Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Germination Percentage of Seeds
2.4. Plant Biomass, Height and Root Length
2.5. Photosynthetic Parameters
2.6. MDA Content
2.7. Antioxidant Enzyme Activity
2.8. Phytohormones
2.9. Chloroplast Ultrastructure
2.10. Statistical Analysis
3. Results
3.1. Seed Germination
3.2. Seedling Biomass
3.3. MDA Content and Antioxidant Enzyme Activity
3.4. Photosynthesis
3.5. Plant Hormones
3.6. Chloroplast Ultrastructure
4. Discussion
4.1. Impacts of Chilling Stress on Maize
4.2. Protective Effects of BL
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Casadei, E.; Albert, J. Food and Agriculture Organization of the United Nations. Encycl. Food Sci. Nutr. 2003, 1, 2587–2593. [Google Scholar]
- Krasensky-Wrzaczek, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leipner, J.; Stamp, P. Chilling Stress in Maize Seedlings. In Handbook of Maize: Its Biology; Jeff, L.B., Sarah, C.H., Eds.; Springer: New York, NY, USA, 2009; pp. 291–310. [Google Scholar]
- Atıcı, Ö.; Nalbantoǧlu, B.; Atici, O.; Nalbantoglu, B. Antifreeze proteins in higher plants. Phytochem. 2003, 64, 1187–1196. [Google Scholar] [CrossRef]
- Miedema, P. The Effects of Low Temperature on Zea mays. Advances in Agronomy 1982, 35, 93–128. [Google Scholar]
- Janowiak, F.; Maas, B.; Dörffling, K. Importance of abscisic acid for chilling tolerance of maize seedlings. J. Plant Physiol. 2002, 159, 635–643. [Google Scholar] [CrossRef]
- Bajguz, A.; Hayat, S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Louarn, G.; Chenu, K.; Fournier, C.; Andrieu, B.; Giauffret, C. Relative contributions of light interception and radiation use efficiency to the reduction of maize productivity under cold temperatures. Funct. Plant Boil. 2008, 35, 885–899. [Google Scholar] [CrossRef]
- Krishna, P. Brassinosteroid-Mediated Stress Responses. J. Plant Growth Regul. 2003, 22, 289–297. [Google Scholar] [CrossRef]
- Hamada, K. Brassinolide: Some Effects for Crop Cultivations. In Proceedings of the Conference Proceedings International Seminar Plant Growth Regulation, Tokyo, Japan, 15 October 1986; pp. 188–196. [Google Scholar]
- Fariduddin, Q.; Yusuf, M.; Ahmad, I.; Ahmad, A. Brassinosteroids and their role in response of plants to abiotic stresses. Boil. Plant. 2013, 58, 9–17. [Google Scholar] [CrossRef]
- Vardhini, B.V. Modifications of morphological and anatomical characteristics of plants by application of brassinosteroids under various abiotic stress conditions—A review. Plant Gene 2017, 11, 70–89. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, Y.; Ye, S.F.; Huang, L.F. 24-epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury. J. Hortic. Sci. Biotechnol. 2002, 77, 470–473. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhu, X.H.; Ding, H.D.; Yang, S.J.; Chen, Y.Y. Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica 2013, 51, 341–349. [Google Scholar] [CrossRef]
- Tanveer, M.; Shahzad, B.; Sharma, A.; Khan, E.A. 24-Epibrassinolide application in plants: An implication for improving drought stress tolerance in plants. Plant Physiol. Biochem. 2019, 135, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.-D.; Zhu, X.-H.; Zhu, Z.-W.; Yang, S.-J.; Zha, D.-S.; Wu, X.-X. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Boil. Plant. 2012, 56, 767–770. [Google Scholar] [CrossRef]
