4 ± 0.6 ab | 4.4 ± 0.6 ab |
Treatment | N (%) | P (%) | K (%) | |||
---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Control | 1.78 ± 0.20 a | 1.71 ± 0.25 a | 0.67 ±0.06 ab | 0.70 ±0.07 ab | 1.40 ±0.01 c | 1.40 ±0.02 b |
WE5 | 1.33 ± 0.13 b | 1.40 ±0.04 b | 0.64 ±0.01 b | 0.66 ±0.04 b | 1.80 ±0. 10 b | 1.90 ±0.04 a |
WE10 | 1.20 ±0.10 b | 1.33 ±0.12 b | 0.70 ±0.06 ab | 0.77 ±0.01 a | 1.80 ±0.02 b | 1.80 ±0.01 a |
WE15 | 1.41 ±0.04 b | 1.49 ±0.23 ab | 0.71 ±0.05 ab | 0.73 ±0.06 ab | 1.90 ±0.03 a | 1.90 ±0.01 a |
USWE5 | 1.39 ±0.10 b | 1.37 ±0.02 b | 0.66 ±0.06 ab | 0.69 ±0.07 ab | 1.80 ±0.04 b | 1.80 ±0.02 a |
USWE10 | 1.24 ±0.12 b | 1.32 ±0.11 b | 0.74 ±0.03 a | 0.77 ±0.02 a | 1.20 ±0. 10 d | 1.30 ±0.03 b |
USWE15 | 1.41 ±0.04 b | 1.39 ±0.06 b | 0.68 ±0.03 ab | 0.74 ±0.03 ab | 1.20 ±0. 11 d | 1.30 ±0.02 b |
Treatment | TAC (mg g−1) | TPC (mg g−1) | TVC (μg g−1) | |||
---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Control | 26.30 ± 3.43 c | 26.22 ± 0.40 c | 97.15 ± 11.78 b | 98.15 ± 10.92 b | 1168 ± 47.4 ab | 1170 ± 49.2 ab |
WE5 | 34.65 ± 3.36 b | 32.69 ± 1.27 b | 75.22 ± 2.19 cd | 75.40 ± 2.43 cd | 1193 ± 23.9 a | 1194 ± 20.7 a |
WE10 | 43.97 ± 1.04 a | 44.22 ± 2.40 a | 116.28 ± 6.59 a | 115.81 ± 7.77 a | 1208 ± 26.4 a | 1204 ± 14.7 a |
WE15 | 27.28 ± 1.37 c | 28.13 ± 2.53 c | 77.92 ± 11.12 cd | 78.33 ± 10.70 cd | 1191 ± 20.9 a | 1187 ± 29.7 a |
USWE5 | 35.35 ± 1.55 b | 35.52 ± 1.32 b | 66.56 ± 1.69 d | 65.46 ± 1.47 d | 1244 ± 3.1 a | 1232 ± 7.3 a |
USWE10 | 35.69 ± 2.41 b | 36.38 ± 2.53 b | 49.62 ± 6.54 e | 49.61 ± 751 e | 1205 ± 80.8 a | 1209 ± 75.1 a |
USWE15 | 26.78 ± 2.28 c | 26.00 ± 2.54 c | 80.20 ± 0.83 c | 79.69 ± 0.56 c | 1113 ± 31.1 b | 1105 ± 30.1 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashour, M.; El-Shafei, A.A.; Khairy, H.M.; Abd-Elkader, D.Y.; Mattar, M.A.; Alataway, A.; Hassan, S.M. Effect of Pterocladia capillacea Seaweed Extracts on Growth Parameters and Biochemical Constituents of Jew’s Mallow. Agronomy 2020, 10, 420. https://doi.org/10.3390/agronomy10030420
Ashour M, El-Shafei AA, Khairy HM, Abd-Elkader DY, Mattar MA, Alataway A, Hassan SM. Effect of Pterocladia capillacea Seaweed Extracts on Growth Parameters and Biochemical Constituents of Jew’s Mallow. Agronomy. 2020; 10(3):420. https://doi.org/10.3390/agronomy10030420
Chicago/Turabian StyleAshour, Mohamed, Ahmed A. El-Shafei, Hanan M. Khairy, Doaa Y. Abd-Elkader, Mohamed A. Mattar, Abed Alataway, and Shimaa M. Hassan. 2020. "Effect of Pterocladia capillacea Seaweed Extracts on Growth Parameters and Biochemical Constituents of Jew’s Mallow" Agronomy 10, no. 3: 420. https://doi.org/10.3390/agronomy10030420
APA StyleAshour, M., El-Shafei, A. A., Khairy, H. M., Abd-Elkader, D. Y., Mattar, M. A., Alataway, A., & Hassan, S. M. (2020). Effect of Pterocladia capillacea Seaweed Extracts on Growth Parameters and Biochemical Constituents of Jew’s Mallow. Agronomy, 10(3), 420. https://doi.org/10.3390/agronomy10030420