- Bajguz, A. An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ. Exp. Bot. 2010, 68, 175–179. [Google Scholar] [CrossRef]
- Yuan, L.; Shu, S.; Sun, J.; Guo, S.; Tezuka, T. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynth. Res. 2012, 112, 205–214. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Yuan, H.-L.; Ogweno, J.O.; Zhou, Y.; Xia, X.; Mao, W.-H.; Shi, K.; Yu, J. Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 2012, 86, 546–555. [Google Scholar] [CrossRef]
- Xi, Z.; Wang, Z.; Fang, Y.; Hu, Z.; Hu, Y.; Deng, M.; Zhang, Z.-W. Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. Plant Growth Regul. 2013, 71, 57–65. [Google Scholar] [CrossRef]
- Hu, W.H.; Wu, Y.; Zeng, J.Z.; He, L.; Zeng, Q.M. Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery. Photosynthetica 2010, 48, 537–544. [Google Scholar] [CrossRef]
- Yang, D.; Sun, Y.; Irfan, A.R.; Liu, X.; Lv, J.; Yu, J.; Gong, L.; Liu, Z.; Bai, B. Effect of Low Temperature Stress on Germination and Physiological of Maize Seedling. J. Northeast Agric. Univ. 2018, 49, 4–11. [Google Scholar]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide Dismutases: I. Occurrence in Higher Plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Li, F.; Xu, T.; Cai, S.; Chu, W.; Qiu, H.; Sha, S.; Cheng, G.; Xu, Q. Bioaccumulation, subcellular, and molecular localization and damage to physiology and ultrastructure in Nymphoides peltata (Gmel.) O. Kuntze exposed to yttrium. Environ. Sci. Pollut. Res. 2013, 21, 2935–2942. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar]
- Zhang, Y.; Li, Q.; Jiang, L.; Kai, W.; Liang, B.; Wang, J.; Du, Y.; Zhai, X.; Wang, J.; Zhang, Y.; et al. Suppressing Type 2C Protein Phosphatases Alters Fruit Ripening and the Stress Response in Tomato. Plant Cell Physiol. 2017, 59, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Lai, Z.; Ye, L.; Wu, S. The Hplc Detection of Endogrnous Hormines from Seedling in Several Species of Acacia. Chin. Agric. Sci. Bull. 2010, 26, 216–221. [Google Scholar]
- Cutforth, H.W.; Shaykewich, C.F.; Cho, C.M. Effect of Soil Water and Temperature on Corn (Zea mays L.) Root Growth during Emergence. Can. J. Soil Sci. 1986, 66, 51–58. [Google Scholar] [CrossRef]
- Muñoz, B.G.; Lekfeldt, J.D.S.; Magid, J.; Jensen, L.S.; De Neergaard, A. Seed treatment with Penicillium sp. or Mn/Zn can alleviate the negative effects of cold stress in maize grown in soils dependent on soil fertility. J. Agron. Crop. Sci. 2018, 204, 603–612. [Google Scholar] [CrossRef]
- Bano, S.; Aslam, M.; Saleem, M.; Basra, S.M.A.; Aziz, K. Evaluation of Maize Accessions under Low Temperature Stress at Early Growth Stages. J. Anim. Plant Sci. 2015, 25, 392–400. [Google Scholar]
- Huang, J.; Zhang, J.; Li, W.; Hu, W.; Duan, L.; Feng, Y.; Qiu, F.; Yue, B. Genome-wide Association Analysis of Ten Chilling Tolerance Indices at the Germination and Seedling Stages in Maize. J. Integr. Plant Boil. 2013, 55, 735–744. [Google Scholar] [CrossRef]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Chang. Boil. 2013, 20, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Saeidnejad, A.H.; Pouramir, F.; NaghiZadeh, M. Improving Chilling Tolerance of Maize Seedlings under Cold Conditions by Spermine Application. Not. Sci. Boil. 2012, 4, 110–117. [Google Scholar] [CrossRef] [Green Version]
- LIU, Y.C.; YANG, D.G.; LI, L.; CHAI, M.Z.; JU, R.; BAI, B.; LIU, Y.L. Effect of Low Temperature Stress on Maize Seed Germination and Starch Decomposition Enzyme Activity. J. Maize Sci. 2018, 26, 64–68. [Google Scholar]
- Engels, C. Effect of Root and Shoot Meristem Temperature on Shoot to Root Dry Matter Partitioning and the Internal Concentrations of Nitrogen and Carbohydrates in Maize and Wheat. Ann. Bot. 1994, 73, 211–219. [Google Scholar] [CrossRef]
- Stone, P.; Sorensen, I.; Jamieson, P. Effect of soil temperature on phenology, canopy development, biomass and yield of maize in a cool-temperate climate. Field Crop. Res. 1999, 63, 169–178. [Google Scholar] [CrossRef]
- Sowiński, P.; Rudzińska-Langwald, A.; Adamczyk, J.; Kubica, I.; Fronk, J. Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. J. Plant Physiol. 2005, 162, 67–80. [Google Scholar] [CrossRef]
- Rymen, B.; Fiorani, F.; Kartal, F.; Vandepoele, K.; Inzé, D.; Beemster, G.T.S. Cold Nights Impair Leaf Growth and Cell Cycle Progression in Maize through Transcriptional Changes of Cell Cycle Genes1[W][OA]. Plant Physiol. 2007, 143, 1429–1438. [Google Scholar] [CrossRef] [Green Version]
- Mauch-Mani, B.; Mauch, F. The role of abscisic acid in plant–pathogen interactions. Curr. Opin. Plant Boil. 2005, 8, 409–414. [Google Scholar] [CrossRef]
- Wise, R.R.; Naylor, A.W. Chilling-Enhanced Photooxidation: The Peroxidative Destruction of Lipids During Chilling Injury to Photosynthesis and Ultrastructure. Plant Physiol. 1987, 83, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, M.; Gong, X.; Liu, C.; Hong, M.; Wang, L.; Hong, F. Influence of Lanthanides on the Antioxidative Defense System in Maize Seedlings Under Cold Stress. Boil. Trace Element Res. 2010, 142, 819–830. [Google Scholar] [CrossRef]
- Gapper, C.; Dolan, L. Control of Plant Development by Reactive Oxygen Species1. Plant Physiol. 2006, 141, 341–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Guo, Z.; Xing, J.; Huang, B. Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J. Exp. Bot. 2005, 56, 3223–3228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2019, 1–23. [Google Scholar] [CrossRef]
- Holá, D.; Kočová, M.; Rothová, O.; Wilhelmova, N.; Benesova, M. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: Photosynthesis and antioxidant enzymes. J. Plant Physiol. 2007, 164, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huang, L.; Zhang, Y.; Shi, K.; Yu, J.; Nogués, S. Chill-Induced Decrease in Capacity of RuBP Carboxylation and Associated H2O2 Accumulation in Cucumber Leaves are Alleviated by Grafting onto Figleaf Gourd. Ann. Bot. 2007, 100, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.G.; Hayashi, T.; Yazawa, S.; Katoh, T.; Yasuda, Y. Acute morphological changes of palisade cells ofSaintpaulia leaves induced by a rapid temperature drop. J. Plant Res. 1996, 109, 339–342. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Zhou, C.F.; Wu, C.T.; Li, D.D.; Zhang, X.W.; Bi, H.G.; Ai, X.Z. Hydrogen Sulfide Promotes Chilling Tolerance of Cucumber Seedlings by Alleviating Low-Temperature Photoinhibition. Plant Physiol. J. 2018, 54, 411–420. [Google Scholar]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Funct. Plant Boil. 2002, 29, 461. [Google Scholar] [CrossRef] [Green Version]
- Aniszewski, T.; Drozdov, S.N.; Kholoptseva, E.S.; Kurets, V.K.; Obshatko, L.A.; Popov, E.G.; Talanov, A.V. Effects of Light and Temperature Parameters on Net Photosynthetic Carbon Dioxide Fixation by Whole Plants of Five Lupin Species ( Lupinus albus L.; Lupinus angustifolius L.; Lupinus luteus L.; Lupinus mutabilis Sweet. and Lupinus polyphyllus Lindl.). Acta Agric. Scand. Sect. B - Plant Soil Sci. 2001, 51, 17–27. [Google Scholar] [CrossRef]
- Wang, Y.; Mopper, S.; Hasenstein, K. Effects of salinity on endogenous ABA, IAA, JA, AND SA in Iris hexagona. J. Chem. Ecol. 2001, 27, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Ribaut, J.M.; Pilet, P.E. Water stress and indol-3yl-acetic acid content of maize roots. Planta 1994, 193, 502–507. [Google Scholar] [CrossRef]
- Wang, F.; Tan, X.H.; Gan, L.; Wu, Y.Y.; Wang, R.Z.; & Li, Q.M. Effects of Cold Shock Treatments on Endogenous Phytohormones Contents and Proteins Variations of Nai-Plume Fruits. Food Sci. 2006, 27, 71–74. [Google Scholar]
- Lin, Y. Influence of Natural Plant Growth Regulator-Oxyenadenine against Growth and Increase Production with Tomato. AGROCHEMICALS 2007, 46, 349–350. [Google Scholar]
- Ma, J. Physiolgical Mechanism of Ebr Promotr Low Temperature Stress in Maize Seed Germination. PH.D. Thesis, Shanxi Agricultural University, Jinzhong, Shanxi, China, December 2015. [Google Scholar]
- Xu, X.Y.; Yu, J.H.; Xie, J.M.; Hu, L.L.; Li, J. Effects of Exogenous Salicylic Acid and Brassinolide on Photosynthesis of Cucumber Seedlings under Low Temperature Stress. Chin. J. Appl. Ecol. 2016, 27, 3009–3015. [Google Scholar]
- Fariduddin, Q.; Yusuf, M.; Chalkoo, S.; Hayat, S.; Ahmad, A. 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 2011, 49, 55–64. [Google Scholar] [CrossRef]
- Fujii, S.; Saka, H. The Promotive Effect of Brassinolide on Lamina Joint-Cell Elongation, Germination and Seedling Growth under Low-Temperature Stress in Rice (Oryza sativa L.). Plant Prod. Sci. 2001, 4, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Ashraf, M.; Athar, H. Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul. 2008, 55, 51–64. [Google Scholar] [CrossRef]
- Singh, I.; Kumar, U.; Singh, S.K.; Gupta, C.; Singh, M.; Kushwaha, S.R. Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol. Mol. Boil. Plants 2012, 18, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, Z.; Si, J.; Di, C.; Han, J.; An, L. Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regul. 2009, 59, 207–214. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules 2019, 9, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.-H.; Yan, X.-H.; Xiao, Y.-A.; Zeng, J.-J.; Qi, H.-J.; Ogweno, J.O. 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci. Hortic. 2013, 150, 232–237. [Google Scholar] [CrossRef]
- Li, X.; Wei, J.-P.; Ahammed, G.J.; Zhang, L.; Li, Y.; Yan, P.; Zhang, L.-P.; Han, W.-Y. Brassinosteroids Attenuate Moderate High Temperature-Caused Decline in Tea Quality by Enhancing Theanine Biosynthesis in Camellia sinensis L. Front. Plant Sci. 2018, 9, 1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.X.; Ding, H.D.; Chen, J.L.; Zhu, Z.; Zha, D.S. Exogenous spray application of 24-epibrassinolide induced changes in photosynthesis and anti-oxidant defences against chilling stress in eggplant ( Solanum melongena L.) seedlings. J. Hortic. Sci. Biotechnol. 2015, 90, 217–225. [Google Scholar] [CrossRef]
- Holá, D. Brassinosteroids and Photosynthesis. In Brassinosteroids: A Class of Plant Hormone; Hayat, S., Ahmad, A., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 143–192. [Google Scholar]
- Huang, C.; Wang, D.; Sun, L.; Wei, L. Effects of exogenous salicylic acid on the physiological characteristics of Dendrobium officinale under chilling stress. Plant Growth Regul. 2016, 79, 199–208. [Google Scholar] [CrossRef]
- Alyemeni, M.; Al-Quwaiz, S.M. Effect of 28-homobrassinolide on the performance of sensitive and resistant varieties of Vigna radiata. Saudi J. Boil. Sci. 2016, 23, 698–705. [Google Scholar] [CrossRef] [Green Version]
- WANG, X.; YU, J.; YANG, Y.; CANG, J.; LI, Z.F. Changes of Endogenous Hormones of Winter Wheat Varieties with Different Cold-Resistances under Low Temperature. J. Triticeae Crops 2009, 5, 827–831. [Google Scholar]
- Xu, P.-L.; Guo, Y.-K.; Bai, J.-G.; Shang, L.; Wang, X.-J. Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiol. Plant. 2008, 132, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Agami, R.A. Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. S. Afr. J. Bot. 2013, 88, 171–177. [Google Scholar] [CrossRef] [Green Version]
Varieties | Treatments | Plant height (cm) | Root length (cm) | FW (g) | DW (mg) | ||
---|---|---|---|---|---|---|---|
Seedling | Root | Seedling | Root | ||||
Tiannong 9 | CK | 36.33 ± 1.48a | 29.06 ± 0.87a | 1.80 ± 0.02a | 1.14 ± 0.03a | 146.93 ± 7.80a | 106.10 ± 4.71a |
T0 | 27.06 ± 2.25c | 18.60 ± 0.21d | 0.91 ± 0.09d | 0.53 ± 0.03c | 70.76 ± 5.12c | 62.23 ± 5.09c | |
T1 | 30.80 ± 0.30bc | 21.96 ± 1.32c | 1.14 ± 0.05bc | 0.57 ± 0.04c | 89.66 ± 4.60c | 82.53 ± 1.45b | |
T2 | 32.50 ± 0.17ab | 26.30 ± 0.21ab | 1.31 ± 0.06b | 0.70 ± 0.02b | 111.57 ± 9.27b | 93.26 ± 3.45b | |
T3 | 30.30 ± 0.67bc | 24.10 ± 1.38bc | 1.09 ± 0.07cd | 0.51 ± 0.05c | 87.83 ± 1.26c | 69.66 ± 2.09c | |
Tianhe1 | CK | 37.00 ± 0.50a | 37.00 ± 0.50a | 1.89 ± 0.02a | 1.04 ± 0.10a | 149.03 ± 9.76a | 76.70 ± 2.92a |
T0 | 29.23 ± 1.41c | 20.00 ± 1.26d | 1.06 ± 0.01c | 0.58 ± 0.13b | 90.53 ± 4.82c | 58.43 ± 3.43c | |
T1 | 31.10 ± 1.36c | 29.56 ± 0.91c | 1.19 ± 0.08c | 0.63 ± 0.06b | 98.63 ± 3.06c | 62.40 ± 0.60bc | |
T2 | 34.76 ± 0.33ab | 32.83 ± 0.34b | 1.66 ±0.05b | 0.81 ±0.03ab | 135.03 ± 1.70ab | 66.76 ± 1.28b | |
T3 | 31.83 ± 0.84bc | 29.73 ± 0.18c | 1.50 ± 0.08b | 0.69 ± 0.06b | 120.60 ± 3.45b | 61.26 ± 2.09bc |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; He, Y.; Irfan, A.R.; Liu, X.; Yu, Q.; Zhang, Q.; Yang, D. Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress. Agronomy 2020, 10, 488. https://doi.org/10.3390/agronomy10040488
Sun Y, He Y, Irfan AR, Liu X, Yu Q, Zhang Q, Yang D. Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress. Agronomy. 2020; 10(4):488. https://doi.org/10.3390/agronomy10040488
Chicago/Turabian StyleSun, Yujun, Yunhan He, Ali Raza Irfan, Xinmeng Liu, Qiaoqiao Yu, Qian Zhang, and Deguang Yang. 2020. "Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress" Agronomy 10, no. 4: 488. https://doi.org/10.3390/agronomy10040488